ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
Revision: 1.54
Committed: Wed Mar 27 23:09:34 2013 UTC (11 years, 1 month ago) by dl
Branch: MAIN
Changes since 1.53: +1 -1 lines
Log Message:
conform to updated lambda Spliterator

File Contents

# Content
1 /*
2 * Written by Josh Bloch of Google Inc. and released to the public domain,
3 * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4 */
5
6 package java.util;
7 import java.io.Serializable;
8 import java.util.function.Consumer;
9 import java.util.stream.Stream;
10 import java.util.stream.Streams;
11
12 /**
13 * Resizable-array implementation of the {@link Deque} interface. Array
14 * deques have no capacity restrictions; they grow as necessary to support
15 * usage. They are not thread-safe; in the absence of external
16 * synchronization, they do not support concurrent access by multiple threads.
17 * Null elements are prohibited. This class is likely to be faster than
18 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
19 * when used as a queue.
20 *
21 * <p>Most {@code ArrayDeque} operations run in amortized constant time.
22 * Exceptions include
23 * {@link #remove(Object) remove},
24 * {@link #removeFirstOccurrence removeFirstOccurrence},
25 * {@link #removeLastOccurrence removeLastOccurrence},
26 * {@link #contains contains},
27 * {@link #iterator iterator.remove()},
28 * and the bulk operations, all of which run in linear time.
29 *
30 * <p>The iterators returned by this class's {@link #iterator() iterator}
31 * method are <em>fail-fast</em>: If the deque is modified at any time after
32 * the iterator is created, in any way except through the iterator's own
33 * {@code remove} method, the iterator will generally throw a {@link
34 * ConcurrentModificationException}. Thus, in the face of concurrent
35 * modification, the iterator fails quickly and cleanly, rather than risking
36 * arbitrary, non-deterministic behavior at an undetermined time in the
37 * future.
38 *
39 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
40 * as it is, generally speaking, impossible to make any hard guarantees in the
41 * presence of unsynchronized concurrent modification. Fail-fast iterators
42 * throw {@code ConcurrentModificationException} on a best-effort basis.
43 * Therefore, it would be wrong to write a program that depended on this
44 * exception for its correctness: <i>the fail-fast behavior of iterators
45 * should be used only to detect bugs.</i>
46 *
47 * <p>This class and its iterator implement all of the
48 * <em>optional</em> methods of the {@link Collection} and {@link
49 * Iterator} interfaces.
50 *
51 * <p>This class is a member of the
52 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
53 * Java Collections Framework</a>.
54 *
55 * @author Josh Bloch and Doug Lea
56 * @since 1.6
57 * @param <E> the type of elements held in this collection
58 */
59 public class ArrayDeque<E> extends AbstractCollection<E>
60 implements Deque<E>, Cloneable, Serializable
61 {
62 /**
63 * The array in which the elements of the deque are stored.
64 * The capacity of the deque is the length of this array, which is
65 * always a power of two. The array is never allowed to become
66 * full, except transiently within an addX method where it is
67 * resized (see doubleCapacity) immediately upon becoming full,
68 * thus avoiding head and tail wrapping around to equal each
69 * other. We also guarantee that all array cells not holding
70 * deque elements are always null.
71 */
72 transient Object[] elements; // non-private to simplify nested class access
73
74 /**
75 * The index of the element at the head of the deque (which is the
76 * element that would be removed by remove() or pop()); or an
77 * arbitrary number equal to tail if the deque is empty.
78 */
79 transient int head;
80
81 /**
82 * The index at which the next element would be added to the tail
83 * of the deque (via addLast(E), add(E), or push(E)).
84 */
85 transient int tail;
86
87 /**
88 * The minimum capacity that we'll use for a newly created deque.
89 * Must be a power of 2.
90 */
91 private static final int MIN_INITIAL_CAPACITY = 8;
92
93 // ****** Array allocation and resizing utilities ******
94
95 /**
96 * Allocates empty array to hold the given number of elements.
97 *
98 * @param numElements the number of elements to hold
99 */
100 private void allocateElements(int numElements) {
101 int initialCapacity = MIN_INITIAL_CAPACITY;
102 // Find the best power of two to hold elements.
103 // Tests "<=" because arrays aren't kept full.
104 if (numElements >= initialCapacity) {
105 initialCapacity = numElements;
106 initialCapacity |= (initialCapacity >>> 1);
107 initialCapacity |= (initialCapacity >>> 2);
108 initialCapacity |= (initialCapacity >>> 4);
109 initialCapacity |= (initialCapacity >>> 8);
110 initialCapacity |= (initialCapacity >>> 16);
111 initialCapacity++;
112
113 if (initialCapacity < 0) // Too many elements, must back off
114 initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
115 }
116 elements = new Object[initialCapacity];
117 }
118
119 /**
120 * Doubles the capacity of this deque. Call only when full, i.e.,
121 * when head and tail have wrapped around to become equal.
122 */
123 private void doubleCapacity() {
124 assert head == tail;
125 int p = head;
126 int n = elements.length;
127 int r = n - p; // number of elements to the right of p
128 int newCapacity = n << 1;
129 if (newCapacity < 0)
130 throw new IllegalStateException("Sorry, deque too big");
131 Object[] a = new Object[newCapacity];
132 System.arraycopy(elements, p, a, 0, r);
133 System.arraycopy(elements, 0, a, r, p);
134 elements = a;
135 head = 0;
136 tail = n;
137 }
138
139 /**
140 * Constructs an empty array deque with an initial capacity
141 * sufficient to hold 16 elements.
142 */
143 public ArrayDeque() {
144 elements = new Object[16];
145 }
146
147 /**
148 * Constructs an empty array deque with an initial capacity
149 * sufficient to hold the specified number of elements.
150 *
151 * @param numElements lower bound on initial capacity of the deque
152 */
153 public ArrayDeque(int numElements) {
154 allocateElements(numElements);
155 }
156
157 /**
158 * Constructs a deque containing the elements of the specified
159 * collection, in the order they are returned by the collection's
160 * iterator. (The first element returned by the collection's
161 * iterator becomes the first element, or <i>front</i> of the
162 * deque.)
163 *
164 * @param c the collection whose elements are to be placed into the deque
165 * @throws NullPointerException if the specified collection is null
166 */
167 public ArrayDeque(Collection<? extends E> c) {
168 allocateElements(c.size());
169 addAll(c);
170 }
171
172 // The main insertion and extraction methods are addFirst,
173 // addLast, pollFirst, pollLast. The other methods are defined in
174 // terms of these.
175
176 /**
177 * Inserts the specified element at the front of this deque.
178 *
179 * @param e the element to add
180 * @throws NullPointerException if the specified element is null
181 */
182 public void addFirst(E e) {
183 if (e == null)
184 throw new NullPointerException();
185 elements[head = (head - 1) & (elements.length - 1)] = e;
186 if (head == tail)
187 doubleCapacity();
188 }
189
190 /**
191 * Inserts the specified element at the end of this deque.
192 *
193 * <p>This method is equivalent to {@link #add}.
194 *
195 * @param e the element to add
196 * @throws NullPointerException if the specified element is null
197 */
198 public void addLast(E e) {
199 if (e == null)
200 throw new NullPointerException();
201 elements[tail] = e;
202 if ( (tail = (tail + 1) & (elements.length - 1)) == head)
203 doubleCapacity();
204 }
205
206 /**
207 * Inserts the specified element at the front of this deque.
208 *
209 * @param e the element to add
210 * @return {@code true} (as specified by {@link Deque#offerFirst})
211 * @throws NullPointerException if the specified element is null
212 */
213 public boolean offerFirst(E e) {
214 addFirst(e);
215 return true;
216 }
217
218 /**
219 * Inserts the specified element at the end of this deque.
220 *
221 * @param e the element to add
222 * @return {@code true} (as specified by {@link Deque#offerLast})
223 * @throws NullPointerException if the specified element is null
224 */
225 public boolean offerLast(E e) {
226 addLast(e);
227 return true;
228 }
229
230 /**
231 * @throws NoSuchElementException {@inheritDoc}
232 */
233 public E removeFirst() {
234 E x = pollFirst();
235 if (x == null)
236 throw new NoSuchElementException();
237 return x;
238 }
239
240 /**
241 * @throws NoSuchElementException {@inheritDoc}
242 */
243 public E removeLast() {
244 E x = pollLast();
245 if (x == null)
246 throw new NoSuchElementException();
247 return x;
248 }
249
250 public E pollFirst() {
251 int h = head;
252 @SuppressWarnings("unchecked")
253 E result = (E) elements[h];
254 // Element is null if deque empty
255 if (result == null)
256 return null;
257 elements[h] = null; // Must null out slot
258 head = (h + 1) & (elements.length - 1);
259 return result;
260 }
261
262 public E pollLast() {
263 int t = (tail - 1) & (elements.length - 1);
264 @SuppressWarnings("unchecked")
265 E result = (E) elements[t];
266 if (result == null)
267 return null;
268 elements[t] = null;
269 tail = t;
270 return result;
271 }
272
273 /**
274 * @throws NoSuchElementException {@inheritDoc}
275 */
276 public E getFirst() {
277 @SuppressWarnings("unchecked")
278 E result = (E) elements[head];
279 if (result == null)
280 throw new NoSuchElementException();
281 return result;
282 }
283
284 /**
285 * @throws NoSuchElementException {@inheritDoc}
286 */
287 public E getLast() {
288 @SuppressWarnings("unchecked")
289 E result = (E) elements[(tail - 1) & (elements.length - 1)];
290 if (result == null)
291 throw new NoSuchElementException();
292 return result;
293 }
294
295 @SuppressWarnings("unchecked")
296 public E peekFirst() {
297 // elements[head] is null if deque empty
298 return (E) elements[head];
299 }
300
301 @SuppressWarnings("unchecked")
302 public E peekLast() {
303 return (E) elements[(tail - 1) & (elements.length - 1)];
304 }
305
306 /**
307 * Removes the first occurrence of the specified element in this
308 * deque (when traversing the deque from head to tail).
309 * If the deque does not contain the element, it is unchanged.
310 * More formally, removes the first element {@code e} such that
311 * {@code o.equals(e)} (if such an element exists).
312 * Returns {@code true} if this deque contained the specified element
313 * (or equivalently, if this deque changed as a result of the call).
314 *
315 * @param o element to be removed from this deque, if present
316 * @return {@code true} if the deque contained the specified element
317 */
318 public boolean removeFirstOccurrence(Object o) {
319 if (o == null)
320 return false;
321 int mask = elements.length - 1;
322 int i = head;
323 Object x;
324 while ( (x = elements[i]) != null) {
325 if (o.equals(x)) {
326 delete(i);
327 return true;
328 }
329 i = (i + 1) & mask;
330 }
331 return false;
332 }
333
334 /**
335 * Removes the last occurrence of the specified element in this
336 * deque (when traversing the deque from head to tail).
337 * If the deque does not contain the element, it is unchanged.
338 * More formally, removes the last element {@code e} such that
339 * {@code o.equals(e)} (if such an element exists).
340 * Returns {@code true} if this deque contained the specified element
341 * (or equivalently, if this deque changed as a result of the call).
342 *
343 * @param o element to be removed from this deque, if present
344 * @return {@code true} if the deque contained the specified element
345 */
346 public boolean removeLastOccurrence(Object o) {
347 if (o == null)
348 return false;
349 int mask = elements.length - 1;
350 int i = (tail - 1) & mask;
351 Object x;
352 while ( (x = elements[i]) != null) {
353 if (o.equals(x)) {
354 delete(i);
355 return true;
356 }
357 i = (i - 1) & mask;
358 }
359 return false;
360 }
361
362 // *** Queue methods ***
363
364 /**
365 * Inserts the specified element at the end of this deque.
366 *
367 * <p>This method is equivalent to {@link #addLast}.
368 *
369 * @param e the element to add
370 * @return {@code true} (as specified by {@link Collection#add})
371 * @throws NullPointerException if the specified element is null
372 */
373 public boolean add(E e) {
374 addLast(e);
375 return true;
376 }
377
378 /**
379 * Inserts the specified element at the end of this deque.
380 *
381 * <p>This method is equivalent to {@link #offerLast}.
382 *
383 * @param e the element to add
384 * @return {@code true} (as specified by {@link Queue#offer})
385 * @throws NullPointerException if the specified element is null
386 */
387 public boolean offer(E e) {
388 return offerLast(e);
389 }
390
391 /**
392 * Retrieves and removes the head of the queue represented by this deque.
393 *
394 * This method differs from {@link #poll poll} only in that it throws an
395 * exception if this deque is empty.
396 *
397 * <p>This method is equivalent to {@link #removeFirst}.
398 *
399 * @return the head of the queue represented by this deque
400 * @throws NoSuchElementException {@inheritDoc}
401 */
402 public E remove() {
403 return removeFirst();
404 }
405
406 /**
407 * Retrieves and removes the head of the queue represented by this deque
408 * (in other words, the first element of this deque), or returns
409 * {@code null} if this deque is empty.
410 *
411 * <p>This method is equivalent to {@link #pollFirst}.
412 *
413 * @return the head of the queue represented by this deque, or
414 * {@code null} if this deque is empty
415 */
416 public E poll() {
417 return pollFirst();
418 }
419
420 /**
421 * Retrieves, but does not remove, the head of the queue represented by
422 * this deque. This method differs from {@link #peek peek} only in
423 * that it throws an exception if this deque is empty.
424 *
425 * <p>This method is equivalent to {@link #getFirst}.
426 *
427 * @return the head of the queue represented by this deque
428 * @throws NoSuchElementException {@inheritDoc}
429 */
430 public E element() {
431 return getFirst();
432 }
433
434 /**
435 * Retrieves, but does not remove, the head of the queue represented by
436 * this deque, or returns {@code null} if this deque is empty.
437 *
438 * <p>This method is equivalent to {@link #peekFirst}.
439 *
440 * @return the head of the queue represented by this deque, or
441 * {@code null} if this deque is empty
442 */
443 public E peek() {
444 return peekFirst();
445 }
446
447 // *** Stack methods ***
448
449 /**
450 * Pushes an element onto the stack represented by this deque. In other
451 * words, inserts the element at the front of this deque.
452 *
453 * <p>This method is equivalent to {@link #addFirst}.
454 *
455 * @param e the element to push
456 * @throws NullPointerException if the specified element is null
457 */
458 public void push(E e) {
459 addFirst(e);
460 }
461
462 /**
463 * Pops an element from the stack represented by this deque. In other
464 * words, removes and returns the first element of this deque.
465 *
466 * <p>This method is equivalent to {@link #removeFirst()}.
467 *
468 * @return the element at the front of this deque (which is the top
469 * of the stack represented by this deque)
470 * @throws NoSuchElementException {@inheritDoc}
471 */
472 public E pop() {
473 return removeFirst();
474 }
475
476 private void checkInvariants() {
477 assert elements[tail] == null;
478 assert head == tail ? elements[head] == null :
479 (elements[head] != null &&
480 elements[(tail - 1) & (elements.length - 1)] != null);
481 assert elements[(head - 1) & (elements.length - 1)] == null;
482 }
483
484 /**
485 * Removes the element at the specified position in the elements array,
486 * adjusting head and tail as necessary. This can result in motion of
487 * elements backwards or forwards in the array.
488 *
489 * <p>This method is called delete rather than remove to emphasize
490 * that its semantics differ from those of {@link List#remove(int)}.
491 *
492 * @return true if elements moved backwards
493 */
494 private boolean delete(int i) {
495 checkInvariants();
496 final Object[] elements = this.elements;
497 final int mask = elements.length - 1;
498 final int h = head;
499 final int t = tail;
500 final int front = (i - h) & mask;
501 final int back = (t - i) & mask;
502
503 // Invariant: head <= i < tail mod circularity
504 if (front >= ((t - h) & mask))
505 throw new ConcurrentModificationException();
506
507 // Optimize for least element motion
508 if (front < back) {
509 if (h <= i) {
510 System.arraycopy(elements, h, elements, h + 1, front);
511 } else { // Wrap around
512 System.arraycopy(elements, 0, elements, 1, i);
513 elements[0] = elements[mask];
514 System.arraycopy(elements, h, elements, h + 1, mask - h);
515 }
516 elements[h] = null;
517 head = (h + 1) & mask;
518 return false;
519 } else {
520 if (i < t) { // Copy the null tail as well
521 System.arraycopy(elements, i + 1, elements, i, back);
522 tail = t - 1;
523 } else { // Wrap around
524 System.arraycopy(elements, i + 1, elements, i, mask - i);
525 elements[mask] = elements[0];
526 System.arraycopy(elements, 1, elements, 0, t);
527 tail = (t - 1) & mask;
528 }
529 return true;
530 }
531 }
532
533 // *** Collection Methods ***
534
535 /**
536 * Returns the number of elements in this deque.
537 *
538 * @return the number of elements in this deque
539 */
540 public int size() {
541 return (tail - head) & (elements.length - 1);
542 }
543
544 /**
545 * Returns {@code true} if this deque contains no elements.
546 *
547 * @return {@code true} if this deque contains no elements
548 */
549 public boolean isEmpty() {
550 return head == tail;
551 }
552
553 /**
554 * Returns an iterator over the elements in this deque. The elements
555 * will be ordered from first (head) to last (tail). This is the same
556 * order that elements would be dequeued (via successive calls to
557 * {@link #remove} or popped (via successive calls to {@link #pop}).
558 *
559 * @return an iterator over the elements in this deque
560 */
561 public Iterator<E> iterator() {
562 return new DeqIterator();
563 }
564
565 public Iterator<E> descendingIterator() {
566 return new DescendingIterator();
567 }
568
569 private class DeqIterator implements Iterator<E> {
570 /**
571 * Index of element to be returned by subsequent call to next.
572 */
573 private int cursor = head;
574
575 /**
576 * Tail recorded at construction (also in remove), to stop
577 * iterator and also to check for comodification.
578 */
579 private int fence = tail;
580
581 /**
582 * Index of element returned by most recent call to next.
583 * Reset to -1 if element is deleted by a call to remove.
584 */
585 private int lastRet = -1;
586
587 public boolean hasNext() {
588 return cursor != fence;
589 }
590
591 public E next() {
592 if (cursor == fence)
593 throw new NoSuchElementException();
594 @SuppressWarnings("unchecked")
595 E result = (E) elements[cursor];
596 // This check doesn't catch all possible comodifications,
597 // but does catch the ones that corrupt traversal
598 if (tail != fence || result == null)
599 throw new ConcurrentModificationException();
600 lastRet = cursor;
601 cursor = (cursor + 1) & (elements.length - 1);
602 return result;
603 }
604
605 public void remove() {
606 if (lastRet < 0)
607 throw new IllegalStateException();
608 if (delete(lastRet)) { // if left-shifted, undo increment in next()
609 cursor = (cursor - 1) & (elements.length - 1);
610 fence = tail;
611 }
612 lastRet = -1;
613 }
614 }
615
616 /**
617 * This class is nearly a mirror-image of DeqIterator, using tail
618 * instead of head for initial cursor, and head instead of tail
619 * for fence.
620 */
621 private class DescendingIterator implements Iterator<E> {
622 private int cursor = tail;
623 private int fence = head;
624 private int lastRet = -1;
625
626 public boolean hasNext() {
627 return cursor != fence;
628 }
629
630 public E next() {
631 if (cursor == fence)
632 throw new NoSuchElementException();
633 cursor = (cursor - 1) & (elements.length - 1);
634 @SuppressWarnings("unchecked")
635 E result = (E) elements[cursor];
636 if (head != fence || result == null)
637 throw new ConcurrentModificationException();
638 lastRet = cursor;
639 return result;
640 }
641
642 public void remove() {
643 if (lastRet < 0)
644 throw new IllegalStateException();
645 if (!delete(lastRet)) {
646 cursor = (cursor + 1) & (elements.length - 1);
647 fence = head;
648 }
649 lastRet = -1;
650 }
651 }
652
653 /**
654 * Returns {@code true} if this deque contains the specified element.
655 * More formally, returns {@code true} if and only if this deque contains
656 * at least one element {@code e} such that {@code o.equals(e)}.
657 *
658 * @param o object to be checked for containment in this deque
659 * @return {@code true} if this deque contains the specified element
660 */
661 public boolean contains(Object o) {
662 if (o == null)
663 return false;
664 int mask = elements.length - 1;
665 int i = head;
666 Object x;
667 while ( (x = elements[i]) != null) {
668 if (o.equals(x))
669 return true;
670 i = (i + 1) & mask;
671 }
672 return false;
673 }
674
675 /**
676 * Removes a single instance of the specified element from this deque.
677 * If the deque does not contain the element, it is unchanged.
678 * More formally, removes the first element {@code e} such that
679 * {@code o.equals(e)} (if such an element exists).
680 * Returns {@code true} if this deque contained the specified element
681 * (or equivalently, if this deque changed as a result of the call).
682 *
683 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
684 *
685 * @param o element to be removed from this deque, if present
686 * @return {@code true} if this deque contained the specified element
687 */
688 public boolean remove(Object o) {
689 return removeFirstOccurrence(o);
690 }
691
692 /**
693 * Removes all of the elements from this deque.
694 * The deque will be empty after this call returns.
695 */
696 public void clear() {
697 int h = head;
698 int t = tail;
699 if (h != t) { // clear all cells
700 head = tail = 0;
701 int i = h;
702 int mask = elements.length - 1;
703 do {
704 elements[i] = null;
705 i = (i + 1) & mask;
706 } while (i != t);
707 }
708 }
709
710 /**
711 * Returns an array containing all of the elements in this deque
712 * in proper sequence (from first to last element).
713 *
714 * <p>The returned array will be "safe" in that no references to it are
715 * maintained by this deque. (In other words, this method must allocate
716 * a new array). The caller is thus free to modify the returned array.
717 *
718 * <p>This method acts as bridge between array-based and collection-based
719 * APIs.
720 *
721 * @return an array containing all of the elements in this deque
722 */
723 public Object[] toArray() {
724 final int head = this.head;
725 final int tail = this.tail;
726 boolean wrap = (tail < head);
727 int end = wrap ? tail + elements.length : tail;
728 Object[] a = Arrays.copyOfRange(elements, head, end);
729 if (wrap)
730 System.arraycopy(elements, 0, a, elements.length - head, tail);
731 return a;
732 }
733
734 /**
735 * Returns an array containing all of the elements in this deque in
736 * proper sequence (from first to last element); the runtime type of the
737 * returned array is that of the specified array. If the deque fits in
738 * the specified array, it is returned therein. Otherwise, a new array
739 * is allocated with the runtime type of the specified array and the
740 * size of this deque.
741 *
742 * <p>If this deque fits in the specified array with room to spare
743 * (i.e., the array has more elements than this deque), the element in
744 * the array immediately following the end of the deque is set to
745 * {@code null}.
746 *
747 * <p>Like the {@link #toArray()} method, this method acts as bridge between
748 * array-based and collection-based APIs. Further, this method allows
749 * precise control over the runtime type of the output array, and may,
750 * under certain circumstances, be used to save allocation costs.
751 *
752 * <p>Suppose {@code x} is a deque known to contain only strings.
753 * The following code can be used to dump the deque into a newly
754 * allocated array of {@code String}:
755 *
756 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
757 *
758 * Note that {@code toArray(new Object[0])} is identical in function to
759 * {@code toArray()}.
760 *
761 * @param a the array into which the elements of the deque are to
762 * be stored, if it is big enough; otherwise, a new array of the
763 * same runtime type is allocated for this purpose
764 * @return an array containing all of the elements in this deque
765 * @throws ArrayStoreException if the runtime type of the specified array
766 * is not a supertype of the runtime type of every element in
767 * this deque
768 * @throws NullPointerException if the specified array is null
769 */
770 @SuppressWarnings("unchecked")
771 public <T> T[] toArray(T[] a) {
772 final int head = this.head;
773 final int tail = this.tail;
774 boolean wrap = (tail < head);
775 int size = (tail - head) + (wrap ? elements.length : 0);
776 int firstLeg = size - (wrap ? tail : 0);
777 int len = a.length;
778 if (size > len) {
779 a = (T[]) Arrays.copyOfRange(elements, head, head + size,
780 a.getClass());
781 } else {
782 System.arraycopy(elements, head, a, 0, firstLeg);
783 if (size < len)
784 a[size] = null;
785 }
786 if (wrap)
787 System.arraycopy(elements, 0, a, firstLeg, tail);
788 return a;
789 }
790
791 // *** Object methods ***
792
793 /**
794 * Returns a copy of this deque.
795 *
796 * @return a copy of this deque
797 */
798 public ArrayDeque<E> clone() {
799 try {
800 @SuppressWarnings("unchecked")
801 ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
802 result.elements = Arrays.copyOf(elements, elements.length);
803 return result;
804 } catch (CloneNotSupportedException e) {
805 throw new AssertionError();
806 }
807 }
808
809 private static final long serialVersionUID = 2340985798034038923L;
810
811 /**
812 * Saves this deque to a stream (that is, serializes it).
813 *
814 * @serialData The current size ({@code int}) of the deque,
815 * followed by all of its elements (each an object reference) in
816 * first-to-last order.
817 */
818 private void writeObject(java.io.ObjectOutputStream s)
819 throws java.io.IOException {
820 s.defaultWriteObject();
821
822 // Write out size
823 s.writeInt(size());
824
825 // Write out elements in order.
826 int mask = elements.length - 1;
827 for (int i = head; i != tail; i = (i + 1) & mask)
828 s.writeObject(elements[i]);
829 }
830
831 /**
832 * Reconstitutes this deque from a stream (that is, deserializes it).
833 */
834 private void readObject(java.io.ObjectInputStream s)
835 throws java.io.IOException, ClassNotFoundException {
836 s.defaultReadObject();
837
838 // Read in size and allocate array
839 int size = s.readInt();
840 allocateElements(size);
841 head = 0;
842 tail = size;
843
844 // Read in all elements in the proper order.
845 for (int i = 0; i < size; i++)
846 elements[i] = s.readObject();
847 }
848
849 public Spliterator<E> spliterator() {
850 return new DeqSpliterator<E>(this, -1, -1);
851 }
852
853 static final class DeqSpliterator<E> implements Spliterator<E> {
854 private final ArrayDeque<E> deq;
855 private int fence; // -1 until first use
856 private int index; // current index, modified on traverse/split
857
858 /** Creates new spliterator covering the given array and range */
859 DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
860 this.deq = deq;
861 this.index = origin;
862 this.fence = fence;
863 }
864
865 private int getFence() { // force initialization
866 int t;
867 if ((t = fence) < 0) {
868 t = fence = deq.tail;
869 index = deq.head;
870 }
871 return t;
872 }
873
874 public Spliterator<E> trySplit() {
875 int t = getFence(), h = index, n = deq.elements.length;
876 if (h != t && ((h + 1) & (n - 1)) != t) {
877 if (h > t)
878 t += n;
879 int m = ((h + t) >>> 1) & (n - 1);
880 return new DeqSpliterator<>(deq, h, index = m);
881 }
882 return null;
883 }
884
885 public void forEachRemaining(Consumer<? super E> consumer) {
886 if (consumer == null)
887 throw new NullPointerException();
888 Object[] a = deq.elements;
889 int m = a.length - 1, f = getFence(), i = index;
890 index = f;
891 while (i != f) {
892 @SuppressWarnings("unchecked") E e = (E)a[i];
893 i = (i + 1) & m;
894 if (e == null)
895 throw new ConcurrentModificationException();
896 consumer.accept(e);
897 }
898 }
899
900 public boolean tryAdvance(Consumer<? super E> consumer) {
901 if (consumer == null)
902 throw new NullPointerException();
903 Object[] a = deq.elements;
904 int m = a.length - 1, f = getFence(), i = index;
905 if (i != fence) {
906 @SuppressWarnings("unchecked") E e = (E)a[i];
907 index = (i + 1) & m;
908 if (e == null)
909 throw new ConcurrentModificationException();
910 consumer.accept(e);
911 return true;
912 }
913 return false;
914 }
915
916 public long estimateSize() {
917 int n = getFence() - index;
918 if (n < 0)
919 n += deq.elements.length;
920 return (long) n;
921 }
922
923 @Override
924 public int characteristics() {
925 return Spliterator.ORDERED | Spliterator.SIZED |
926 Spliterator.NONNULL | Spliterator.SUBSIZED;
927 }
928 }
929
930 }