ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
Revision: 1.42
Committed: Wed Jan 16 21:18:50 2013 UTC (11 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.41: +1 -1 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation. Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25 /*
26 * This file is available under and governed by the GNU General Public
27 * License version 2 only, as published by the Free Software Foundation.
28 * However, the following notice accompanied the original version of this
29 * file:
30 *
31 * Written by Josh Bloch of Google Inc. and released to the public domain,
32 * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
33 */
34
35 package java.util;
36 import java.util.Spliterator;
37 import java.util.stream.Stream;
38 import java.util.stream.Streams;
39 import java.util.function.Block;
40
41 /**
42 * Resizable-array implementation of the {@link Deque} interface. Array
43 * deques have no capacity restrictions; they grow as necessary to support
44 * usage. They are not thread-safe; in the absence of external
45 * synchronization, they do not support concurrent access by multiple threads.
46 * Null elements are prohibited. This class is likely to be faster than
47 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
48 * when used as a queue.
49 *
50 * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
51 * Exceptions include {@link #remove(Object) remove}, {@link
52 * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
53 * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
54 * iterator.remove()}, and the bulk operations, all of which run in linear
55 * time.
56 *
57 * <p>The iterators returned by this class's <tt>iterator</tt> method are
58 * <i>fail-fast</i>: If the deque is modified at any time after the iterator
59 * is created, in any way except through the iterator's own <tt>remove</tt>
60 * method, the iterator will generally throw a {@link
61 * ConcurrentModificationException}. Thus, in the face of concurrent
62 * modification, the iterator fails quickly and cleanly, rather than risking
63 * arbitrary, non-deterministic behavior at an undetermined time in the
64 * future.
65 *
66 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
67 * as it is, generally speaking, impossible to make any hard guarantees in the
68 * presence of unsynchronized concurrent modification. Fail-fast iterators
69 * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
70 * Therefore, it would be wrong to write a program that depended on this
71 * exception for its correctness: <i>the fail-fast behavior of iterators
72 * should be used only to detect bugs.</i>
73 *
74 * <p>This class and its iterator implement all of the
75 * <em>optional</em> methods of the {@link Collection} and {@link
76 * Iterator} interfaces.
77 *
78 * <p>This class is a member of the
79 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
80 * Java Collections Framework</a>.
81 *
82 * @author Josh Bloch and Doug Lea
83 * @since 1.6
84 * @param <E> the type of elements held in this collection
85 */
86 public class ArrayDeque<E> extends AbstractCollection<E>
87 implements Deque<E>, Cloneable, java.io.Serializable
88 {
89 /**
90 * The array in which the elements of the deque are stored.
91 * The capacity of the deque is the length of this array, which is
92 * always a power of two. The array is never allowed to become
93 * full, except transiently within an addX method where it is
94 * resized (see doubleCapacity) immediately upon becoming full,
95 * thus avoiding head and tail wrapping around to equal each
96 * other. We also guarantee that all array cells not holding
97 * deque elements are always null.
98 */
99 transient Object[] elements; // non-private to simplify nested class access
100
101 /**
102 * The index of the element at the head of the deque (which is the
103 * element that would be removed by remove() or pop()); or an
104 * arbitrary number equal to tail if the deque is empty.
105 */
106 transient int head;
107
108 /**
109 * The index at which the next element would be added to the tail
110 * of the deque (via addLast(E), add(E), or push(E)).
111 */
112 transient int tail;
113
114 /**
115 * The minimum capacity that we'll use for a newly created deque.
116 * Must be a power of 2.
117 */
118 private static final int MIN_INITIAL_CAPACITY = 8;
119
120 // ****** Array allocation and resizing utilities ******
121
122 /**
123 * Allocates empty array to hold the given number of elements.
124 *
125 * @param numElements the number of elements to hold
126 */
127 private void allocateElements(int numElements) {
128 int initialCapacity = MIN_INITIAL_CAPACITY;
129 // Find the best power of two to hold elements.
130 // Tests "<=" because arrays aren't kept full.
131 if (numElements >= initialCapacity) {
132 initialCapacity = numElements;
133 initialCapacity |= (initialCapacity >>> 1);
134 initialCapacity |= (initialCapacity >>> 2);
135 initialCapacity |= (initialCapacity >>> 4);
136 initialCapacity |= (initialCapacity >>> 8);
137 initialCapacity |= (initialCapacity >>> 16);
138 initialCapacity++;
139
140 if (initialCapacity < 0) // Too many elements, must back off
141 initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
142 }
143 elements = new Object[initialCapacity];
144 }
145
146 /**
147 * Doubles the capacity of this deque. Call only when full, i.e.,
148 * when head and tail have wrapped around to become equal.
149 */
150 private void doubleCapacity() {
151 assert head == tail;
152 int p = head;
153 int n = elements.length;
154 int r = n - p; // number of elements to the right of p
155 int newCapacity = n << 1;
156 if (newCapacity < 0)
157 throw new IllegalStateException("Sorry, deque too big");
158 Object[] a = new Object[newCapacity];
159 System.arraycopy(elements, p, a, 0, r);
160 System.arraycopy(elements, 0, a, r, p);
161 elements = a;
162 head = 0;
163 tail = n;
164 }
165
166 /**
167 * Copies the elements from our element array into the specified array,
168 * in order (from first to last element in the deque). It is assumed
169 * that the array is large enough to hold all elements in the deque.
170 *
171 * @return its argument
172 */
173 private <T> T[] copyElements(T[] a) {
174 if (head < tail) {
175 System.arraycopy(elements, head, a, 0, size());
176 } else if (head > tail) {
177 int headPortionLen = elements.length - head;
178 System.arraycopy(elements, head, a, 0, headPortionLen);
179 System.arraycopy(elements, 0, a, headPortionLen, tail);
180 }
181 return a;
182 }
183
184 /**
185 * Constructs an empty array deque with an initial capacity
186 * sufficient to hold 16 elements.
187 */
188 public ArrayDeque() {
189 elements = new Object[16];
190 }
191
192 /**
193 * Constructs an empty array deque with an initial capacity
194 * sufficient to hold the specified number of elements.
195 *
196 * @param numElements lower bound on initial capacity of the deque
197 */
198 public ArrayDeque(int numElements) {
199 allocateElements(numElements);
200 }
201
202 /**
203 * Constructs a deque containing the elements of the specified
204 * collection, in the order they are returned by the collection's
205 * iterator. (The first element returned by the collection's
206 * iterator becomes the first element, or <i>front</i> of the
207 * deque.)
208 *
209 * @param c the collection whose elements are to be placed into the deque
210 * @throws NullPointerException if the specified collection is null
211 */
212 public ArrayDeque(Collection<? extends E> c) {
213 allocateElements(c.size());
214 addAll(c);
215 }
216
217 // The main insertion and extraction methods are addFirst,
218 // addLast, pollFirst, pollLast. The other methods are defined in
219 // terms of these.
220
221 /**
222 * Inserts the specified element at the front of this deque.
223 *
224 * @param e the element to add
225 * @throws NullPointerException if the specified element is null
226 */
227 public void addFirst(E e) {
228 if (e == null)
229 throw new NullPointerException();
230 elements[head = (head - 1) & (elements.length - 1)] = e;
231 if (head == tail)
232 doubleCapacity();
233 }
234
235 /**
236 * Inserts the specified element at the end of this deque.
237 *
238 * <p>This method is equivalent to {@link #add}.
239 *
240 * @param e the element to add
241 * @throws NullPointerException if the specified element is null
242 */
243 public void addLast(E e) {
244 if (e == null)
245 throw new NullPointerException();
246 elements[tail] = e;
247 if ( (tail = (tail + 1) & (elements.length - 1)) == head)
248 doubleCapacity();
249 }
250
251 /**
252 * Inserts the specified element at the front of this deque.
253 *
254 * @param e the element to add
255 * @return {@code true} (as specified by {@link Deque#offerFirst})
256 * @throws NullPointerException if the specified element is null
257 */
258 public boolean offerFirst(E e) {
259 addFirst(e);
260 return true;
261 }
262
263 /**
264 * Inserts the specified element at the end of this deque.
265 *
266 * @param e the element to add
267 * @return {@code true} (as specified by {@link Deque#offerLast})
268 * @throws NullPointerException if the specified element is null
269 */
270 public boolean offerLast(E e) {
271 addLast(e);
272 return true;
273 }
274
275 /**
276 * @throws NoSuchElementException {@inheritDoc}
277 */
278 public E removeFirst() {
279 E x = pollFirst();
280 if (x == null)
281 throw new NoSuchElementException();
282 return x;
283 }
284
285 /**
286 * @throws NoSuchElementException {@inheritDoc}
287 */
288 public E removeLast() {
289 E x = pollLast();
290 if (x == null)
291 throw new NoSuchElementException();
292 return x;
293 }
294
295 public E pollFirst() {
296 int h = head;
297 @SuppressWarnings("unchecked")
298 E result = (E) elements[h];
299 // Element is null if deque empty
300 if (result == null)
301 return null;
302 elements[h] = null; // Must null out slot
303 head = (h + 1) & (elements.length - 1);
304 return result;
305 }
306
307 public E pollLast() {
308 int t = (tail - 1) & (elements.length - 1);
309 @SuppressWarnings("unchecked")
310 E result = (E) elements[t];
311 if (result == null)
312 return null;
313 elements[t] = null;
314 tail = t;
315 return result;
316 }
317
318 /**
319 * @throws NoSuchElementException {@inheritDoc}
320 */
321 public E getFirst() {
322 @SuppressWarnings("unchecked")
323 E result = (E) elements[head];
324 if (result == null)
325 throw new NoSuchElementException();
326 return result;
327 }
328
329 /**
330 * @throws NoSuchElementException {@inheritDoc}
331 */
332 public E getLast() {
333 @SuppressWarnings("unchecked")
334 E result = (E) elements[(tail - 1) & (elements.length - 1)];
335 if (result == null)
336 throw new NoSuchElementException();
337 return result;
338 }
339
340 @SuppressWarnings("unchecked")
341 public E peekFirst() {
342 // elements[head] is null if deque empty
343 return (E) elements[head];
344 }
345
346 @SuppressWarnings("unchecked")
347 public E peekLast() {
348 return (E) elements[(tail - 1) & (elements.length - 1)];
349 }
350
351 /**
352 * Removes the first occurrence of the specified element in this
353 * deque (when traversing the deque from head to tail).
354 * If the deque does not contain the element, it is unchanged.
355 * More formally, removes the first element {@code e} such that
356 * {@code o.equals(e)} (if such an element exists).
357 * Returns {@code true} if this deque contained the specified element
358 * (or equivalently, if this deque changed as a result of the call).
359 *
360 * @param o element to be removed from this deque, if present
361 * @return {@code true} if the deque contained the specified element
362 */
363 public boolean removeFirstOccurrence(Object o) {
364 if (o == null)
365 return false;
366 int mask = elements.length - 1;
367 int i = head;
368 Object x;
369 while ( (x = elements[i]) != null) {
370 if (o.equals(x)) {
371 delete(i);
372 return true;
373 }
374 i = (i + 1) & mask;
375 }
376 return false;
377 }
378
379 /**
380 * Removes the last occurrence of the specified element in this
381 * deque (when traversing the deque from head to tail).
382 * If the deque does not contain the element, it is unchanged.
383 * More formally, removes the last element {@code e} such that
384 * {@code o.equals(e)} (if such an element exists).
385 * Returns {@code true} if this deque contained the specified element
386 * (or equivalently, if this deque changed as a result of the call).
387 *
388 * @param o element to be removed from this deque, if present
389 * @return {@code true} if the deque contained the specified element
390 */
391 public boolean removeLastOccurrence(Object o) {
392 if (o == null)
393 return false;
394 int mask = elements.length - 1;
395 int i = (tail - 1) & mask;
396 Object x;
397 while ( (x = elements[i]) != null) {
398 if (o.equals(x)) {
399 delete(i);
400 return true;
401 }
402 i = (i - 1) & mask;
403 }
404 return false;
405 }
406
407 // *** Queue methods ***
408
409 /**
410 * Inserts the specified element at the end of this deque.
411 *
412 * <p>This method is equivalent to {@link #addLast}.
413 *
414 * @param e the element to add
415 * @return {@code true} (as specified by {@link Collection#add})
416 * @throws NullPointerException if the specified element is null
417 */
418 public boolean add(E e) {
419 addLast(e);
420 return true;
421 }
422
423 /**
424 * Inserts the specified element at the end of this deque.
425 *
426 * <p>This method is equivalent to {@link #offerLast}.
427 *
428 * @param e the element to add
429 * @return {@code true} (as specified by {@link Queue#offer})
430 * @throws NullPointerException if the specified element is null
431 */
432 public boolean offer(E e) {
433 return offerLast(e);
434 }
435
436 /**
437 * Retrieves and removes the head of the queue represented by this deque.
438 *
439 * This method differs from {@link #poll poll} only in that it throws an
440 * exception if this deque is empty.
441 *
442 * <p>This method is equivalent to {@link #removeFirst}.
443 *
444 * @return the head of the queue represented by this deque
445 * @throws NoSuchElementException {@inheritDoc}
446 */
447 public E remove() {
448 return removeFirst();
449 }
450
451 /**
452 * Retrieves and removes the head of the queue represented by this deque
453 * (in other words, the first element of this deque), or returns
454 * {@code null} if this deque is empty.
455 *
456 * <p>This method is equivalent to {@link #pollFirst}.
457 *
458 * @return the head of the queue represented by this deque, or
459 * {@code null} if this deque is empty
460 */
461 public E poll() {
462 return pollFirst();
463 }
464
465 /**
466 * Retrieves, but does not remove, the head of the queue represented by
467 * this deque. This method differs from {@link #peek peek} only in
468 * that it throws an exception if this deque is empty.
469 *
470 * <p>This method is equivalent to {@link #getFirst}.
471 *
472 * @return the head of the queue represented by this deque
473 * @throws NoSuchElementException {@inheritDoc}
474 */
475 public E element() {
476 return getFirst();
477 }
478
479 /**
480 * Retrieves, but does not remove, the head of the queue represented by
481 * this deque, or returns {@code null} if this deque is empty.
482 *
483 * <p>This method is equivalent to {@link #peekFirst}.
484 *
485 * @return the head of the queue represented by this deque, or
486 * {@code null} if this deque is empty
487 */
488 public E peek() {
489 return peekFirst();
490 }
491
492 // *** Stack methods ***
493
494 /**
495 * Pushes an element onto the stack represented by this deque. In other
496 * words, inserts the element at the front of this deque.
497 *
498 * <p>This method is equivalent to {@link #addFirst}.
499 *
500 * @param e the element to push
501 * @throws NullPointerException if the specified element is null
502 */
503 public void push(E e) {
504 addFirst(e);
505 }
506
507 /**
508 * Pops an element from the stack represented by this deque. In other
509 * words, removes and returns the first element of this deque.
510 *
511 * <p>This method is equivalent to {@link #removeFirst()}.
512 *
513 * @return the element at the front of this deque (which is the top
514 * of the stack represented by this deque)
515 * @throws NoSuchElementException {@inheritDoc}
516 */
517 public E pop() {
518 return removeFirst();
519 }
520
521 private void checkInvariants() {
522 assert elements[tail] == null;
523 assert head == tail ? elements[head] == null :
524 (elements[head] != null &&
525 elements[(tail - 1) & (elements.length - 1)] != null);
526 assert elements[(head - 1) & (elements.length - 1)] == null;
527 }
528
529 /**
530 * Removes the element at the specified position in the elements array,
531 * adjusting head and tail as necessary. This can result in motion of
532 * elements backwards or forwards in the array.
533 *
534 * <p>This method is called delete rather than remove to emphasize
535 * that its semantics differ from those of {@link List#remove(int)}.
536 *
537 * @return true if elements moved backwards
538 */
539 private boolean delete(int i) {
540 checkInvariants();
541 final Object[] elements = this.elements;
542 final int mask = elements.length - 1;
543 final int h = head;
544 final int t = tail;
545 final int front = (i - h) & mask;
546 final int back = (t - i) & mask;
547
548 // Invariant: head <= i < tail mod circularity
549 if (front >= ((t - h) & mask))
550 throw new ConcurrentModificationException();
551
552 // Optimize for least element motion
553 if (front < back) {
554 if (h <= i) {
555 System.arraycopy(elements, h, elements, h + 1, front);
556 } else { // Wrap around
557 System.arraycopy(elements, 0, elements, 1, i);
558 elements[0] = elements[mask];
559 System.arraycopy(elements, h, elements, h + 1, mask - h);
560 }
561 elements[h] = null;
562 head = (h + 1) & mask;
563 return false;
564 } else {
565 if (i < t) { // Copy the null tail as well
566 System.arraycopy(elements, i + 1, elements, i, back);
567 tail = t - 1;
568 } else { // Wrap around
569 System.arraycopy(elements, i + 1, elements, i, mask - i);
570 elements[mask] = elements[0];
571 System.arraycopy(elements, 1, elements, 0, t);
572 tail = (t - 1) & mask;
573 }
574 return true;
575 }
576 }
577
578 // *** Collection Methods ***
579
580 /**
581 * Returns the number of elements in this deque.
582 *
583 * @return the number of elements in this deque
584 */
585 public int size() {
586 return (tail - head) & (elements.length - 1);
587 }
588
589 /**
590 * Returns {@code true} if this deque contains no elements.
591 *
592 * @return {@code true} if this deque contains no elements
593 */
594 public boolean isEmpty() {
595 return head == tail;
596 }
597
598 /**
599 * Returns an iterator over the elements in this deque. The elements
600 * will be ordered from first (head) to last (tail). This is the same
601 * order that elements would be dequeued (via successive calls to
602 * {@link #remove} or popped (via successive calls to {@link #pop}).
603 *
604 * @return an iterator over the elements in this deque
605 */
606 public Iterator<E> iterator() {
607 return new DeqIterator();
608 }
609
610 public Iterator<E> descendingIterator() {
611 return new DescendingIterator();
612 }
613
614 private class DeqIterator implements Iterator<E> {
615 /**
616 * Index of element to be returned by subsequent call to next.
617 */
618 private int cursor = head;
619
620 /**
621 * Tail recorded at construction (also in remove), to stop
622 * iterator and also to check for comodification.
623 */
624 private int fence = tail;
625
626 /**
627 * Index of element returned by most recent call to next.
628 * Reset to -1 if element is deleted by a call to remove.
629 */
630 private int lastRet = -1;
631
632 public boolean hasNext() {
633 return cursor != fence;
634 }
635
636 public E next() {
637 if (cursor == fence)
638 throw new NoSuchElementException();
639 @SuppressWarnings("unchecked")
640 E result = (E) elements[cursor];
641 // This check doesn't catch all possible comodifications,
642 // but does catch the ones that corrupt traversal
643 if (tail != fence || result == null)
644 throw new ConcurrentModificationException();
645 lastRet = cursor;
646 cursor = (cursor + 1) & (elements.length - 1);
647 return result;
648 }
649
650 public void remove() {
651 if (lastRet < 0)
652 throw new IllegalStateException();
653 if (delete(lastRet)) { // if left-shifted, undo increment in next()
654 cursor = (cursor - 1) & (elements.length - 1);
655 fence = tail;
656 }
657 lastRet = -1;
658 }
659 }
660
661 private class DescendingIterator implements Iterator<E> {
662 /*
663 * This class is nearly a mirror-image of DeqIterator, using
664 * tail instead of head for initial cursor, and head instead of
665 * tail for fence.
666 */
667 private int cursor = tail;
668 private int fence = head;
669 private int lastRet = -1;
670
671 public boolean hasNext() {
672 return cursor != fence;
673 }
674
675 public E next() {
676 if (cursor == fence)
677 throw new NoSuchElementException();
678 cursor = (cursor - 1) & (elements.length - 1);
679 @SuppressWarnings("unchecked")
680 E result = (E) elements[cursor];
681 if (head != fence || result == null)
682 throw new ConcurrentModificationException();
683 lastRet = cursor;
684 return result;
685 }
686
687 public void remove() {
688 if (lastRet < 0)
689 throw new IllegalStateException();
690 if (!delete(lastRet)) {
691 cursor = (cursor + 1) & (elements.length - 1);
692 fence = head;
693 }
694 lastRet = -1;
695 }
696 }
697
698 /**
699 * Returns {@code true} if this deque contains the specified element.
700 * More formally, returns {@code true} if and only if this deque contains
701 * at least one element {@code e} such that {@code o.equals(e)}.
702 *
703 * @param o object to be checked for containment in this deque
704 * @return {@code true} if this deque contains the specified element
705 */
706 public boolean contains(Object o) {
707 if (o == null)
708 return false;
709 int mask = elements.length - 1;
710 int i = head;
711 Object x;
712 while ( (x = elements[i]) != null) {
713 if (o.equals(x))
714 return true;
715 i = (i + 1) & mask;
716 }
717 return false;
718 }
719
720 /**
721 * Removes a single instance of the specified element from this deque.
722 * If the deque does not contain the element, it is unchanged.
723 * More formally, removes the first element {@code e} such that
724 * {@code o.equals(e)} (if such an element exists).
725 * Returns {@code true} if this deque contained the specified element
726 * (or equivalently, if this deque changed as a result of the call).
727 *
728 * <p>This method is equivalent to {@link #removeFirstOccurrence}.
729 *
730 * @param o element to be removed from this deque, if present
731 * @return {@code true} if this deque contained the specified element
732 */
733 public boolean remove(Object o) {
734 return removeFirstOccurrence(o);
735 }
736
737 /**
738 * Removes all of the elements from this deque.
739 * The deque will be empty after this call returns.
740 */
741 public void clear() {
742 int h = head;
743 int t = tail;
744 if (h != t) { // clear all cells
745 head = tail = 0;
746 int i = h;
747 int mask = elements.length - 1;
748 do {
749 elements[i] = null;
750 i = (i + 1) & mask;
751 } while (i != t);
752 }
753 }
754
755 /**
756 * Returns an array containing all of the elements in this deque
757 * in proper sequence (from first to last element).
758 *
759 * <p>The returned array will be "safe" in that no references to it are
760 * maintained by this deque. (In other words, this method must allocate
761 * a new array). The caller is thus free to modify the returned array.
762 *
763 * <p>This method acts as bridge between array-based and collection-based
764 * APIs.
765 *
766 * @return an array containing all of the elements in this deque
767 */
768 public Object[] toArray() {
769 return copyElements(new Object[size()]);
770 }
771
772 /**
773 * Returns an array containing all of the elements in this deque in
774 * proper sequence (from first to last element); the runtime type of the
775 * returned array is that of the specified array. If the deque fits in
776 * the specified array, it is returned therein. Otherwise, a new array
777 * is allocated with the runtime type of the specified array and the
778 * size of this deque.
779 *
780 * <p>If this deque fits in the specified array with room to spare
781 * (i.e., the array has more elements than this deque), the element in
782 * the array immediately following the end of the deque is set to
783 * {@code null}.
784 *
785 * <p>Like the {@link #toArray()} method, this method acts as bridge between
786 * array-based and collection-based APIs. Further, this method allows
787 * precise control over the runtime type of the output array, and may,
788 * under certain circumstances, be used to save allocation costs.
789 *
790 * <p>Suppose {@code x} is a deque known to contain only strings.
791 * The following code can be used to dump the deque into a newly
792 * allocated array of {@code String}:
793 *
794 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
795 *
796 * Note that {@code toArray(new Object[0])} is identical in function to
797 * {@code toArray()}.
798 *
799 * @param a the array into which the elements of the deque are to
800 * be stored, if it is big enough; otherwise, a new array of the
801 * same runtime type is allocated for this purpose
802 * @return an array containing all of the elements in this deque
803 * @throws ArrayStoreException if the runtime type of the specified array
804 * is not a supertype of the runtime type of every element in
805 * this deque
806 * @throws NullPointerException if the specified array is null
807 */
808 @SuppressWarnings("unchecked")
809 public <T> T[] toArray(T[] a) {
810 int size = size();
811 if (a.length < size)
812 a = (T[])java.lang.reflect.Array.newInstance(
813 a.getClass().getComponentType(), size);
814 copyElements(a);
815 if (a.length > size)
816 a[size] = null;
817 return a;
818 }
819
820 // *** Object methods ***
821
822 /**
823 * Returns a copy of this deque.
824 *
825 * @return a copy of this deque
826 */
827 public ArrayDeque<E> clone() {
828 try {
829 @SuppressWarnings("unchecked")
830 ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
831 result.elements = Arrays.copyOf(elements, elements.length);
832 return result;
833 } catch (CloneNotSupportedException e) {
834 throw new AssertionError();
835 }
836 }
837
838 private static final long serialVersionUID = 2340985798034038923L;
839
840 /**
841 * Saves this deque to a stream (that is, serializes it).
842 *
843 * @serialData The current size ({@code int}) of the deque,
844 * followed by all of its elements (each an object reference) in
845 * first-to-last order.
846 */
847 private void writeObject(java.io.ObjectOutputStream s)
848 throws java.io.IOException {
849 s.defaultWriteObject();
850
851 // Write out size
852 s.writeInt(size());
853
854 // Write out elements in order.
855 int mask = elements.length - 1;
856 for (int i = head; i != tail; i = (i + 1) & mask)
857 s.writeObject(elements[i]);
858 }
859
860 /**
861 * Reconstitutes this deque from a stream (that is, deserializes it).
862 */
863 private void readObject(java.io.ObjectInputStream s)
864 throws java.io.IOException, ClassNotFoundException {
865 s.defaultReadObject();
866
867 // Read in size and allocate array
868 int size = s.readInt();
869 allocateElements(size);
870 head = 0;
871 tail = size;
872
873 // Read in all elements in the proper order.
874 for (int i = 0; i < size; i++)
875 elements[i] = s.readObject();
876 }
877
878 public Stream<E> stream() {
879 int flags = Streams.STREAM_IS_ORDERED | Streams.STREAM_IS_SIZED;
880 return Streams.stream
881 (() -> new DeqSpliterator<E>(this, head, tail), flags);
882 }
883 public Stream<E> parallelStream() {
884 int flags = Streams.STREAM_IS_ORDERED | Streams.STREAM_IS_SIZED;
885 return Streams.parallelStream
886 (() -> new DeqSpliterator<E>(this, head, tail), flags);
887 }
888
889
890 static final class DeqSpliterator<E> implements Spliterator<E>, Iterator<E> {
891 private final ArrayDeque<E> deq;
892 private final Object[] array;
893 private final int fence; // initially tail
894 private int index; // current index, modified on traverse/split
895
896 /** Create new spliterator covering the given array and range */
897 DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
898 this.deq = deq; this.array = deq.elements;
899 this.index = origin; this.fence = fence;
900 }
901
902 public DeqSpliterator<E> trySplit() {
903 int n = array.length;
904 int h = index, t = fence;
905 if (h != t && ((h + 1) & (n - 1)) != t) {
906 if (h > t)
907 t += n;
908 int m = ((h + t) >>> 1) & (n - 1);
909 return new DeqSpliterator<E>(deq, h, index = m);
910 }
911 return null;
912 }
913
914 @SuppressWarnings("unchecked")
915 public void forEach(Block<? super E> block) {
916 if (block == null)
917 throw new NullPointerException();
918 Object[] a = array;
919 if (a != deq.elements)
920 throw new ConcurrentModificationException();
921 int m = a.length - 1, f = fence, i = index;
922 index = f;
923 while (i != f) {
924 Object e = a[i];
925 if (e == null)
926 throw new ConcurrentModificationException();
927 block.accept((E)e);
928 i = (i + 1) & m;
929 }
930 }
931
932 @SuppressWarnings("unchecked")
933 public boolean tryAdvance(Block<? super E> block) {
934 if (block == null)
935 throw new NullPointerException();
936 Object[] a = array;
937 if (a != deq.elements)
938 throw new ConcurrentModificationException();
939 int m = a.length - 1, i = index;
940 if (i != fence) {
941 Object e = a[i];
942 if (e == null)
943 throw new ConcurrentModificationException();
944 block.accept((E)e);
945 index = (i + 1) & m;
946 return true;
947 }
948 return false;
949 }
950
951 // Iterator support
952 public Iterator<E> iterator() {
953 return this;
954 }
955
956 public boolean hasNext() {
957 return index >= 0 && index != fence;
958 }
959
960 @SuppressWarnings("unchecked")
961 public E next() {
962 if (index < 0 || index == fence)
963 throw new NoSuchElementException();
964 Object[] a = array;
965 if (a != deq.elements)
966 throw new ConcurrentModificationException();
967 Object e = a[index];
968 if (e == null)
969 throw new ConcurrentModificationException();
970 index = (index + 1) & (a.length - 1);
971 return (E) e;
972 }
973
974 public void remove() { throw new UnsupportedOperationException(); }
975
976 // Other spliterator methods
977 public long estimateSize() {
978 int n = fence - index;
979 if (n < 0)
980 n += array.length;
981 return (long)n;
982 }
983 public boolean hasExactSize() { return true; }
984 public boolean hasExactSplits() { return true; }
985 }
986
987 }