ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
Revision: 1.138
Committed: Fri Aug 30 18:05:38 2019 UTC (4 years, 8 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.137: +3 -0 lines
Log Message:
accommodate 8229997: Apply java.io.Serial annotations in java.base

File Contents

# Content
1 /*
2 * Written by Josh Bloch of Google Inc. and released to the public domain,
3 * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4 */
5
6 package java.util;
7
8 import java.io.Serializable;
9 import java.util.function.Consumer;
10 import java.util.function.Predicate;
11 // OPENJDK import jdk.internal.access.SharedSecrets;
12
13 /**
14 * Resizable-array implementation of the {@link Deque} interface. Array
15 * deques have no capacity restrictions; they grow as necessary to support
16 * usage. They are not thread-safe; in the absence of external
17 * synchronization, they do not support concurrent access by multiple threads.
18 * Null elements are prohibited. This class is likely to be faster than
19 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20 * when used as a queue.
21 *
22 * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 * Exceptions include
24 * {@link #remove(Object) remove},
25 * {@link #removeFirstOccurrence removeFirstOccurrence},
26 * {@link #removeLastOccurrence removeLastOccurrence},
27 * {@link #contains contains},
28 * {@link #iterator iterator.remove()},
29 * and the bulk operations, all of which run in linear time.
30 *
31 * <p>The iterators returned by this class's {@link #iterator() iterator}
32 * method are <em>fail-fast</em>: If the deque is modified at any time after
33 * the iterator is created, in any way except through the iterator's own
34 * {@code remove} method, the iterator will generally throw a {@link
35 * ConcurrentModificationException}. Thus, in the face of concurrent
36 * modification, the iterator fails quickly and cleanly, rather than risking
37 * arbitrary, non-deterministic behavior at an undetermined time in the
38 * future.
39 *
40 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41 * as it is, generally speaking, impossible to make any hard guarantees in the
42 * presence of unsynchronized concurrent modification. Fail-fast iterators
43 * throw {@code ConcurrentModificationException} on a best-effort basis.
44 * Therefore, it would be wrong to write a program that depended on this
45 * exception for its correctness: <i>the fail-fast behavior of iterators
46 * should be used only to detect bugs.</i>
47 *
48 * <p>This class and its iterator implement all of the
49 * <em>optional</em> methods of the {@link Collection} and {@link
50 * Iterator} interfaces.
51 *
52 * <p>This class is a member of the
53 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
54 * Java Collections Framework</a>.
55 *
56 * @author Josh Bloch and Doug Lea
57 * @param <E> the type of elements held in this deque
58 * @since 1.6
59 */
60 public class ArrayDeque<E> extends AbstractCollection<E>
61 implements Deque<E>, Cloneable, Serializable
62 {
63 /*
64 * VMs excel at optimizing simple array loops where indices are
65 * incrementing or decrementing over a valid slice, e.g.
66 *
67 * for (int i = start; i < end; i++) ... elements[i]
68 *
69 * Because in a circular array, elements are in general stored in
70 * two disjoint such slices, we help the VM by writing unusual
71 * nested loops for all traversals over the elements. Having only
72 * one hot inner loop body instead of two or three eases human
73 * maintenance and encourages VM loop inlining into the caller.
74 */
75
76 /**
77 * The array in which the elements of the deque are stored.
78 * All array cells not holding deque elements are always null.
79 * The array always has at least one null slot (at tail).
80 */
81 transient Object[] elements;
82
83 /**
84 * The index of the element at the head of the deque (which is the
85 * element that would be removed by remove() or pop()); or an
86 * arbitrary number 0 <= head < elements.length equal to tail if
87 * the deque is empty.
88 */
89 transient int head;
90
91 /**
92 * The index at which the next element would be added to the tail
93 * of the deque (via addLast(E), add(E), or push(E));
94 * elements[tail] is always null.
95 */
96 transient int tail;
97
98 /**
99 * The maximum size of array to allocate.
100 * Some VMs reserve some header words in an array.
101 * Attempts to allocate larger arrays may result in
102 * OutOfMemoryError: Requested array size exceeds VM limit
103 */
104 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
105
106 /**
107 * Increases the capacity of this deque by at least the given amount.
108 *
109 * @param needed the required minimum extra capacity; must be positive
110 */
111 private void grow(int needed) {
112 // overflow-conscious code
113 final int oldCapacity = elements.length;
114 int newCapacity;
115 // Double capacity if small; else grow by 50%
116 int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
117 if (jump < needed
118 || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
119 newCapacity = newCapacity(needed, jump);
120 final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
121 // Exceptionally, here tail == head needs to be disambiguated
122 if (tail < head || (tail == head && es[head] != null)) {
123 // wrap around; slide first leg forward to end of array
124 int newSpace = newCapacity - oldCapacity;
125 System.arraycopy(es, head,
126 es, head + newSpace,
127 oldCapacity - head);
128 for (int i = head, to = (head += newSpace); i < to; i++)
129 es[i] = null;
130 }
131 // checkInvariants();
132 }
133
134 /** Capacity calculation for edge conditions, especially overflow. */
135 private int newCapacity(int needed, int jump) {
136 final int oldCapacity = elements.length, minCapacity;
137 if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
138 if (minCapacity < 0)
139 throw new IllegalStateException("Sorry, deque too big");
140 return Integer.MAX_VALUE;
141 }
142 if (needed > jump)
143 return minCapacity;
144 return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
145 ? oldCapacity + jump
146 : MAX_ARRAY_SIZE;
147 }
148
149 /**
150 * Increases the internal storage of this collection, if necessary,
151 * to ensure that it can hold at least the given number of elements.
152 *
153 * @param minCapacity the desired minimum capacity
154 * @since TBD
155 */
156 /* public */ void ensureCapacity(int minCapacity) {
157 int needed;
158 if ((needed = (minCapacity + 1 - elements.length)) > 0)
159 grow(needed);
160 // checkInvariants();
161 }
162
163 /**
164 * Minimizes the internal storage of this collection.
165 *
166 * @since TBD
167 */
168 /* public */ void trimToSize() {
169 int size;
170 if ((size = size()) + 1 < elements.length) {
171 elements = toArray(new Object[size + 1]);
172 head = 0;
173 tail = size;
174 }
175 // checkInvariants();
176 }
177
178 /**
179 * Constructs an empty array deque with an initial capacity
180 * sufficient to hold 16 elements.
181 */
182 public ArrayDeque() {
183 elements = new Object[16 + 1];
184 }
185
186 /**
187 * Constructs an empty array deque with an initial capacity
188 * sufficient to hold the specified number of elements.
189 *
190 * @param numElements lower bound on initial capacity of the deque
191 */
192 public ArrayDeque(int numElements) {
193 elements =
194 new Object[(numElements < 1) ? 1 :
195 (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
196 numElements + 1];
197 }
198
199 /**
200 * Constructs a deque containing the elements of the specified
201 * collection, in the order they are returned by the collection's
202 * iterator. (The first element returned by the collection's
203 * iterator becomes the first element, or <i>front</i> of the
204 * deque.)
205 *
206 * @param c the collection whose elements are to be placed into the deque
207 * @throws NullPointerException if the specified collection is null
208 */
209 public ArrayDeque(Collection<? extends E> c) {
210 this(c.size());
211 copyElements(c);
212 }
213
214 /**
215 * Circularly increments i, mod modulus.
216 * Precondition and postcondition: 0 <= i < modulus.
217 */
218 static final int inc(int i, int modulus) {
219 if (++i >= modulus) i = 0;
220 return i;
221 }
222
223 /**
224 * Circularly decrements i, mod modulus.
225 * Precondition and postcondition: 0 <= i < modulus.
226 */
227 static final int dec(int i, int modulus) {
228 if (--i < 0) i = modulus - 1;
229 return i;
230 }
231
232 /**
233 * Circularly adds the given distance to index i, mod modulus.
234 * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
235 * @return index 0 <= i < modulus
236 */
237 static final int inc(int i, int distance, int modulus) {
238 if ((i += distance) - modulus >= 0) i -= modulus;
239 return i;
240 }
241
242 /**
243 * Subtracts j from i, mod modulus.
244 * Index i must be logically ahead of index j.
245 * Precondition: 0 <= i < modulus, 0 <= j < modulus.
246 * @return the "circular distance" from j to i; corner case i == j
247 * is disambiguated to "empty", returning 0.
248 */
249 static final int sub(int i, int j, int modulus) {
250 if ((i -= j) < 0) i += modulus;
251 return i;
252 }
253
254 /**
255 * Returns element at array index i.
256 * This is a slight abuse of generics, accepted by javac.
257 */
258 @SuppressWarnings("unchecked")
259 static final <E> E elementAt(Object[] es, int i) {
260 return (E) es[i];
261 }
262
263 /**
264 * A version of elementAt that checks for null elements.
265 * This check doesn't catch all possible comodifications,
266 * but does catch ones that corrupt traversal.
267 */
268 static final <E> E nonNullElementAt(Object[] es, int i) {
269 @SuppressWarnings("unchecked") E e = (E) es[i];
270 if (e == null)
271 throw new ConcurrentModificationException();
272 return e;
273 }
274
275 // The main insertion and extraction methods are addFirst,
276 // addLast, pollFirst, pollLast. The other methods are defined in
277 // terms of these.
278
279 /**
280 * Inserts the specified element at the front of this deque.
281 *
282 * @param e the element to add
283 * @throws NullPointerException if the specified element is null
284 */
285 public void addFirst(E e) {
286 if (e == null)
287 throw new NullPointerException();
288 final Object[] es = elements;
289 es[head = dec(head, es.length)] = e;
290 if (head == tail)
291 grow(1);
292 // checkInvariants();
293 }
294
295 /**
296 * Inserts the specified element at the end of this deque.
297 *
298 * <p>This method is equivalent to {@link #add}.
299 *
300 * @param e the element to add
301 * @throws NullPointerException if the specified element is null
302 */
303 public void addLast(E e) {
304 if (e == null)
305 throw new NullPointerException();
306 final Object[] es = elements;
307 es[tail] = e;
308 if (head == (tail = inc(tail, es.length)))
309 grow(1);
310 // checkInvariants();
311 }
312
313 /**
314 * Adds all of the elements in the specified collection at the end
315 * of this deque, as if by calling {@link #addLast} on each one,
316 * in the order that they are returned by the collection's iterator.
317 *
318 * @param c the elements to be inserted into this deque
319 * @return {@code true} if this deque changed as a result of the call
320 * @throws NullPointerException if the specified collection or any
321 * of its elements are null
322 */
323 public boolean addAll(Collection<? extends E> c) {
324 final int s, needed;
325 if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
326 grow(needed);
327 copyElements(c);
328 // checkInvariants();
329 return size() > s;
330 }
331
332 private void copyElements(Collection<? extends E> c) {
333 c.forEach(this::addLast);
334 }
335
336 /**
337 * Inserts the specified element at the front of this deque.
338 *
339 * @param e the element to add
340 * @return {@code true} (as specified by {@link Deque#offerFirst})
341 * @throws NullPointerException if the specified element is null
342 */
343 public boolean offerFirst(E e) {
344 addFirst(e);
345 return true;
346 }
347
348 /**
349 * Inserts the specified element at the end of this deque.
350 *
351 * @param e the element to add
352 * @return {@code true} (as specified by {@link Deque#offerLast})
353 * @throws NullPointerException if the specified element is null
354 */
355 public boolean offerLast(E e) {
356 addLast(e);
357 return true;
358 }
359
360 /**
361 * @throws NoSuchElementException {@inheritDoc}
362 */
363 public E removeFirst() {
364 E e = pollFirst();
365 if (e == null)
366 throw new NoSuchElementException();
367 // checkInvariants();
368 return e;
369 }
370
371 /**
372 * @throws NoSuchElementException {@inheritDoc}
373 */
374 public E removeLast() {
375 E e = pollLast();
376 if (e == null)
377 throw new NoSuchElementException();
378 // checkInvariants();
379 return e;
380 }
381
382 public E pollFirst() {
383 final Object[] es;
384 final int h;
385 E e = elementAt(es = elements, h = head);
386 if (e != null) {
387 es[h] = null;
388 head = inc(h, es.length);
389 }
390 // checkInvariants();
391 return e;
392 }
393
394 public E pollLast() {
395 final Object[] es;
396 final int t;
397 E e = elementAt(es = elements, t = dec(tail, es.length));
398 if (e != null)
399 es[tail = t] = null;
400 // checkInvariants();
401 return e;
402 }
403
404 /**
405 * @throws NoSuchElementException {@inheritDoc}
406 */
407 public E getFirst() {
408 E e = elementAt(elements, head);
409 if (e == null)
410 throw new NoSuchElementException();
411 // checkInvariants();
412 return e;
413 }
414
415 /**
416 * @throws NoSuchElementException {@inheritDoc}
417 */
418 public E getLast() {
419 final Object[] es = elements;
420 E e = elementAt(es, dec(tail, es.length));
421 if (e == null)
422 throw new NoSuchElementException();
423 // checkInvariants();
424 return e;
425 }
426
427 public E peekFirst() {
428 // checkInvariants();
429 return elementAt(elements, head);
430 }
431
432 public E peekLast() {
433 // checkInvariants();
434 final Object[] es;
435 return elementAt(es = elements, dec(tail, es.length));
436 }
437
438 /**
439 * Removes the first occurrence of the specified element in this
440 * deque (when traversing the deque from head to tail).
441 * If the deque does not contain the element, it is unchanged.
442 * More formally, removes the first element {@code e} such that
443 * {@code o.equals(e)} (if such an element exists).
444 * Returns {@code true} if this deque contained the specified element
445 * (or equivalently, if this deque changed as a result of the call).
446 *
447 * @param o element to be removed from this deque, if present
448 * @return {@code true} if the deque contained the specified element
449 */
450 public boolean removeFirstOccurrence(Object o) {
451 if (o != null) {
452 final Object[] es = elements;
453 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
454 ; i = 0, to = end) {
455 for (; i < to; i++)
456 if (o.equals(es[i])) {
457 delete(i);
458 return true;
459 }
460 if (to == end) break;
461 }
462 }
463 return false;
464 }
465
466 /**
467 * Removes the last occurrence of the specified element in this
468 * deque (when traversing the deque from head to tail).
469 * If the deque does not contain the element, it is unchanged.
470 * More formally, removes the last element {@code e} such that
471 * {@code o.equals(e)} (if such an element exists).
472 * Returns {@code true} if this deque contained the specified element
473 * (or equivalently, if this deque changed as a result of the call).
474 *
475 * @param o element to be removed from this deque, if present
476 * @return {@code true} if the deque contained the specified element
477 */
478 public boolean removeLastOccurrence(Object o) {
479 if (o != null) {
480 final Object[] es = elements;
481 for (int i = tail, end = head, to = (i >= end) ? end : 0;
482 ; i = es.length, to = end) {
483 for (i--; i > to - 1; i--)
484 if (o.equals(es[i])) {
485 delete(i);
486 return true;
487 }
488 if (to == end) break;
489 }
490 }
491 return false;
492 }
493
494 // *** Queue methods ***
495
496 /**
497 * Inserts the specified element at the end of this deque.
498 *
499 * <p>This method is equivalent to {@link #addLast}.
500 *
501 * @param e the element to add
502 * @return {@code true} (as specified by {@link Collection#add})
503 * @throws NullPointerException if the specified element is null
504 */
505 public boolean add(E e) {
506 addLast(e);
507 return true;
508 }
509
510 /**
511 * Inserts the specified element at the end of this deque.
512 *
513 * <p>This method is equivalent to {@link #offerLast}.
514 *
515 * @param e the element to add
516 * @return {@code true} (as specified by {@link Queue#offer})
517 * @throws NullPointerException if the specified element is null
518 */
519 public boolean offer(E e) {
520 return offerLast(e);
521 }
522
523 /**
524 * Retrieves and removes the head of the queue represented by this deque.
525 *
526 * This method differs from {@link #poll() poll()} only in that it
527 * throws an exception if this deque is empty.
528 *
529 * <p>This method is equivalent to {@link #removeFirst}.
530 *
531 * @return the head of the queue represented by this deque
532 * @throws NoSuchElementException {@inheritDoc}
533 */
534 public E remove() {
535 return removeFirst();
536 }
537
538 /**
539 * Retrieves and removes the head of the queue represented by this deque
540 * (in other words, the first element of this deque), or returns
541 * {@code null} if this deque is empty.
542 *
543 * <p>This method is equivalent to {@link #pollFirst}.
544 *
545 * @return the head of the queue represented by this deque, or
546 * {@code null} if this deque is empty
547 */
548 public E poll() {
549 return pollFirst();
550 }
551
552 /**
553 * Retrieves, but does not remove, the head of the queue represented by
554 * this deque. This method differs from {@link #peek peek} only in
555 * that it throws an exception if this deque is empty.
556 *
557 * <p>This method is equivalent to {@link #getFirst}.
558 *
559 * @return the head of the queue represented by this deque
560 * @throws NoSuchElementException {@inheritDoc}
561 */
562 public E element() {
563 return getFirst();
564 }
565
566 /**
567 * Retrieves, but does not remove, the head of the queue represented by
568 * this deque, or returns {@code null} if this deque is empty.
569 *
570 * <p>This method is equivalent to {@link #peekFirst}.
571 *
572 * @return the head of the queue represented by this deque, or
573 * {@code null} if this deque is empty
574 */
575 public E peek() {
576 return peekFirst();
577 }
578
579 // *** Stack methods ***
580
581 /**
582 * Pushes an element onto the stack represented by this deque. In other
583 * words, inserts the element at the front of this deque.
584 *
585 * <p>This method is equivalent to {@link #addFirst}.
586 *
587 * @param e the element to push
588 * @throws NullPointerException if the specified element is null
589 */
590 public void push(E e) {
591 addFirst(e);
592 }
593
594 /**
595 * Pops an element from the stack represented by this deque. In other
596 * words, removes and returns the first element of this deque.
597 *
598 * <p>This method is equivalent to {@link #removeFirst()}.
599 *
600 * @return the element at the front of this deque (which is the top
601 * of the stack represented by this deque)
602 * @throws NoSuchElementException {@inheritDoc}
603 */
604 public E pop() {
605 return removeFirst();
606 }
607
608 /**
609 * Removes the element at the specified position in the elements array.
610 * This can result in forward or backwards motion of array elements.
611 * We optimize for least element motion.
612 *
613 * <p>This method is called delete rather than remove to emphasize
614 * that its semantics differ from those of {@link List#remove(int)}.
615 *
616 * @return true if elements near tail moved backwards
617 */
618 boolean delete(int i) {
619 // checkInvariants();
620 final Object[] es = elements;
621 final int capacity = es.length;
622 final int h, t;
623 // number of elements before to-be-deleted elt
624 final int front = sub(i, h = head, capacity);
625 // number of elements after to-be-deleted elt
626 final int back = sub(t = tail, i, capacity) - 1;
627 if (front < back) {
628 // move front elements forwards
629 if (h <= i) {
630 System.arraycopy(es, h, es, h + 1, front);
631 } else { // Wrap around
632 System.arraycopy(es, 0, es, 1, i);
633 es[0] = es[capacity - 1];
634 System.arraycopy(es, h, es, h + 1, front - (i + 1));
635 }
636 es[h] = null;
637 head = inc(h, capacity);
638 // checkInvariants();
639 return false;
640 } else {
641 // move back elements backwards
642 tail = dec(t, capacity);
643 if (i <= tail) {
644 System.arraycopy(es, i + 1, es, i, back);
645 } else { // Wrap around
646 System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
647 es[capacity - 1] = es[0];
648 System.arraycopy(es, 1, es, 0, t - 1);
649 }
650 es[tail] = null;
651 // checkInvariants();
652 return true;
653 }
654 }
655
656 // *** Collection Methods ***
657
658 /**
659 * Returns the number of elements in this deque.
660 *
661 * @return the number of elements in this deque
662 */
663 public int size() {
664 return sub(tail, head, elements.length);
665 }
666
667 /**
668 * Returns {@code true} if this deque contains no elements.
669 *
670 * @return {@code true} if this deque contains no elements
671 */
672 public boolean isEmpty() {
673 return head == tail;
674 }
675
676 /**
677 * Returns an iterator over the elements in this deque. The elements
678 * will be ordered from first (head) to last (tail). This is the same
679 * order that elements would be dequeued (via successive calls to
680 * {@link #remove} or popped (via successive calls to {@link #pop}).
681 *
682 * @return an iterator over the elements in this deque
683 */
684 public Iterator<E> iterator() {
685 return new DeqIterator();
686 }
687
688 public Iterator<E> descendingIterator() {
689 return new DescendingIterator();
690 }
691
692 private class DeqIterator implements Iterator<E> {
693 /** Index of element to be returned by subsequent call to next. */
694 int cursor;
695
696 /** Number of elements yet to be returned. */
697 int remaining = size();
698
699 /**
700 * Index of element returned by most recent call to next.
701 * Reset to -1 if element is deleted by a call to remove.
702 */
703 int lastRet = -1;
704
705 DeqIterator() { cursor = head; }
706
707 public final boolean hasNext() {
708 return remaining > 0;
709 }
710
711 public E next() {
712 if (remaining <= 0)
713 throw new NoSuchElementException();
714 final Object[] es = elements;
715 E e = nonNullElementAt(es, cursor);
716 cursor = inc(lastRet = cursor, es.length);
717 remaining--;
718 return e;
719 }
720
721 void postDelete(boolean leftShifted) {
722 if (leftShifted)
723 cursor = dec(cursor, elements.length);
724 }
725
726 public final void remove() {
727 if (lastRet < 0)
728 throw new IllegalStateException();
729 postDelete(delete(lastRet));
730 lastRet = -1;
731 }
732
733 public void forEachRemaining(Consumer<? super E> action) {
734 Objects.requireNonNull(action);
735 int r;
736 if ((r = remaining) <= 0)
737 return;
738 remaining = 0;
739 final Object[] es = elements;
740 if (es[cursor] == null || sub(tail, cursor, es.length) != r)
741 throw new ConcurrentModificationException();
742 for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
743 ; i = 0, to = end) {
744 for (; i < to; i++)
745 action.accept(elementAt(es, i));
746 if (to == end) {
747 if (end != tail)
748 throw new ConcurrentModificationException();
749 lastRet = dec(end, es.length);
750 break;
751 }
752 }
753 }
754 }
755
756 private class DescendingIterator extends DeqIterator {
757 DescendingIterator() { cursor = dec(tail, elements.length); }
758
759 public final E next() {
760 if (remaining <= 0)
761 throw new NoSuchElementException();
762 final Object[] es = elements;
763 E e = nonNullElementAt(es, cursor);
764 cursor = dec(lastRet = cursor, es.length);
765 remaining--;
766 return e;
767 }
768
769 void postDelete(boolean leftShifted) {
770 if (!leftShifted)
771 cursor = inc(cursor, elements.length);
772 }
773
774 public final void forEachRemaining(Consumer<? super E> action) {
775 Objects.requireNonNull(action);
776 int r;
777 if ((r = remaining) <= 0)
778 return;
779 remaining = 0;
780 final Object[] es = elements;
781 if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
782 throw new ConcurrentModificationException();
783 for (int i = cursor, end = head, to = (i >= end) ? end : 0;
784 ; i = es.length - 1, to = end) {
785 // hotspot generates faster code than for: i >= to !
786 for (; i > to - 1; i--)
787 action.accept(elementAt(es, i));
788 if (to == end) {
789 if (end != head)
790 throw new ConcurrentModificationException();
791 lastRet = end;
792 break;
793 }
794 }
795 }
796 }
797
798 /**
799 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
800 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
801 * deque.
802 *
803 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
804 * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
805 * {@link Spliterator#NONNULL}. Overriding implementations should document
806 * the reporting of additional characteristic values.
807 *
808 * @return a {@code Spliterator} over the elements in this deque
809 * @since 1.8
810 */
811 public Spliterator<E> spliterator() {
812 return new DeqSpliterator();
813 }
814
815 final class DeqSpliterator implements Spliterator<E> {
816 private int fence; // -1 until first use
817 private int cursor; // current index, modified on traverse/split
818
819 /** Constructs late-binding spliterator over all elements. */
820 DeqSpliterator() {
821 this.fence = -1;
822 }
823
824 /** Constructs spliterator over the given range. */
825 DeqSpliterator(int origin, int fence) {
826 // assert 0 <= origin && origin < elements.length;
827 // assert 0 <= fence && fence < elements.length;
828 this.cursor = origin;
829 this.fence = fence;
830 }
831
832 /** Ensures late-binding initialization; then returns fence. */
833 private int getFence() { // force initialization
834 int t;
835 if ((t = fence) < 0) {
836 t = fence = tail;
837 cursor = head;
838 }
839 return t;
840 }
841
842 public DeqSpliterator trySplit() {
843 final Object[] es = elements;
844 final int i, n;
845 return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
846 ? null
847 : new DeqSpliterator(i, cursor = inc(i, n, es.length));
848 }
849
850 public void forEachRemaining(Consumer<? super E> action) {
851 if (action == null)
852 throw new NullPointerException();
853 final int end = getFence(), cursor = this.cursor;
854 final Object[] es = elements;
855 if (cursor != end) {
856 this.cursor = end;
857 // null check at both ends of range is sufficient
858 if (es[cursor] == null || es[dec(end, es.length)] == null)
859 throw new ConcurrentModificationException();
860 for (int i = cursor, to = (i <= end) ? end : es.length;
861 ; i = 0, to = end) {
862 for (; i < to; i++)
863 action.accept(elementAt(es, i));
864 if (to == end) break;
865 }
866 }
867 }
868
869 public boolean tryAdvance(Consumer<? super E> action) {
870 Objects.requireNonNull(action);
871 final Object[] es = elements;
872 if (fence < 0) { fence = tail; cursor = head; } // late-binding
873 final int i;
874 if ((i = cursor) == fence)
875 return false;
876 E e = nonNullElementAt(es, i);
877 cursor = inc(i, es.length);
878 action.accept(e);
879 return true;
880 }
881
882 public long estimateSize() {
883 return sub(getFence(), cursor, elements.length);
884 }
885
886 public int characteristics() {
887 return Spliterator.NONNULL
888 | Spliterator.ORDERED
889 | Spliterator.SIZED
890 | Spliterator.SUBSIZED;
891 }
892 }
893
894 /**
895 * @throws NullPointerException {@inheritDoc}
896 */
897 public void forEach(Consumer<? super E> action) {
898 Objects.requireNonNull(action);
899 final Object[] es = elements;
900 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
901 ; i = 0, to = end) {
902 for (; i < to; i++)
903 action.accept(elementAt(es, i));
904 if (to == end) {
905 if (end != tail) throw new ConcurrentModificationException();
906 break;
907 }
908 }
909 // checkInvariants();
910 }
911
912 /**
913 * Replaces each element of this deque with the result of applying the
914 * operator to that element, as specified by {@link List#replaceAll}.
915 *
916 * @param operator the operator to apply to each element
917 * @since TBD
918 */
919 /* public */ void replaceAll(java.util.function.UnaryOperator<E> operator) {
920 Objects.requireNonNull(operator);
921 final Object[] es = elements;
922 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
923 ; i = 0, to = end) {
924 for (; i < to; i++)
925 es[i] = operator.apply(elementAt(es, i));
926 if (to == end) {
927 if (end != tail) throw new ConcurrentModificationException();
928 break;
929 }
930 }
931 // checkInvariants();
932 }
933
934 /**
935 * @throws NullPointerException {@inheritDoc}
936 */
937 public boolean removeIf(Predicate<? super E> filter) {
938 Objects.requireNonNull(filter);
939 return bulkRemove(filter);
940 }
941
942 /**
943 * @throws NullPointerException {@inheritDoc}
944 */
945 public boolean removeAll(Collection<?> c) {
946 Objects.requireNonNull(c);
947 return bulkRemove(e -> c.contains(e));
948 }
949
950 /**
951 * @throws NullPointerException {@inheritDoc}
952 */
953 public boolean retainAll(Collection<?> c) {
954 Objects.requireNonNull(c);
955 return bulkRemove(e -> !c.contains(e));
956 }
957
958 /** Implementation of bulk remove methods. */
959 private boolean bulkRemove(Predicate<? super E> filter) {
960 // checkInvariants();
961 final Object[] es = elements;
962 // Optimize for initial run of survivors
963 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
964 ; i = 0, to = end) {
965 for (; i < to; i++)
966 if (filter.test(elementAt(es, i)))
967 return bulkRemoveModified(filter, i);
968 if (to == end) {
969 if (end != tail) throw new ConcurrentModificationException();
970 break;
971 }
972 }
973 return false;
974 }
975
976 // A tiny bit set implementation
977
978 private static long[] nBits(int n) {
979 return new long[((n - 1) >> 6) + 1];
980 }
981 private static void setBit(long[] bits, int i) {
982 bits[i >> 6] |= 1L << i;
983 }
984 private static boolean isClear(long[] bits, int i) {
985 return (bits[i >> 6] & (1L << i)) == 0;
986 }
987
988 /**
989 * Helper for bulkRemove, in case of at least one deletion.
990 * Tolerate predicates that reentrantly access the collection for
991 * read (but writers still get CME), so traverse once to find
992 * elements to delete, a second pass to physically expunge.
993 *
994 * @param beg valid index of first element to be deleted
995 */
996 private boolean bulkRemoveModified(
997 Predicate<? super E> filter, final int beg) {
998 final Object[] es = elements;
999 final int capacity = es.length;
1000 final int end = tail;
1001 final long[] deathRow = nBits(sub(end, beg, capacity));
1002 deathRow[0] = 1L; // set bit 0
1003 for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1004 ; i = 0, to = end, k -= capacity) {
1005 for (; i < to; i++)
1006 if (filter.test(elementAt(es, i)))
1007 setBit(deathRow, i - k);
1008 if (to == end) break;
1009 }
1010 // a two-finger traversal, with hare i reading, tortoise w writing
1011 int w = beg;
1012 for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1013 ; w = 0) { // w rejoins i on second leg
1014 // In this loop, i and w are on the same leg, with i > w
1015 for (; i < to; i++)
1016 if (isClear(deathRow, i - k))
1017 es[w++] = es[i];
1018 if (to == end) break;
1019 // In this loop, w is on the first leg, i on the second
1020 for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1021 if (isClear(deathRow, i - k))
1022 es[w++] = es[i];
1023 if (i >= to) {
1024 if (w == capacity) w = 0; // "corner" case
1025 break;
1026 }
1027 }
1028 if (end != tail) throw new ConcurrentModificationException();
1029 circularClear(es, tail = w, end);
1030 // checkInvariants();
1031 return true;
1032 }
1033
1034 /**
1035 * Returns {@code true} if this deque contains the specified element.
1036 * More formally, returns {@code true} if and only if this deque contains
1037 * at least one element {@code e} such that {@code o.equals(e)}.
1038 *
1039 * @param o object to be checked for containment in this deque
1040 * @return {@code true} if this deque contains the specified element
1041 */
1042 public boolean contains(Object o) {
1043 if (o != null) {
1044 final Object[] es = elements;
1045 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1046 ; i = 0, to = end) {
1047 for (; i < to; i++)
1048 if (o.equals(es[i]))
1049 return true;
1050 if (to == end) break;
1051 }
1052 }
1053 return false;
1054 }
1055
1056 /**
1057 * Removes a single instance of the specified element from this deque.
1058 * If the deque does not contain the element, it is unchanged.
1059 * More formally, removes the first element {@code e} such that
1060 * {@code o.equals(e)} (if such an element exists).
1061 * Returns {@code true} if this deque contained the specified element
1062 * (or equivalently, if this deque changed as a result of the call).
1063 *
1064 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1065 *
1066 * @param o element to be removed from this deque, if present
1067 * @return {@code true} if this deque contained the specified element
1068 */
1069 public boolean remove(Object o) {
1070 return removeFirstOccurrence(o);
1071 }
1072
1073 /**
1074 * Removes all of the elements from this deque.
1075 * The deque will be empty after this call returns.
1076 */
1077 public void clear() {
1078 circularClear(elements, head, tail);
1079 head = tail = 0;
1080 // checkInvariants();
1081 }
1082
1083 /**
1084 * Nulls out slots starting at array index i, upto index end.
1085 * Condition i == end means "empty" - nothing to do.
1086 */
1087 private static void circularClear(Object[] es, int i, int end) {
1088 // assert 0 <= i && i < es.length;
1089 // assert 0 <= end && end < es.length;
1090 for (int to = (i <= end) ? end : es.length;
1091 ; i = 0, to = end) {
1092 for (; i < to; i++) es[i] = null;
1093 if (to == end) break;
1094 }
1095 }
1096
1097 /**
1098 * Returns an array containing all of the elements in this deque
1099 * in proper sequence (from first to last element).
1100 *
1101 * <p>The returned array will be "safe" in that no references to it are
1102 * maintained by this deque. (In other words, this method must allocate
1103 * a new array). The caller is thus free to modify the returned array.
1104 *
1105 * <p>This method acts as bridge between array-based and collection-based
1106 * APIs.
1107 *
1108 * @return an array containing all of the elements in this deque
1109 */
1110 public Object[] toArray() {
1111 return toArray(Object[].class);
1112 }
1113
1114 private <T> T[] toArray(Class<T[]> klazz) {
1115 final Object[] es = elements;
1116 final T[] a;
1117 final int head = this.head, tail = this.tail, end;
1118 if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1119 // Uses null extension feature of copyOfRange
1120 a = Arrays.copyOfRange(es, head, end, klazz);
1121 } else {
1122 // integer overflow!
1123 a = Arrays.copyOfRange(es, 0, end - head, klazz);
1124 System.arraycopy(es, head, a, 0, es.length - head);
1125 }
1126 if (end != tail)
1127 System.arraycopy(es, 0, a, es.length - head, tail);
1128 return a;
1129 }
1130
1131 /**
1132 * Returns an array containing all of the elements in this deque in
1133 * proper sequence (from first to last element); the runtime type of the
1134 * returned array is that of the specified array. If the deque fits in
1135 * the specified array, it is returned therein. Otherwise, a new array
1136 * is allocated with the runtime type of the specified array and the
1137 * size of this deque.
1138 *
1139 * <p>If this deque fits in the specified array with room to spare
1140 * (i.e., the array has more elements than this deque), the element in
1141 * the array immediately following the end of the deque is set to
1142 * {@code null}.
1143 *
1144 * <p>Like the {@link #toArray()} method, this method acts as bridge between
1145 * array-based and collection-based APIs. Further, this method allows
1146 * precise control over the runtime type of the output array, and may,
1147 * under certain circumstances, be used to save allocation costs.
1148 *
1149 * <p>Suppose {@code x} is a deque known to contain only strings.
1150 * The following code can be used to dump the deque into a newly
1151 * allocated array of {@code String}:
1152 *
1153 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1154 *
1155 * Note that {@code toArray(new Object[0])} is identical in function to
1156 * {@code toArray()}.
1157 *
1158 * @param a the array into which the elements of the deque are to
1159 * be stored, if it is big enough; otherwise, a new array of the
1160 * same runtime type is allocated for this purpose
1161 * @return an array containing all of the elements in this deque
1162 * @throws ArrayStoreException if the runtime type of the specified array
1163 * is not a supertype of the runtime type of every element in
1164 * this deque
1165 * @throws NullPointerException if the specified array is null
1166 */
1167 @SuppressWarnings("unchecked")
1168 public <T> T[] toArray(T[] a) {
1169 final int size;
1170 if ((size = size()) > a.length)
1171 return toArray((Class<T[]>) a.getClass());
1172 final Object[] es = elements;
1173 for (int i = head, j = 0, len = Math.min(size, es.length - i);
1174 ; i = 0, len = tail) {
1175 System.arraycopy(es, i, a, j, len);
1176 if ((j += len) == size) break;
1177 }
1178 if (size < a.length)
1179 a[size] = null;
1180 return a;
1181 }
1182
1183 // *** Object methods ***
1184
1185 /**
1186 * Returns a copy of this deque.
1187 *
1188 * @return a copy of this deque
1189 */
1190 public ArrayDeque<E> clone() {
1191 try {
1192 @SuppressWarnings("unchecked")
1193 ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1194 result.elements = Arrays.copyOf(elements, elements.length);
1195 return result;
1196 } catch (CloneNotSupportedException e) {
1197 throw new AssertionError();
1198 }
1199 }
1200
1201 // OPENJDK @java.io.Serial
1202 private static final long serialVersionUID = 2340985798034038923L;
1203
1204 /**
1205 * Saves this deque to a stream (that is, serializes it).
1206 *
1207 * @param s the stream
1208 * @throws java.io.IOException if an I/O error occurs
1209 * @serialData The current size ({@code int}) of the deque,
1210 * followed by all of its elements (each an object reference) in
1211 * first-to-last order.
1212 */
1213 // OPENJDK @java.io.Serial
1214 private void writeObject(java.io.ObjectOutputStream s)
1215 throws java.io.IOException {
1216 s.defaultWriteObject();
1217
1218 // Write out size
1219 s.writeInt(size());
1220
1221 // Write out elements in order.
1222 final Object[] es = elements;
1223 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1224 ; i = 0, to = end) {
1225 for (; i < to; i++)
1226 s.writeObject(es[i]);
1227 if (to == end) break;
1228 }
1229 }
1230
1231 /**
1232 * Reconstitutes this deque from a stream (that is, deserializes it).
1233 * @param s the stream
1234 * @throws ClassNotFoundException if the class of a serialized object
1235 * could not be found
1236 * @throws java.io.IOException if an I/O error occurs
1237 */
1238 // OPENJDK @java.io.Serial
1239 private void readObject(java.io.ObjectInputStream s)
1240 throws java.io.IOException, ClassNotFoundException {
1241 s.defaultReadObject();
1242
1243 // Read in size and allocate array
1244 int size = s.readInt();
1245 jsr166.Platform.checkArray(s, Object[].class, size + 1);
1246 elements = new Object[size + 1];
1247 this.tail = size;
1248
1249 // Read in all elements in the proper order.
1250 for (int i = 0; i < size; i++)
1251 elements[i] = s.readObject();
1252 }
1253
1254 /** debugging */
1255 void checkInvariants() {
1256 // Use head and tail fields with empty slot at tail strategy.
1257 // head == tail disambiguates to "empty".
1258 try {
1259 int capacity = elements.length;
1260 // assert 0 <= head && head < capacity;
1261 // assert 0 <= tail && tail < capacity;
1262 // assert capacity > 0;
1263 // assert size() < capacity;
1264 // assert head == tail || elements[head] != null;
1265 // assert elements[tail] == null;
1266 // assert head == tail || elements[dec(tail, capacity)] != null;
1267 } catch (Throwable t) {
1268 System.err.printf("head=%d tail=%d capacity=%d%n",
1269 head, tail, elements.length);
1270 System.err.printf("elements=%s%n",
1271 Arrays.toString(elements));
1272 throw t;
1273 }
1274 }
1275
1276 }