ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
Revision: 1.19
Committed: Fri Sep 16 11:15:41 2005 UTC (18 years, 9 months ago) by dl
Branch: MAIN
Changes since 1.18: +2 -6 lines
Log Message:
Incorporate review suggestions

File Contents

# Content
1 /*
2 * Written by Josh Bloch of Google Inc. and released to the public domain,
3 * as explained at http://creativecommons.org/licenses/publicdomain.
4 */
5
6 package java.util;
7 import java.util.*; // for javadoc (till 6280605 is fixed)
8 import java.io.*;
9
10 /**
11 * Resizable-array implementation of the {@link Deque} interface. Array
12 * deques have no capacity restrictions; they grow as necessary to support
13 * usage. They are not thread-safe; in the absence of external
14 * synchronization, they do not support concurrent access by multiple threads.
15 * Null elements are prohibited. This class is likely to be faster than
16 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
17 * when used as a queue.
18 *
19 * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
20 * Exceptions include {@link #remove(Object) remove}, {@link
21 * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
22 * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
23 * iterator.remove()}, and the bulk operations, all of which run in linear
24 * time.
25 *
26 * <p>The iterators returned by this class's <tt>iterator</tt> method are
27 * <i>fail-fast</i>: If the deque is modified at any time after the iterator
28 * is created, in any way except through the iterator's own <tt>remove</tt>
29 * method, the iterator will generally throw a {@link
30 * ConcurrentModificationException}. Thus, in the face of concurrent
31 * modification, the iterator fails quickly and cleanly, rather than risking
32 * arbitrary, non-deterministic behavior at an undetermined time in the
33 * future.
34 *
35 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
36 * as it is, generally speaking, impossible to make any hard guarantees in the
37 * presence of unsynchronized concurrent modification. Fail-fast iterators
38 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
39 * Therefore, it would be wrong to write a program that depended on this
40 * exception for its correctness: <i>the fail-fast behavior of iterators
41 * should be used only to detect bugs.</i>
42 *
43 * <p>This class and its iterator implement all of the
44 * <em>optional</em> methods of the {@link Collection} and {@link
45 * Iterator} interfaces.
46 *
47 * <p>This class is a member of the
48 * <a href="{@docRoot}/../guide/collections/index.html">
49 * Java Collections Framework</a>.
50 *
51 * @author Josh Bloch and Doug Lea
52 * @since 1.6
53 * @param <E> the type of elements held in this collection
54 */
55 public class ArrayDeque<E> extends AbstractCollection<E>
56 implements Deque<E>, Cloneable, Serializable
57 {
58 /**
59 * The array in which the elements of the deque are stored.
60 * The capacity of the deque is the length of this array, which is
61 * always a power of two. The array is never allowed to become
62 * full, except transiently within an addX method where it is
63 * resized (see doubleCapacity) immediately upon becoming full,
64 * thus avoiding head and tail wrapping around to equal each
65 * other. We also guarantee that all array cells not holding
66 * deque elements are always null.
67 */
68 private transient E[] elements;
69
70 /**
71 * The index of the element at the head of the deque (which is the
72 * element that would be removed by remove() or pop()); or an
73 * arbitrary number equal to tail if the deque is empty.
74 */
75 private transient int head;
76
77 /**
78 * The index at which the next element would be added to the tail
79 * of the deque (via addLast(E), add(E), or push(E)).
80 */
81 private transient int tail;
82
83 /**
84 * The minimum capacity that we'll use for a newly created deque.
85 * Must be a power of 2.
86 */
87 private static final int MIN_INITIAL_CAPACITY = 8;
88
89 // ****** Array allocation and resizing utilities ******
90
91 /**
92 * Allocate empty array to hold the given number of elements.
93 *
94 * @param numElements the number of elements to hold
95 */
96 private void allocateElements(int numElements) {
97 int initialCapacity = MIN_INITIAL_CAPACITY;
98 // Find the best power of two to hold elements.
99 // Tests "<=" because arrays aren't kept full.
100 if (numElements >= initialCapacity) {
101 initialCapacity = numElements;
102 initialCapacity |= (initialCapacity >>> 1);
103 initialCapacity |= (initialCapacity >>> 2);
104 initialCapacity |= (initialCapacity >>> 4);
105 initialCapacity |= (initialCapacity >>> 8);
106 initialCapacity |= (initialCapacity >>> 16);
107 initialCapacity++;
108
109 if (initialCapacity < 0) // Too many elements, must back off
110 initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
111 }
112 elements = (E[]) new Object[initialCapacity];
113 }
114
115 /**
116 * Double the capacity of this deque. Call only when full, i.e.,
117 * when head and tail have wrapped around to become equal.
118 */
119 private void doubleCapacity() {
120 assert head == tail;
121 int p = head;
122 int n = elements.length;
123 int r = n - p; // number of elements to the right of p
124 int newCapacity = n << 1;
125 if (newCapacity < 0)
126 throw new IllegalStateException("Sorry, deque too big");
127 Object[] a = new Object[newCapacity];
128 System.arraycopy(elements, p, a, 0, r);
129 System.arraycopy(elements, 0, a, r, p);
130 elements = (E[])a;
131 head = 0;
132 tail = n;
133 }
134
135 /**
136 * Copies the elements from our element array into the specified array,
137 * in order (from first to last element in the deque). It is assumed
138 * that the array is large enough to hold all elements in the deque.
139 *
140 * @return its argument
141 */
142 private <T> T[] copyElements(T[] a) {
143 if (head < tail) {
144 System.arraycopy(elements, head, a, 0, size());
145 } else if (head > tail) {
146 int headPortionLen = elements.length - head;
147 System.arraycopy(elements, head, a, 0, headPortionLen);
148 System.arraycopy(elements, 0, a, headPortionLen, tail);
149 }
150 return a;
151 }
152
153 /**
154 * Constructs an empty array deque with an initial capacity
155 * sufficient to hold 16 elements.
156 */
157 public ArrayDeque() {
158 elements = (E[]) new Object[16];
159 }
160
161 /**
162 * Constructs an empty array deque with an initial capacity
163 * sufficient to hold the specified number of elements.
164 *
165 * @param numElements lower bound on initial capacity of the deque
166 */
167 public ArrayDeque(int numElements) {
168 allocateElements(numElements);
169 }
170
171 /**
172 * Constructs a deque containing the elements of the specified
173 * collection, in the order they are returned by the collection's
174 * iterator. (The first element returned by the collection's
175 * iterator becomes the first element, or <i>front</i> of the
176 * deque.)
177 *
178 * @param c the collection whose elements are to be placed into the deque
179 * @throws NullPointerException if the specified collection is null
180 */
181 public ArrayDeque(Collection<? extends E> c) {
182 allocateElements(c.size());
183 addAll(c);
184 }
185
186 // The main insertion and extraction methods are addFirst,
187 // addLast, pollFirst, pollLast. The other methods are defined in
188 // terms of these.
189
190 /**
191 * Inserts the specified element at the front of this deque.
192 *
193 * @param e the element to add
194 * @throws NullPointerException if the specified element is null
195 */
196 public void addFirst(E e) {
197 if (e == null)
198 throw new NullPointerException();
199 elements[head = (head - 1) & (elements.length - 1)] = e;
200 if (head == tail)
201 doubleCapacity();
202 }
203
204 /**
205 * Inserts the specified element at the end of this deque.
206 *
207 * <p>This method is equivalent to {@link #add}.
208 *
209 * @param e the element to add
210 * @throws NullPointerException if the specified element is null
211 */
212 public void addLast(E e) {
213 if (e == null)
214 throw new NullPointerException();
215 elements[tail] = e;
216 if ( (tail = (tail + 1) & (elements.length - 1)) == head)
217 doubleCapacity();
218 }
219
220 /**
221 * Inserts the specified element at the front of this deque.
222 *
223 * @param e the element to add
224 * @return <tt>true</tt> (as specified by {@link Deque#offerFirst})
225 * @throws NullPointerException if the specified element is null
226 */
227 public boolean offerFirst(E e) {
228 addFirst(e);
229 return true;
230 }
231
232 /**
233 * Inserts the specified element at the end of this deque.
234 *
235 * @param e the element to add
236 * @return <tt>true</tt> (as specified by {@link Deque#offerLast})
237 * @throws NullPointerException if the specified element is null
238 */
239 public boolean offerLast(E e) {
240 addLast(e);
241 return true;
242 }
243
244 /**
245 * @throws NoSuchElementException {@inheritDoc}
246 */
247 public E removeFirst() {
248 E x = pollFirst();
249 if (x == null)
250 throw new NoSuchElementException();
251 return x;
252 }
253
254 /**
255 * @throws NoSuchElementException {@inheritDoc}
256 */
257 public E removeLast() {
258 E x = pollLast();
259 if (x == null)
260 throw new NoSuchElementException();
261 return x;
262 }
263
264 public E pollFirst() {
265 int h = head;
266 E result = elements[h]; // Element is null if deque empty
267 if (result == null)
268 return null;
269 elements[h] = null; // Must null out slot
270 head = (h + 1) & (elements.length - 1);
271 return result;
272 }
273
274 public E pollLast() {
275 int t = (tail - 1) & (elements.length - 1);
276 E result = elements[t];
277 if (result == null)
278 return null;
279 elements[t] = null;
280 tail = t;
281 return result;
282 }
283
284 /**
285 * @throws NoSuchElementException {@inheritDoc}
286 */
287 public E getFirst() {
288 E x = elements[head];
289 if (x == null)
290 throw new NoSuchElementException();
291 return x;
292 }
293
294 /**
295 * @throws NoSuchElementException {@inheritDoc}
296 */
297 public E getLast() {
298 E x = elements[(tail - 1) & (elements.length - 1)];
299 if (x == null)
300 throw new NoSuchElementException();
301 return x;
302 }
303
304 public E peekFirst() {
305 return elements[head]; // elements[head] is null if deque empty
306 }
307
308 public E peekLast() {
309 return elements[(tail - 1) & (elements.length - 1)];
310 }
311
312 /**
313 * Removes the first occurrence of the specified element in this
314 * deque (when traversing the deque from head to tail).
315 * If the deque does not contain the element, it is unchanged.
316 * More formally, removes the first element <tt>e</tt> such that
317 * <tt>o.equals(e)</tt> (if such an element exists).
318 * Returns <tt>true</tt> if this deque contained the specified element
319 * (or equivalently, if this deque changed as a result of the call).
320 *
321 * @param o element to be removed from this deque, if present
322 * @return <tt>true</tt> if the deque contained the specified element
323 */
324 public boolean removeFirstOccurrence(Object o) {
325 if (o == null)
326 return false;
327 int mask = elements.length - 1;
328 int i = head;
329 E x;
330 while ( (x = elements[i]) != null) {
331 if (o.equals(x)) {
332 delete(i);
333 return true;
334 }
335 i = (i + 1) & mask;
336 }
337 return false;
338 }
339
340 /**
341 * Removes the last occurrence of the specified element in this
342 * deque (when traversing the deque from head to tail).
343 * If the deque does not contain the element, it is unchanged.
344 * More formally, removes the last element <tt>e</tt> such that
345 * <tt>o.equals(e)</tt> (if such an element exists).
346 * Returns <tt>true</tt> if this deque contained the specified element
347 * (or equivalently, if this deque changed as a result of the call).
348 *
349 * @param o element to be removed from this deque, if present
350 * @return <tt>true</tt> if the deque contained the specified element
351 */
352 public boolean removeLastOccurrence(Object o) {
353 if (o == null)
354 return false;
355 int mask = elements.length - 1;
356 int i = (tail - 1) & mask;
357 E x;
358 while ( (x = elements[i]) != null) {
359 if (o.equals(x)) {
360 delete(i);
361 return true;
362 }
363 i = (i - 1) & mask;
364 }
365 return false;
366 }
367
368 // *** Queue methods ***
369
370 /**
371 * Inserts the specified element at the end of this deque.
372 *
373 * <p>This method is equivalent to {@link #addLast}.
374 *
375 * @param e the element to add
376 * @return <tt>true</tt> (as specified by {@link Collection#add})
377 * @throws NullPointerException if the specified element is null
378 */
379 public boolean add(E e) {
380 addLast(e);
381 return true;
382 }
383
384 /**
385 * Inserts the specified element at the end of this deque.
386 *
387 * <p>This method is equivalent to {@link #offerLast}.
388 *
389 * @param e the element to add
390 * @return <tt>true</tt> (as specified by {@link Queue#offer})
391 * @throws NullPointerException if the specified element is null
392 */
393 public boolean offer(E e) {
394 return offerLast(e);
395 }
396
397 /**
398 * Retrieves and removes the head of the queue represented by this deque.
399 *
400 * This method differs from {@link #poll poll} only in that it throws an
401 * exception if this deque is empty.
402 *
403 * <p>This method is equivalent to {@link #removeFirst}.
404 *
405 * @return the head of the queue represented by this deque
406 * @throws NoSuchElementException {@inheritDoc}
407 */
408 public E remove() {
409 return removeFirst();
410 }
411
412 /**
413 * Retrieves and removes the head of the queue represented by this deque
414 * (in other words, the first element of this deque), or returns
415 * <tt>null</tt> if this deque is empty.
416 *
417 * <p>This method is equivalent to {@link #pollFirst}.
418 *
419 * @return the head of the queue represented by this deque, or
420 * <tt>null</tt> if this deque is empty
421 */
422 public E poll() {
423 return pollFirst();
424 }
425
426 /**
427 * Retrieves, but does not remove, the head of the queue represented by
428 * this deque. This method differs from {@link #peek peek} only in
429 * that it throws an exception if this deque is empty.
430 *
431 * <p>This method is equivalent to {@link #getFirst}.
432 *
433 * @return the head of the queue represented by this deque
434 * @throws NoSuchElementException {@inheritDoc}
435 */
436 public E element() {
437 return getFirst();
438 }
439
440 /**
441 * Retrieves, but does not remove, the head of the queue represented by
442 * this deque, or returns <tt>null</tt> if this deque is empty.
443 *
444 * <p>This method is equivalent to {@link #peekFirst}.
445 *
446 * @return the head of the queue represented by this deque, or
447 * <tt>null</tt> if this deque is empty
448 */
449 public E peek() {
450 return peekFirst();
451 }
452
453 // *** Stack methods ***
454
455 /**
456 * Pushes an element onto the stack represented by this deque. In other
457 * words, inserts the element at the front of this deque.
458 *
459 * <p>This method is equivalent to {@link #addFirst}.
460 *
461 * @param e the element to push
462 * @throws NullPointerException if the specified element is null
463 */
464 public void push(E e) {
465 addFirst(e);
466 }
467
468 /**
469 * Pops an element from the stack represented by this deque. In other
470 * words, removes and returns the first element of this deque.
471 *
472 * <p>This method is equivalent to {@link #removeFirst()}.
473 *
474 * @return the element at the front of this deque (which is the top
475 * of the stack represented by this deque)
476 * @throws NoSuchElementException {@inheritDoc}
477 */
478 public E pop() {
479 return removeFirst();
480 }
481
482 /**
483 * Removes the element at the specified position in the elements array,
484 * adjusting head and tail as necessary. This can result in motion of
485 * elements backwards or forwards in the array.
486 *
487 * <p>This method is called delete rather than remove to emphasize
488 * that its semantics differ from those of {@link List#remove(int)}.
489 *
490 * @return true if elements moved backwards
491 */
492 private boolean delete(int i) {
493 int mask = elements.length - 1;
494
495 // Invariant: head <= i < tail mod circularity
496 if (((i - head) & mask) >= ((tail - head) & mask))
497 throw new ConcurrentModificationException();
498
499 // Case 1: Deque doesn't wrap
500 // Case 2: Deque does wrap and removed element is in the head portion
501 if (i >= head) {
502 System.arraycopy(elements, head, elements, head + 1, i - head);
503 elements[head] = null;
504 head = (head + 1) & mask;
505 return false;
506 }
507
508 // Case 3: Deque wraps and removed element is in the tail portion
509 tail--;
510 System.arraycopy(elements, i + 1, elements, i, tail - i);
511 elements[tail] = null;
512 return true;
513 }
514
515 // *** Collection Methods ***
516
517 /**
518 * Returns the number of elements in this deque.
519 *
520 * @return the number of elements in this deque
521 */
522 public int size() {
523 return (tail - head) & (elements.length - 1);
524 }
525
526 /**
527 * Returns <tt>true</tt> if this deque contains no elements.
528 *
529 * @return <tt>true</tt> if this deque contains no elements
530 */
531 public boolean isEmpty() {
532 return head == tail;
533 }
534
535 /**
536 * Returns an iterator over the elements in this deque. The elements
537 * will be ordered from first (head) to last (tail). This is the same
538 * order that elements would be dequeued (via successive calls to
539 * {@link #remove} or popped (via successive calls to {@link #pop}).
540 *
541 * @return an iterator over the elements in this deque
542 */
543 public Iterator<E> iterator() {
544 return new DeqIterator();
545 }
546
547 public Iterator<E> descendingIterator() {
548 return new DescendingIterator();
549 }
550
551 private class DeqIterator implements Iterator<E> {
552 /**
553 * Index of element to be returned by subsequent call to next.
554 */
555 private int cursor = head;
556
557 /**
558 * Tail recorded at construction (also in remove), to stop
559 * iterator and also to check for comodification.
560 */
561 private int fence = tail;
562
563 /**
564 * Index of element returned by most recent call to next.
565 * Reset to -1 if element is deleted by a call to remove.
566 */
567 private int lastRet = -1;
568
569 public boolean hasNext() {
570 return cursor != fence;
571 }
572
573 public E next() {
574 E result;
575 if (cursor == fence)
576 throw new NoSuchElementException();
577 // This check doesn't catch all possible comodifications,
578 // but does catch the ones that corrupt traversal
579 if (tail != fence || (result = elements[cursor]) == null)
580 throw new ConcurrentModificationException();
581 lastRet = cursor;
582 cursor = (cursor + 1) & (elements.length - 1);
583 return result;
584 }
585
586 public void remove() {
587 if (lastRet < 0)
588 throw new IllegalStateException();
589 if (delete(lastRet)) // if left-shifted, undo increment in next()
590 cursor = (cursor - 1) & (elements.length - 1);
591 lastRet = -1;
592 fence = tail;
593 }
594 }
595
596
597 private class DescendingIterator implements Iterator<E> {
598 /*
599 * This class is nearly a mirror-image of DeqIterator, using
600 * (tail-1) instead of head for initial cursor, (head-1)
601 * instead of tail for fence, and elements.length instead of -1
602 * for sentinel. It shares the same structure, but not many
603 * actual lines of code.
604 */
605 private int cursor = (tail - 1) & (elements.length - 1);
606 private int fence = (head - 1) & (elements.length - 1);
607 private int lastRet = elements.length;
608
609 public boolean hasNext() {
610 return cursor != fence;
611 }
612
613 public E next() {
614 E result;
615 if (cursor == fence)
616 throw new NoSuchElementException();
617 if (((head - 1) & (elements.length - 1)) != fence ||
618 (result = elements[cursor]) == null)
619 throw new ConcurrentModificationException();
620 lastRet = cursor;
621 cursor = (cursor - 1) & (elements.length - 1);
622 return result;
623 }
624
625 public void remove() {
626 if (lastRet >= elements.length)
627 throw new IllegalStateException();
628 if (!delete(lastRet))
629 cursor = (cursor + 1) & (elements.length - 1);
630 lastRet = elements.length;
631 fence = (head - 1) & (elements.length - 1);
632 }
633 }
634
635 /**
636 * Returns <tt>true</tt> if this deque contains the specified element.
637 * More formally, returns <tt>true</tt> if and only if this deque contains
638 * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
639 *
640 * @param o object to be checked for containment in this deque
641 * @return <tt>true</tt> if this deque contains the specified element
642 */
643 public boolean contains(Object o) {
644 if (o == null)
645 return false;
646 int mask = elements.length - 1;
647 int i = head;
648 E x;
649 while ( (x = elements[i]) != null) {
650 if (o.equals(x))
651 return true;
652 i = (i + 1) & mask;
653 }
654 return false;
655 }
656
657 /**
658 * Removes a single instance of the specified element from this deque.
659 * If the deque does not contain the element, it is unchanged.
660 * More formally, removes the first element <tt>e</tt> such that
661 * <tt>o.equals(e)</tt> (if such an element exists).
662 * Returns <tt>true</tt> if this deque contained the specified element
663 * (or equivalently, if this deque changed as a result of the call).
664 *
665 * <p>This method is equivalent to {@link #removeFirstOccurrence}.
666 *
667 * @param o element to be removed from this deque, if present
668 * @return <tt>true</tt> if this deque contained the specified element
669 */
670 public boolean remove(Object o) {
671 return removeFirstOccurrence(o);
672 }
673
674 /**
675 * Removes all of the elements from this deque.
676 * The deque will be empty after this call returns.
677 */
678 public void clear() {
679 int h = head;
680 int t = tail;
681 if (h != t) { // clear all cells
682 head = tail = 0;
683 int i = h;
684 int mask = elements.length - 1;
685 do {
686 elements[i] = null;
687 i = (i + 1) & mask;
688 } while (i != t);
689 }
690 }
691
692 /**
693 * Returns an array containing all of the elements in this deque
694 * in proper sequence (from first to last element).
695 *
696 * <p>The returned array will be "safe" in that no references to it are
697 * maintained by this deque. (In other words, this method must allocate
698 * a new array). The caller is thus free to modify the returned array.
699 *
700 * <p>This method acts as bridge between array-based and collection-based
701 * APIs.
702 *
703 * @return an array containing all of the elements in this deque
704 */
705 public Object[] toArray() {
706 return copyElements(new Object[size()]);
707 }
708
709 /**
710 * Returns an array containing all of the elements in this deque in
711 * proper sequence (from first to last element); the runtime type of the
712 * returned array is that of the specified array. If the deque fits in
713 * the specified array, it is returned therein. Otherwise, a new array
714 * is allocated with the runtime type of the specified array and the
715 * size of this deque.
716 *
717 * <p>If this deque fits in the specified array with room to spare
718 * (i.e., the array has more elements than this deque), the element in
719 * the array immediately following the end of the deque is set to
720 * <tt>null</tt>.
721 *
722 * <p>Like the {@link #toArray()} method, this method acts as bridge between
723 * array-based and collection-based APIs. Further, this method allows
724 * precise control over the runtime type of the output array, and may,
725 * under certain circumstances, be used to save allocation costs.
726 *
727 * <p>Suppose <tt>x</tt> is a deque known to contain only strings.
728 * The following code can be used to dump the deque into a newly
729 * allocated array of <tt>String</tt>:
730 *
731 * <pre>
732 * String[] y = x.toArray(new String[0]);</pre>
733 *
734 * Note that <tt>toArray(new Object[0])</tt> is identical in function to
735 * <tt>toArray()</tt>.
736 *
737 * @param a the array into which the elements of the deque are to
738 * be stored, if it is big enough; otherwise, a new array of the
739 * same runtime type is allocated for this purpose
740 * @return an array containing all of the elements in this deque
741 * @throws ArrayStoreException if the runtime type of the specified array
742 * is not a supertype of the runtime type of every element in
743 * this deque
744 * @throws NullPointerException if the specified array is null
745 */
746 public <T> T[] toArray(T[] a) {
747 int size = size();
748 if (a.length < size)
749 a = (T[])java.lang.reflect.Array.newInstance(
750 a.getClass().getComponentType(), size);
751 copyElements(a);
752 if (a.length > size)
753 a[size] = null;
754 return a;
755 }
756
757 // *** Object methods ***
758
759 /**
760 * Returns a copy of this deque.
761 *
762 * @return a copy of this deque
763 */
764 public ArrayDeque<E> clone() {
765 try {
766 ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
767 // These two lines are currently faster than cloning the array:
768 result.elements = (E[]) new Object[elements.length];
769 System.arraycopy(elements, 0, result.elements, 0, elements.length);
770 return result;
771
772 } catch (CloneNotSupportedException e) {
773 throw new AssertionError();
774 }
775 }
776
777 /**
778 * Appease the serialization gods.
779 */
780 private static final long serialVersionUID = 2340985798034038923L;
781
782 /**
783 * Serialize this deque.
784 *
785 * @serialData The current size (<tt>int</tt>) of the deque,
786 * followed by all of its elements (each an object reference) in
787 * first-to-last order.
788 */
789 private void writeObject(ObjectOutputStream s) throws IOException {
790 s.defaultWriteObject();
791
792 // Write out size
793 s.writeInt(size());
794
795 // Write out elements in order.
796 int mask = elements.length - 1;
797 for (int i = head; i != tail; i = (i + 1) & mask)
798 s.writeObject(elements[i]);
799 }
800
801 /**
802 * Deserialize this deque.
803 */
804 private void readObject(ObjectInputStream s)
805 throws IOException, ClassNotFoundException {
806 s.defaultReadObject();
807
808 // Read in size and allocate array
809 int size = s.readInt();
810 allocateElements(size);
811 head = 0;
812 tail = size;
813
814 // Read in all elements in the proper order.
815 for (int i = 0; i < size; i++)
816 elements[i] = (E)s.readObject();
817
818 }
819 }