ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
Revision: 1.136
Committed: Sun Nov 11 16:27:28 2018 UTC (5 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.135: +2 -2 lines
Log Message:
Add portability layer for new location of SharedSecrets in JDK-8211122

File Contents

# Content
1 /*
2 * Written by Josh Bloch of Google Inc. and released to the public domain,
3 * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4 */
5
6 package java.util;
7
8 import java.io.Serializable;
9 import java.util.function.Consumer;
10 import java.util.function.Predicate;
11 import java.util.function.UnaryOperator;
12 // OPENJDK import jdk.internal.access.SharedSecrets;
13
14 /**
15 * Resizable-array implementation of the {@link Deque} interface. Array
16 * deques have no capacity restrictions; they grow as necessary to support
17 * usage. They are not thread-safe; in the absence of external
18 * synchronization, they do not support concurrent access by multiple threads.
19 * Null elements are prohibited. This class is likely to be faster than
20 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
21 * when used as a queue.
22 *
23 * <p>Most {@code ArrayDeque} operations run in amortized constant time.
24 * Exceptions include
25 * {@link #remove(Object) remove},
26 * {@link #removeFirstOccurrence removeFirstOccurrence},
27 * {@link #removeLastOccurrence removeLastOccurrence},
28 * {@link #contains contains},
29 * {@link #iterator iterator.remove()},
30 * and the bulk operations, all of which run in linear time.
31 *
32 * <p>The iterators returned by this class's {@link #iterator() iterator}
33 * method are <em>fail-fast</em>: If the deque is modified at any time after
34 * the iterator is created, in any way except through the iterator's own
35 * {@code remove} method, the iterator will generally throw a {@link
36 * ConcurrentModificationException}. Thus, in the face of concurrent
37 * modification, the iterator fails quickly and cleanly, rather than risking
38 * arbitrary, non-deterministic behavior at an undetermined time in the
39 * future.
40 *
41 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
42 * as it is, generally speaking, impossible to make any hard guarantees in the
43 * presence of unsynchronized concurrent modification. Fail-fast iterators
44 * throw {@code ConcurrentModificationException} on a best-effort basis.
45 * Therefore, it would be wrong to write a program that depended on this
46 * exception for its correctness: <i>the fail-fast behavior of iterators
47 * should be used only to detect bugs.</i>
48 *
49 * <p>This class and its iterator implement all of the
50 * <em>optional</em> methods of the {@link Collection} and {@link
51 * Iterator} interfaces.
52 *
53 * <p>This class is a member of the
54 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
55 * Java Collections Framework</a>.
56 *
57 * @author Josh Bloch and Doug Lea
58 * @param <E> the type of elements held in this deque
59 * @since 1.6
60 */
61 public class ArrayDeque<E> extends AbstractCollection<E>
62 implements Deque<E>, Cloneable, Serializable
63 {
64 /*
65 * VMs excel at optimizing simple array loops where indices are
66 * incrementing or decrementing over a valid slice, e.g.
67 *
68 * for (int i = start; i < end; i++) ... elements[i]
69 *
70 * Because in a circular array, elements are in general stored in
71 * two disjoint such slices, we help the VM by writing unusual
72 * nested loops for all traversals over the elements. Having only
73 * one hot inner loop body instead of two or three eases human
74 * maintenance and encourages VM loop inlining into the caller.
75 */
76
77 /**
78 * The array in which the elements of the deque are stored.
79 * All array cells not holding deque elements are always null.
80 * The array always has at least one null slot (at tail).
81 */
82 transient Object[] elements;
83
84 /**
85 * The index of the element at the head of the deque (which is the
86 * element that would be removed by remove() or pop()); or an
87 * arbitrary number 0 <= head < elements.length equal to tail if
88 * the deque is empty.
89 */
90 transient int head;
91
92 /**
93 * The index at which the next element would be added to the tail
94 * of the deque (via addLast(E), add(E), or push(E));
95 * elements[tail] is always null.
96 */
97 transient int tail;
98
99 /**
100 * The maximum size of array to allocate.
101 * Some VMs reserve some header words in an array.
102 * Attempts to allocate larger arrays may result in
103 * OutOfMemoryError: Requested array size exceeds VM limit
104 */
105 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
106
107 /**
108 * Increases the capacity of this deque by at least the given amount.
109 *
110 * @param needed the required minimum extra capacity; must be positive
111 */
112 private void grow(int needed) {
113 // overflow-conscious code
114 final int oldCapacity = elements.length;
115 int newCapacity;
116 // Double capacity if small; else grow by 50%
117 int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
118 if (jump < needed
119 || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
120 newCapacity = newCapacity(needed, jump);
121 final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
122 // Exceptionally, here tail == head needs to be disambiguated
123 if (tail < head || (tail == head && es[head] != null)) {
124 // wrap around; slide first leg forward to end of array
125 int newSpace = newCapacity - oldCapacity;
126 System.arraycopy(es, head,
127 es, head + newSpace,
128 oldCapacity - head);
129 for (int i = head, to = (head += newSpace); i < to; i++)
130 es[i] = null;
131 }
132 // checkInvariants();
133 }
134
135 /** Capacity calculation for edge conditions, especially overflow. */
136 private int newCapacity(int needed, int jump) {
137 final int oldCapacity = elements.length, minCapacity;
138 if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
139 if (minCapacity < 0)
140 throw new IllegalStateException("Sorry, deque too big");
141 return Integer.MAX_VALUE;
142 }
143 if (needed > jump)
144 return minCapacity;
145 return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
146 ? oldCapacity + jump
147 : MAX_ARRAY_SIZE;
148 }
149
150 /**
151 * Increases the internal storage of this collection, if necessary,
152 * to ensure that it can hold at least the given number of elements.
153 *
154 * @param minCapacity the desired minimum capacity
155 * @since TBD
156 */
157 /* public */ void ensureCapacity(int minCapacity) {
158 int needed;
159 if ((needed = (minCapacity + 1 - elements.length)) > 0)
160 grow(needed);
161 // checkInvariants();
162 }
163
164 /**
165 * Minimizes the internal storage of this collection.
166 *
167 * @since TBD
168 */
169 /* public */ void trimToSize() {
170 int size;
171 if ((size = size()) + 1 < elements.length) {
172 elements = toArray(new Object[size + 1]);
173 head = 0;
174 tail = size;
175 }
176 // checkInvariants();
177 }
178
179 /**
180 * Constructs an empty array deque with an initial capacity
181 * sufficient to hold 16 elements.
182 */
183 public ArrayDeque() {
184 elements = new Object[16 + 1];
185 }
186
187 /**
188 * Constructs an empty array deque with an initial capacity
189 * sufficient to hold the specified number of elements.
190 *
191 * @param numElements lower bound on initial capacity of the deque
192 */
193 public ArrayDeque(int numElements) {
194 elements =
195 new Object[(numElements < 1) ? 1 :
196 (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
197 numElements + 1];
198 }
199
200 /**
201 * Constructs a deque containing the elements of the specified
202 * collection, in the order they are returned by the collection's
203 * iterator. (The first element returned by the collection's
204 * iterator becomes the first element, or <i>front</i> of the
205 * deque.)
206 *
207 * @param c the collection whose elements are to be placed into the deque
208 * @throws NullPointerException if the specified collection is null
209 */
210 public ArrayDeque(Collection<? extends E> c) {
211 this(c.size());
212 copyElements(c);
213 }
214
215 /**
216 * Circularly increments i, mod modulus.
217 * Precondition and postcondition: 0 <= i < modulus.
218 */
219 static final int inc(int i, int modulus) {
220 if (++i >= modulus) i = 0;
221 return i;
222 }
223
224 /**
225 * Circularly decrements i, mod modulus.
226 * Precondition and postcondition: 0 <= i < modulus.
227 */
228 static final int dec(int i, int modulus) {
229 if (--i < 0) i = modulus - 1;
230 return i;
231 }
232
233 /**
234 * Circularly adds the given distance to index i, mod modulus.
235 * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
236 * @return index 0 <= i < modulus
237 */
238 static final int inc(int i, int distance, int modulus) {
239 if ((i += distance) - modulus >= 0) i -= modulus;
240 return i;
241 }
242
243 /**
244 * Subtracts j from i, mod modulus.
245 * Index i must be logically ahead of index j.
246 * Precondition: 0 <= i < modulus, 0 <= j < modulus.
247 * @return the "circular distance" from j to i; corner case i == j
248 * is disambiguated to "empty", returning 0.
249 */
250 static final int sub(int i, int j, int modulus) {
251 if ((i -= j) < 0) i += modulus;
252 return i;
253 }
254
255 /**
256 * Returns element at array index i.
257 * This is a slight abuse of generics, accepted by javac.
258 */
259 @SuppressWarnings("unchecked")
260 static final <E> E elementAt(Object[] es, int i) {
261 return (E) es[i];
262 }
263
264 /**
265 * A version of elementAt that checks for null elements.
266 * This check doesn't catch all possible comodifications,
267 * but does catch ones that corrupt traversal.
268 */
269 static final <E> E nonNullElementAt(Object[] es, int i) {
270 @SuppressWarnings("unchecked") E e = (E) es[i];
271 if (e == null)
272 throw new ConcurrentModificationException();
273 return e;
274 }
275
276 // The main insertion and extraction methods are addFirst,
277 // addLast, pollFirst, pollLast. The other methods are defined in
278 // terms of these.
279
280 /**
281 * Inserts the specified element at the front of this deque.
282 *
283 * @param e the element to add
284 * @throws NullPointerException if the specified element is null
285 */
286 public void addFirst(E e) {
287 if (e == null)
288 throw new NullPointerException();
289 final Object[] es = elements;
290 es[head = dec(head, es.length)] = e;
291 if (head == tail)
292 grow(1);
293 // checkInvariants();
294 }
295
296 /**
297 * Inserts the specified element at the end of this deque.
298 *
299 * <p>This method is equivalent to {@link #add}.
300 *
301 * @param e the element to add
302 * @throws NullPointerException if the specified element is null
303 */
304 public void addLast(E e) {
305 if (e == null)
306 throw new NullPointerException();
307 final Object[] es = elements;
308 es[tail] = e;
309 if (head == (tail = inc(tail, es.length)))
310 grow(1);
311 // checkInvariants();
312 }
313
314 /**
315 * Adds all of the elements in the specified collection at the end
316 * of this deque, as if by calling {@link #addLast} on each one,
317 * in the order that they are returned by the collection's iterator.
318 *
319 * @param c the elements to be inserted into this deque
320 * @return {@code true} if this deque changed as a result of the call
321 * @throws NullPointerException if the specified collection or any
322 * of its elements are null
323 */
324 public boolean addAll(Collection<? extends E> c) {
325 final int s, needed;
326 if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
327 grow(needed);
328 copyElements(c);
329 // checkInvariants();
330 return size() > s;
331 }
332
333 private void copyElements(Collection<? extends E> c) {
334 c.forEach(this::addLast);
335 }
336
337 /**
338 * Inserts the specified element at the front of this deque.
339 *
340 * @param e the element to add
341 * @return {@code true} (as specified by {@link Deque#offerFirst})
342 * @throws NullPointerException if the specified element is null
343 */
344 public boolean offerFirst(E e) {
345 addFirst(e);
346 return true;
347 }
348
349 /**
350 * Inserts the specified element at the end of this deque.
351 *
352 * @param e the element to add
353 * @return {@code true} (as specified by {@link Deque#offerLast})
354 * @throws NullPointerException if the specified element is null
355 */
356 public boolean offerLast(E e) {
357 addLast(e);
358 return true;
359 }
360
361 /**
362 * @throws NoSuchElementException {@inheritDoc}
363 */
364 public E removeFirst() {
365 E e = pollFirst();
366 if (e == null)
367 throw new NoSuchElementException();
368 // checkInvariants();
369 return e;
370 }
371
372 /**
373 * @throws NoSuchElementException {@inheritDoc}
374 */
375 public E removeLast() {
376 E e = pollLast();
377 if (e == null)
378 throw new NoSuchElementException();
379 // checkInvariants();
380 return e;
381 }
382
383 public E pollFirst() {
384 final Object[] es;
385 final int h;
386 E e = elementAt(es = elements, h = head);
387 if (e != null) {
388 es[h] = null;
389 head = inc(h, es.length);
390 }
391 // checkInvariants();
392 return e;
393 }
394
395 public E pollLast() {
396 final Object[] es;
397 final int t;
398 E e = elementAt(es = elements, t = dec(tail, es.length));
399 if (e != null)
400 es[tail = t] = null;
401 // checkInvariants();
402 return e;
403 }
404
405 /**
406 * @throws NoSuchElementException {@inheritDoc}
407 */
408 public E getFirst() {
409 E e = elementAt(elements, head);
410 if (e == null)
411 throw new NoSuchElementException();
412 // checkInvariants();
413 return e;
414 }
415
416 /**
417 * @throws NoSuchElementException {@inheritDoc}
418 */
419 public E getLast() {
420 final Object[] es = elements;
421 E e = elementAt(es, dec(tail, es.length));
422 if (e == null)
423 throw new NoSuchElementException();
424 // checkInvariants();
425 return e;
426 }
427
428 public E peekFirst() {
429 // checkInvariants();
430 return elementAt(elements, head);
431 }
432
433 public E peekLast() {
434 // checkInvariants();
435 final Object[] es;
436 return elementAt(es = elements, dec(tail, es.length));
437 }
438
439 /**
440 * Removes the first occurrence of the specified element in this
441 * deque (when traversing the deque from head to tail).
442 * If the deque does not contain the element, it is unchanged.
443 * More formally, removes the first element {@code e} such that
444 * {@code o.equals(e)} (if such an element exists).
445 * Returns {@code true} if this deque contained the specified element
446 * (or equivalently, if this deque changed as a result of the call).
447 *
448 * @param o element to be removed from this deque, if present
449 * @return {@code true} if the deque contained the specified element
450 */
451 public boolean removeFirstOccurrence(Object o) {
452 if (o != null) {
453 final Object[] es = elements;
454 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
455 ; i = 0, to = end) {
456 for (; i < to; i++)
457 if (o.equals(es[i])) {
458 delete(i);
459 return true;
460 }
461 if (to == end) break;
462 }
463 }
464 return false;
465 }
466
467 /**
468 * Removes the last occurrence of the specified element in this
469 * deque (when traversing the deque from head to tail).
470 * If the deque does not contain the element, it is unchanged.
471 * More formally, removes the last element {@code e} such that
472 * {@code o.equals(e)} (if such an element exists).
473 * Returns {@code true} if this deque contained the specified element
474 * (or equivalently, if this deque changed as a result of the call).
475 *
476 * @param o element to be removed from this deque, if present
477 * @return {@code true} if the deque contained the specified element
478 */
479 public boolean removeLastOccurrence(Object o) {
480 if (o != null) {
481 final Object[] es = elements;
482 for (int i = tail, end = head, to = (i >= end) ? end : 0;
483 ; i = es.length, to = end) {
484 for (i--; i > to - 1; i--)
485 if (o.equals(es[i])) {
486 delete(i);
487 return true;
488 }
489 if (to == end) break;
490 }
491 }
492 return false;
493 }
494
495 // *** Queue methods ***
496
497 /**
498 * Inserts the specified element at the end of this deque.
499 *
500 * <p>This method is equivalent to {@link #addLast}.
501 *
502 * @param e the element to add
503 * @return {@code true} (as specified by {@link Collection#add})
504 * @throws NullPointerException if the specified element is null
505 */
506 public boolean add(E e) {
507 addLast(e);
508 return true;
509 }
510
511 /**
512 * Inserts the specified element at the end of this deque.
513 *
514 * <p>This method is equivalent to {@link #offerLast}.
515 *
516 * @param e the element to add
517 * @return {@code true} (as specified by {@link Queue#offer})
518 * @throws NullPointerException if the specified element is null
519 */
520 public boolean offer(E e) {
521 return offerLast(e);
522 }
523
524 /**
525 * Retrieves and removes the head of the queue represented by this deque.
526 *
527 * This method differs from {@link #poll() poll()} only in that it
528 * throws an exception if this deque is empty.
529 *
530 * <p>This method is equivalent to {@link #removeFirst}.
531 *
532 * @return the head of the queue represented by this deque
533 * @throws NoSuchElementException {@inheritDoc}
534 */
535 public E remove() {
536 return removeFirst();
537 }
538
539 /**
540 * Retrieves and removes the head of the queue represented by this deque
541 * (in other words, the first element of this deque), or returns
542 * {@code null} if this deque is empty.
543 *
544 * <p>This method is equivalent to {@link #pollFirst}.
545 *
546 * @return the head of the queue represented by this deque, or
547 * {@code null} if this deque is empty
548 */
549 public E poll() {
550 return pollFirst();
551 }
552
553 /**
554 * Retrieves, but does not remove, the head of the queue represented by
555 * this deque. This method differs from {@link #peek peek} only in
556 * that it throws an exception if this deque is empty.
557 *
558 * <p>This method is equivalent to {@link #getFirst}.
559 *
560 * @return the head of the queue represented by this deque
561 * @throws NoSuchElementException {@inheritDoc}
562 */
563 public E element() {
564 return getFirst();
565 }
566
567 /**
568 * Retrieves, but does not remove, the head of the queue represented by
569 * this deque, or returns {@code null} if this deque is empty.
570 *
571 * <p>This method is equivalent to {@link #peekFirst}.
572 *
573 * @return the head of the queue represented by this deque, or
574 * {@code null} if this deque is empty
575 */
576 public E peek() {
577 return peekFirst();
578 }
579
580 // *** Stack methods ***
581
582 /**
583 * Pushes an element onto the stack represented by this deque. In other
584 * words, inserts the element at the front of this deque.
585 *
586 * <p>This method is equivalent to {@link #addFirst}.
587 *
588 * @param e the element to push
589 * @throws NullPointerException if the specified element is null
590 */
591 public void push(E e) {
592 addFirst(e);
593 }
594
595 /**
596 * Pops an element from the stack represented by this deque. In other
597 * words, removes and returns the first element of this deque.
598 *
599 * <p>This method is equivalent to {@link #removeFirst()}.
600 *
601 * @return the element at the front of this deque (which is the top
602 * of the stack represented by this deque)
603 * @throws NoSuchElementException {@inheritDoc}
604 */
605 public E pop() {
606 return removeFirst();
607 }
608
609 /**
610 * Removes the element at the specified position in the elements array.
611 * This can result in forward or backwards motion of array elements.
612 * We optimize for least element motion.
613 *
614 * <p>This method is called delete rather than remove to emphasize
615 * that its semantics differ from those of {@link List#remove(int)}.
616 *
617 * @return true if elements near tail moved backwards
618 */
619 boolean delete(int i) {
620 // checkInvariants();
621 final Object[] es = elements;
622 final int capacity = es.length;
623 final int h, t;
624 // number of elements before to-be-deleted elt
625 final int front = sub(i, h = head, capacity);
626 // number of elements after to-be-deleted elt
627 final int back = sub(t = tail, i, capacity) - 1;
628 if (front < back) {
629 // move front elements forwards
630 if (h <= i) {
631 System.arraycopy(es, h, es, h + 1, front);
632 } else { // Wrap around
633 System.arraycopy(es, 0, es, 1, i);
634 es[0] = es[capacity - 1];
635 System.arraycopy(es, h, es, h + 1, front - (i + 1));
636 }
637 es[h] = null;
638 head = inc(h, capacity);
639 // checkInvariants();
640 return false;
641 } else {
642 // move back elements backwards
643 tail = dec(t, capacity);
644 if (i <= tail) {
645 System.arraycopy(es, i + 1, es, i, back);
646 } else { // Wrap around
647 System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
648 es[capacity - 1] = es[0];
649 System.arraycopy(es, 1, es, 0, t - 1);
650 }
651 es[tail] = null;
652 // checkInvariants();
653 return true;
654 }
655 }
656
657 // *** Collection Methods ***
658
659 /**
660 * Returns the number of elements in this deque.
661 *
662 * @return the number of elements in this deque
663 */
664 public int size() {
665 return sub(tail, head, elements.length);
666 }
667
668 /**
669 * Returns {@code true} if this deque contains no elements.
670 *
671 * @return {@code true} if this deque contains no elements
672 */
673 public boolean isEmpty() {
674 return head == tail;
675 }
676
677 /**
678 * Returns an iterator over the elements in this deque. The elements
679 * will be ordered from first (head) to last (tail). This is the same
680 * order that elements would be dequeued (via successive calls to
681 * {@link #remove} or popped (via successive calls to {@link #pop}).
682 *
683 * @return an iterator over the elements in this deque
684 */
685 public Iterator<E> iterator() {
686 return new DeqIterator();
687 }
688
689 public Iterator<E> descendingIterator() {
690 return new DescendingIterator();
691 }
692
693 private class DeqIterator implements Iterator<E> {
694 /** Index of element to be returned by subsequent call to next. */
695 int cursor;
696
697 /** Number of elements yet to be returned. */
698 int remaining = size();
699
700 /**
701 * Index of element returned by most recent call to next.
702 * Reset to -1 if element is deleted by a call to remove.
703 */
704 int lastRet = -1;
705
706 DeqIterator() { cursor = head; }
707
708 public final boolean hasNext() {
709 return remaining > 0;
710 }
711
712 public E next() {
713 if (remaining <= 0)
714 throw new NoSuchElementException();
715 final Object[] es = elements;
716 E e = nonNullElementAt(es, cursor);
717 cursor = inc(lastRet = cursor, es.length);
718 remaining--;
719 return e;
720 }
721
722 void postDelete(boolean leftShifted) {
723 if (leftShifted)
724 cursor = dec(cursor, elements.length);
725 }
726
727 public final void remove() {
728 if (lastRet < 0)
729 throw new IllegalStateException();
730 postDelete(delete(lastRet));
731 lastRet = -1;
732 }
733
734 public void forEachRemaining(Consumer<? super E> action) {
735 Objects.requireNonNull(action);
736 int r;
737 if ((r = remaining) <= 0)
738 return;
739 remaining = 0;
740 final Object[] es = elements;
741 if (es[cursor] == null || sub(tail, cursor, es.length) != r)
742 throw new ConcurrentModificationException();
743 for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
744 ; i = 0, to = end) {
745 for (; i < to; i++)
746 action.accept(elementAt(es, i));
747 if (to == end) {
748 if (end != tail)
749 throw new ConcurrentModificationException();
750 lastRet = dec(end, es.length);
751 break;
752 }
753 }
754 }
755 }
756
757 private class DescendingIterator extends DeqIterator {
758 DescendingIterator() { cursor = dec(tail, elements.length); }
759
760 public final E next() {
761 if (remaining <= 0)
762 throw new NoSuchElementException();
763 final Object[] es = elements;
764 E e = nonNullElementAt(es, cursor);
765 cursor = dec(lastRet = cursor, es.length);
766 remaining--;
767 return e;
768 }
769
770 void postDelete(boolean leftShifted) {
771 if (!leftShifted)
772 cursor = inc(cursor, elements.length);
773 }
774
775 public final void forEachRemaining(Consumer<? super E> action) {
776 Objects.requireNonNull(action);
777 int r;
778 if ((r = remaining) <= 0)
779 return;
780 remaining = 0;
781 final Object[] es = elements;
782 if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
783 throw new ConcurrentModificationException();
784 for (int i = cursor, end = head, to = (i >= end) ? end : 0;
785 ; i = es.length - 1, to = end) {
786 // hotspot generates faster code than for: i >= to !
787 for (; i > to - 1; i--)
788 action.accept(elementAt(es, i));
789 if (to == end) {
790 if (end != head)
791 throw new ConcurrentModificationException();
792 lastRet = end;
793 break;
794 }
795 }
796 }
797 }
798
799 /**
800 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
801 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
802 * deque.
803 *
804 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
805 * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
806 * {@link Spliterator#NONNULL}. Overriding implementations should document
807 * the reporting of additional characteristic values.
808 *
809 * @return a {@code Spliterator} over the elements in this deque
810 * @since 1.8
811 */
812 public Spliterator<E> spliterator() {
813 return new DeqSpliterator();
814 }
815
816 final class DeqSpliterator implements Spliterator<E> {
817 private int fence; // -1 until first use
818 private int cursor; // current index, modified on traverse/split
819
820 /** Constructs late-binding spliterator over all elements. */
821 DeqSpliterator() {
822 this.fence = -1;
823 }
824
825 /** Constructs spliterator over the given range. */
826 DeqSpliterator(int origin, int fence) {
827 // assert 0 <= origin && origin < elements.length;
828 // assert 0 <= fence && fence < elements.length;
829 this.cursor = origin;
830 this.fence = fence;
831 }
832
833 /** Ensures late-binding initialization; then returns fence. */
834 private int getFence() { // force initialization
835 int t;
836 if ((t = fence) < 0) {
837 t = fence = tail;
838 cursor = head;
839 }
840 return t;
841 }
842
843 public DeqSpliterator trySplit() {
844 final Object[] es = elements;
845 final int i, n;
846 return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
847 ? null
848 : new DeqSpliterator(i, cursor = inc(i, n, es.length));
849 }
850
851 public void forEachRemaining(Consumer<? super E> action) {
852 if (action == null)
853 throw new NullPointerException();
854 final int end = getFence(), cursor = this.cursor;
855 final Object[] es = elements;
856 if (cursor != end) {
857 this.cursor = end;
858 // null check at both ends of range is sufficient
859 if (es[cursor] == null || es[dec(end, es.length)] == null)
860 throw new ConcurrentModificationException();
861 for (int i = cursor, to = (i <= end) ? end : es.length;
862 ; i = 0, to = end) {
863 for (; i < to; i++)
864 action.accept(elementAt(es, i));
865 if (to == end) break;
866 }
867 }
868 }
869
870 public boolean tryAdvance(Consumer<? super E> action) {
871 Objects.requireNonNull(action);
872 final Object[] es = elements;
873 if (fence < 0) { fence = tail; cursor = head; } // late-binding
874 final int i;
875 if ((i = cursor) == fence)
876 return false;
877 E e = nonNullElementAt(es, i);
878 cursor = inc(i, es.length);
879 action.accept(e);
880 return true;
881 }
882
883 public long estimateSize() {
884 return sub(getFence(), cursor, elements.length);
885 }
886
887 public int characteristics() {
888 return Spliterator.NONNULL
889 | Spliterator.ORDERED
890 | Spliterator.SIZED
891 | Spliterator.SUBSIZED;
892 }
893 }
894
895 /**
896 * @throws NullPointerException {@inheritDoc}
897 */
898 public void forEach(Consumer<? super E> action) {
899 Objects.requireNonNull(action);
900 final Object[] es = elements;
901 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
902 ; i = 0, to = end) {
903 for (; i < to; i++)
904 action.accept(elementAt(es, i));
905 if (to == end) {
906 if (end != tail) throw new ConcurrentModificationException();
907 break;
908 }
909 }
910 // checkInvariants();
911 }
912
913 /**
914 * Replaces each element of this deque with the result of applying the
915 * operator to that element, as specified by {@link List#replaceAll}.
916 *
917 * @param operator the operator to apply to each element
918 * @since TBD
919 */
920 /* public */ void replaceAll(UnaryOperator<E> operator) {
921 Objects.requireNonNull(operator);
922 final Object[] es = elements;
923 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
924 ; i = 0, to = end) {
925 for (; i < to; i++)
926 es[i] = operator.apply(elementAt(es, i));
927 if (to == end) {
928 if (end != tail) throw new ConcurrentModificationException();
929 break;
930 }
931 }
932 // checkInvariants();
933 }
934
935 /**
936 * @throws NullPointerException {@inheritDoc}
937 */
938 public boolean removeIf(Predicate<? super E> filter) {
939 Objects.requireNonNull(filter);
940 return bulkRemove(filter);
941 }
942
943 /**
944 * @throws NullPointerException {@inheritDoc}
945 */
946 public boolean removeAll(Collection<?> c) {
947 Objects.requireNonNull(c);
948 return bulkRemove(e -> c.contains(e));
949 }
950
951 /**
952 * @throws NullPointerException {@inheritDoc}
953 */
954 public boolean retainAll(Collection<?> c) {
955 Objects.requireNonNull(c);
956 return bulkRemove(e -> !c.contains(e));
957 }
958
959 /** Implementation of bulk remove methods. */
960 private boolean bulkRemove(Predicate<? super E> filter) {
961 // checkInvariants();
962 final Object[] es = elements;
963 // Optimize for initial run of survivors
964 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
965 ; i = 0, to = end) {
966 for (; i < to; i++)
967 if (filter.test(elementAt(es, i)))
968 return bulkRemoveModified(filter, i);
969 if (to == end) {
970 if (end != tail) throw new ConcurrentModificationException();
971 break;
972 }
973 }
974 return false;
975 }
976
977 // A tiny bit set implementation
978
979 private static long[] nBits(int n) {
980 return new long[((n - 1) >> 6) + 1];
981 }
982 private static void setBit(long[] bits, int i) {
983 bits[i >> 6] |= 1L << i;
984 }
985 private static boolean isClear(long[] bits, int i) {
986 return (bits[i >> 6] & (1L << i)) == 0;
987 }
988
989 /**
990 * Helper for bulkRemove, in case of at least one deletion.
991 * Tolerate predicates that reentrantly access the collection for
992 * read (but writers still get CME), so traverse once to find
993 * elements to delete, a second pass to physically expunge.
994 *
995 * @param beg valid index of first element to be deleted
996 */
997 private boolean bulkRemoveModified(
998 Predicate<? super E> filter, final int beg) {
999 final Object[] es = elements;
1000 final int capacity = es.length;
1001 final int end = tail;
1002 final long[] deathRow = nBits(sub(end, beg, capacity));
1003 deathRow[0] = 1L; // set bit 0
1004 for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1005 ; i = 0, to = end, k -= capacity) {
1006 for (; i < to; i++)
1007 if (filter.test(elementAt(es, i)))
1008 setBit(deathRow, i - k);
1009 if (to == end) break;
1010 }
1011 // a two-finger traversal, with hare i reading, tortoise w writing
1012 int w = beg;
1013 for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1014 ; w = 0) { // w rejoins i on second leg
1015 // In this loop, i and w are on the same leg, with i > w
1016 for (; i < to; i++)
1017 if (isClear(deathRow, i - k))
1018 es[w++] = es[i];
1019 if (to == end) break;
1020 // In this loop, w is on the first leg, i on the second
1021 for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1022 if (isClear(deathRow, i - k))
1023 es[w++] = es[i];
1024 if (i >= to) {
1025 if (w == capacity) w = 0; // "corner" case
1026 break;
1027 }
1028 }
1029 if (end != tail) throw new ConcurrentModificationException();
1030 circularClear(es, tail = w, end);
1031 // checkInvariants();
1032 return true;
1033 }
1034
1035 /**
1036 * Returns {@code true} if this deque contains the specified element.
1037 * More formally, returns {@code true} if and only if this deque contains
1038 * at least one element {@code e} such that {@code o.equals(e)}.
1039 *
1040 * @param o object to be checked for containment in this deque
1041 * @return {@code true} if this deque contains the specified element
1042 */
1043 public boolean contains(Object o) {
1044 if (o != null) {
1045 final Object[] es = elements;
1046 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1047 ; i = 0, to = end) {
1048 for (; i < to; i++)
1049 if (o.equals(es[i]))
1050 return true;
1051 if (to == end) break;
1052 }
1053 }
1054 return false;
1055 }
1056
1057 /**
1058 * Removes a single instance of the specified element from this deque.
1059 * If the deque does not contain the element, it is unchanged.
1060 * More formally, removes the first element {@code e} such that
1061 * {@code o.equals(e)} (if such an element exists).
1062 * Returns {@code true} if this deque contained the specified element
1063 * (or equivalently, if this deque changed as a result of the call).
1064 *
1065 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1066 *
1067 * @param o element to be removed from this deque, if present
1068 * @return {@code true} if this deque contained the specified element
1069 */
1070 public boolean remove(Object o) {
1071 return removeFirstOccurrence(o);
1072 }
1073
1074 /**
1075 * Removes all of the elements from this deque.
1076 * The deque will be empty after this call returns.
1077 */
1078 public void clear() {
1079 circularClear(elements, head, tail);
1080 head = tail = 0;
1081 // checkInvariants();
1082 }
1083
1084 /**
1085 * Nulls out slots starting at array index i, upto index end.
1086 * Condition i == end means "empty" - nothing to do.
1087 */
1088 private static void circularClear(Object[] es, int i, int end) {
1089 // assert 0 <= i && i < es.length;
1090 // assert 0 <= end && end < es.length;
1091 for (int to = (i <= end) ? end : es.length;
1092 ; i = 0, to = end) {
1093 for (; i < to; i++) es[i] = null;
1094 if (to == end) break;
1095 }
1096 }
1097
1098 /**
1099 * Returns an array containing all of the elements in this deque
1100 * in proper sequence (from first to last element).
1101 *
1102 * <p>The returned array will be "safe" in that no references to it are
1103 * maintained by this deque. (In other words, this method must allocate
1104 * a new array). The caller is thus free to modify the returned array.
1105 *
1106 * <p>This method acts as bridge between array-based and collection-based
1107 * APIs.
1108 *
1109 * @return an array containing all of the elements in this deque
1110 */
1111 public Object[] toArray() {
1112 return toArray(Object[].class);
1113 }
1114
1115 private <T> T[] toArray(Class<T[]> klazz) {
1116 final Object[] es = elements;
1117 final T[] a;
1118 final int head = this.head, tail = this.tail, end;
1119 if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1120 // Uses null extension feature of copyOfRange
1121 a = Arrays.copyOfRange(es, head, end, klazz);
1122 } else {
1123 // integer overflow!
1124 a = Arrays.copyOfRange(es, 0, end - head, klazz);
1125 System.arraycopy(es, head, a, 0, es.length - head);
1126 }
1127 if (end != tail)
1128 System.arraycopy(es, 0, a, es.length - head, tail);
1129 return a;
1130 }
1131
1132 /**
1133 * Returns an array containing all of the elements in this deque in
1134 * proper sequence (from first to last element); the runtime type of the
1135 * returned array is that of the specified array. If the deque fits in
1136 * the specified array, it is returned therein. Otherwise, a new array
1137 * is allocated with the runtime type of the specified array and the
1138 * size of this deque.
1139 *
1140 * <p>If this deque fits in the specified array with room to spare
1141 * (i.e., the array has more elements than this deque), the element in
1142 * the array immediately following the end of the deque is set to
1143 * {@code null}.
1144 *
1145 * <p>Like the {@link #toArray()} method, this method acts as bridge between
1146 * array-based and collection-based APIs. Further, this method allows
1147 * precise control over the runtime type of the output array, and may,
1148 * under certain circumstances, be used to save allocation costs.
1149 *
1150 * <p>Suppose {@code x} is a deque known to contain only strings.
1151 * The following code can be used to dump the deque into a newly
1152 * allocated array of {@code String}:
1153 *
1154 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1155 *
1156 * Note that {@code toArray(new Object[0])} is identical in function to
1157 * {@code toArray()}.
1158 *
1159 * @param a the array into which the elements of the deque are to
1160 * be stored, if it is big enough; otherwise, a new array of the
1161 * same runtime type is allocated for this purpose
1162 * @return an array containing all of the elements in this deque
1163 * @throws ArrayStoreException if the runtime type of the specified array
1164 * is not a supertype of the runtime type of every element in
1165 * this deque
1166 * @throws NullPointerException if the specified array is null
1167 */
1168 @SuppressWarnings("unchecked")
1169 public <T> T[] toArray(T[] a) {
1170 final int size;
1171 if ((size = size()) > a.length)
1172 return toArray((Class<T[]>) a.getClass());
1173 final Object[] es = elements;
1174 for (int i = head, j = 0, len = Math.min(size, es.length - i);
1175 ; i = 0, len = tail) {
1176 System.arraycopy(es, i, a, j, len);
1177 if ((j += len) == size) break;
1178 }
1179 if (size < a.length)
1180 a[size] = null;
1181 return a;
1182 }
1183
1184 // *** Object methods ***
1185
1186 /**
1187 * Returns a copy of this deque.
1188 *
1189 * @return a copy of this deque
1190 */
1191 public ArrayDeque<E> clone() {
1192 try {
1193 @SuppressWarnings("unchecked")
1194 ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1195 result.elements = Arrays.copyOf(elements, elements.length);
1196 return result;
1197 } catch (CloneNotSupportedException e) {
1198 throw new AssertionError();
1199 }
1200 }
1201
1202 private static final long serialVersionUID = 2340985798034038923L;
1203
1204 /**
1205 * Saves this deque to a stream (that is, serializes it).
1206 *
1207 * @param s the stream
1208 * @throws java.io.IOException if an I/O error occurs
1209 * @serialData The current size ({@code int}) of the deque,
1210 * followed by all of its elements (each an object reference) in
1211 * first-to-last order.
1212 */
1213 private void writeObject(java.io.ObjectOutputStream s)
1214 throws java.io.IOException {
1215 s.defaultWriteObject();
1216
1217 // Write out size
1218 s.writeInt(size());
1219
1220 // Write out elements in order.
1221 final Object[] es = elements;
1222 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1223 ; i = 0, to = end) {
1224 for (; i < to; i++)
1225 s.writeObject(es[i]);
1226 if (to == end) break;
1227 }
1228 }
1229
1230 /**
1231 * Reconstitutes this deque from a stream (that is, deserializes it).
1232 * @param s the stream
1233 * @throws ClassNotFoundException if the class of a serialized object
1234 * could not be found
1235 * @throws java.io.IOException if an I/O error occurs
1236 */
1237 private void readObject(java.io.ObjectInputStream s)
1238 throws java.io.IOException, ClassNotFoundException {
1239 s.defaultReadObject();
1240
1241 // Read in size and allocate array
1242 int size = s.readInt();
1243 jsr166.Platform.checkArray(s, Object[].class, size + 1);
1244 elements = new Object[size + 1];
1245 this.tail = size;
1246
1247 // Read in all elements in the proper order.
1248 for (int i = 0; i < size; i++)
1249 elements[i] = s.readObject();
1250 }
1251
1252 /** debugging */
1253 void checkInvariants() {
1254 // Use head and tail fields with empty slot at tail strategy.
1255 // head == tail disambiguates to "empty".
1256 try {
1257 int capacity = elements.length;
1258 // assert 0 <= head && head < capacity;
1259 // assert 0 <= tail && tail < capacity;
1260 // assert capacity > 0;
1261 // assert size() < capacity;
1262 // assert head == tail || elements[head] != null;
1263 // assert elements[tail] == null;
1264 // assert head == tail || elements[dec(tail, capacity)] != null;
1265 } catch (Throwable t) {
1266 System.err.printf("head=%d tail=%d capacity=%d%n",
1267 head, tail, elements.length);
1268 System.err.printf("elements=%s%n",
1269 Arrays.toString(elements));
1270 throw t;
1271 }
1272 }
1273
1274 }