ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
Revision: 1.67
Committed: Thu Sep 10 00:05:48 2015 UTC (8 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.66: +1 -1 lines
Log Message:
use diamond

File Contents

# Content
1 /*
2 * Written by Josh Bloch of Google Inc. and released to the public domain,
3 * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4 */
5
6 package java.util;
7
8 import java.io.Serializable;
9 import java.util.function.Consumer;
10
11 /**
12 * Resizable-array implementation of the {@link Deque} interface. Array
13 * deques have no capacity restrictions; they grow as necessary to support
14 * usage. They are not thread-safe; in the absence of external
15 * synchronization, they do not support concurrent access by multiple threads.
16 * Null elements are prohibited. This class is likely to be faster than
17 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
18 * when used as a queue.
19 *
20 * <p>Most {@code ArrayDeque} operations run in amortized constant time.
21 * Exceptions include
22 * {@link #remove(Object) remove},
23 * {@link #removeFirstOccurrence removeFirstOccurrence},
24 * {@link #removeLastOccurrence removeLastOccurrence},
25 * {@link #contains contains},
26 * {@link #iterator iterator.remove()},
27 * and the bulk operations, all of which run in linear time.
28 *
29 * <p>The iterators returned by this class's {@link #iterator() iterator}
30 * method are <em>fail-fast</em>: If the deque is modified at any time after
31 * the iterator is created, in any way except through the iterator's own
32 * {@code remove} method, the iterator will generally throw a {@link
33 * ConcurrentModificationException}. Thus, in the face of concurrent
34 * modification, the iterator fails quickly and cleanly, rather than risking
35 * arbitrary, non-deterministic behavior at an undetermined time in the
36 * future.
37 *
38 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
39 * as it is, generally speaking, impossible to make any hard guarantees in the
40 * presence of unsynchronized concurrent modification. Fail-fast iterators
41 * throw {@code ConcurrentModificationException} on a best-effort basis.
42 * Therefore, it would be wrong to write a program that depended on this
43 * exception for its correctness: <i>the fail-fast behavior of iterators
44 * should be used only to detect bugs.</i>
45 *
46 * <p>This class and its iterator implement all of the
47 * <em>optional</em> methods of the {@link Collection} and {@link
48 * Iterator} interfaces.
49 *
50 * <p>This class is a member of the
51 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
52 * Java Collections Framework</a>.
53 *
54 * @author Josh Bloch and Doug Lea
55 * @since 1.6
56 * @param <E> the type of elements held in this deque
57 */
58 public class ArrayDeque<E> extends AbstractCollection<E>
59 implements Deque<E>, Cloneable, Serializable
60 {
61 /**
62 * The array in which the elements of the deque are stored.
63 * The capacity of the deque is the length of this array, which is
64 * always a power of two. The array is never allowed to become
65 * full, except transiently within an addX method where it is
66 * resized (see doubleCapacity) immediately upon becoming full,
67 * thus avoiding head and tail wrapping around to equal each
68 * other. We also guarantee that all array cells not holding
69 * deque elements are always null.
70 */
71 transient Object[] elements; // non-private to simplify nested class access
72
73 /**
74 * The index of the element at the head of the deque (which is the
75 * element that would be removed by remove() or pop()); or an
76 * arbitrary number equal to tail if the deque is empty.
77 */
78 transient int head;
79
80 /**
81 * The index at which the next element would be added to the tail
82 * of the deque (via addLast(E), add(E), or push(E)).
83 */
84 transient int tail;
85
86 /**
87 * The minimum capacity that we'll use for a newly created deque.
88 * Must be a power of 2.
89 */
90 private static final int MIN_INITIAL_CAPACITY = 8;
91
92 // ****** Array allocation and resizing utilities ******
93
94 /**
95 * Allocates empty array to hold the given number of elements.
96 *
97 * @param numElements the number of elements to hold
98 */
99 private void allocateElements(int numElements) {
100 int initialCapacity = MIN_INITIAL_CAPACITY;
101 // Find the best power of two to hold elements.
102 // Tests "<=" because arrays aren't kept full.
103 if (numElements >= initialCapacity) {
104 initialCapacity = numElements;
105 initialCapacity |= (initialCapacity >>> 1);
106 initialCapacity |= (initialCapacity >>> 2);
107 initialCapacity |= (initialCapacity >>> 4);
108 initialCapacity |= (initialCapacity >>> 8);
109 initialCapacity |= (initialCapacity >>> 16);
110 initialCapacity++;
111
112 if (initialCapacity < 0) // Too many elements, must back off
113 initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
114 }
115 elements = new Object[initialCapacity];
116 }
117
118 /**
119 * Doubles the capacity of this deque. Call only when full, i.e.,
120 * when head and tail have wrapped around to become equal.
121 */
122 private void doubleCapacity() {
123 assert head == tail;
124 int p = head;
125 int n = elements.length;
126 int r = n - p; // number of elements to the right of p
127 int newCapacity = n << 1;
128 if (newCapacity < 0)
129 throw new IllegalStateException("Sorry, deque too big");
130 Object[] a = new Object[newCapacity];
131 System.arraycopy(elements, p, a, 0, r);
132 System.arraycopy(elements, 0, a, r, p);
133 elements = a;
134 head = 0;
135 tail = n;
136 }
137
138 /**
139 * Constructs an empty array deque with an initial capacity
140 * sufficient to hold 16 elements.
141 */
142 public ArrayDeque() {
143 elements = new Object[16];
144 }
145
146 /**
147 * Constructs an empty array deque with an initial capacity
148 * sufficient to hold the specified number of elements.
149 *
150 * @param numElements lower bound on initial capacity of the deque
151 */
152 public ArrayDeque(int numElements) {
153 allocateElements(numElements);
154 }
155
156 /**
157 * Constructs a deque containing the elements of the specified
158 * collection, in the order they are returned by the collection's
159 * iterator. (The first element returned by the collection's
160 * iterator becomes the first element, or <i>front</i> of the
161 * deque.)
162 *
163 * @param c the collection whose elements are to be placed into the deque
164 * @throws NullPointerException if the specified collection is null
165 */
166 public ArrayDeque(Collection<? extends E> c) {
167 allocateElements(c.size());
168 addAll(c);
169 }
170
171 // The main insertion and extraction methods are addFirst,
172 // addLast, pollFirst, pollLast. The other methods are defined in
173 // terms of these.
174
175 /**
176 * Inserts the specified element at the front of this deque.
177 *
178 * @param e the element to add
179 * @throws NullPointerException if the specified element is null
180 */
181 public void addFirst(E e) {
182 if (e == null)
183 throw new NullPointerException();
184 elements[head = (head - 1) & (elements.length - 1)] = e;
185 if (head == tail)
186 doubleCapacity();
187 }
188
189 /**
190 * Inserts the specified element at the end of this deque.
191 *
192 * <p>This method is equivalent to {@link #add}.
193 *
194 * @param e the element to add
195 * @throws NullPointerException if the specified element is null
196 */
197 public void addLast(E e) {
198 if (e == null)
199 throw new NullPointerException();
200 elements[tail] = e;
201 if ( (tail = (tail + 1) & (elements.length - 1)) == head)
202 doubleCapacity();
203 }
204
205 /**
206 * Inserts the specified element at the front of this deque.
207 *
208 * @param e the element to add
209 * @return {@code true} (as specified by {@link Deque#offerFirst})
210 * @throws NullPointerException if the specified element is null
211 */
212 public boolean offerFirst(E e) {
213 addFirst(e);
214 return true;
215 }
216
217 /**
218 * Inserts the specified element at the end of this deque.
219 *
220 * @param e the element to add
221 * @return {@code true} (as specified by {@link Deque#offerLast})
222 * @throws NullPointerException if the specified element is null
223 */
224 public boolean offerLast(E e) {
225 addLast(e);
226 return true;
227 }
228
229 /**
230 * @throws NoSuchElementException {@inheritDoc}
231 */
232 public E removeFirst() {
233 E x = pollFirst();
234 if (x == null)
235 throw new NoSuchElementException();
236 return x;
237 }
238
239 /**
240 * @throws NoSuchElementException {@inheritDoc}
241 */
242 public E removeLast() {
243 E x = pollLast();
244 if (x == null)
245 throw new NoSuchElementException();
246 return x;
247 }
248
249 public E pollFirst() {
250 final Object[] elements = this.elements;
251 final int h = head;
252 @SuppressWarnings("unchecked")
253 E result = (E) elements[h];
254 // Element is null if deque empty
255 if (result != null) {
256 elements[h] = null; // Must null out slot
257 head = (h + 1) & (elements.length - 1);
258 }
259 return result;
260 }
261
262 public E pollLast() {
263 final Object[] elements = this.elements;
264 final int t = (tail - 1) & (elements.length - 1);
265 @SuppressWarnings("unchecked")
266 E result = (E) elements[t];
267 if (result != null) {
268 elements[t] = null;
269 tail = t;
270 }
271 return result;
272 }
273
274 /**
275 * @throws NoSuchElementException {@inheritDoc}
276 */
277 public E getFirst() {
278 @SuppressWarnings("unchecked")
279 E result = (E) elements[head];
280 if (result == null)
281 throw new NoSuchElementException();
282 return result;
283 }
284
285 /**
286 * @throws NoSuchElementException {@inheritDoc}
287 */
288 public E getLast() {
289 @SuppressWarnings("unchecked")
290 E result = (E) elements[(tail - 1) & (elements.length - 1)];
291 if (result == null)
292 throw new NoSuchElementException();
293 return result;
294 }
295
296 @SuppressWarnings("unchecked")
297 public E peekFirst() {
298 // elements[head] is null if deque empty
299 return (E) elements[head];
300 }
301
302 @SuppressWarnings("unchecked")
303 public E peekLast() {
304 return (E) elements[(tail - 1) & (elements.length - 1)];
305 }
306
307 /**
308 * Removes the first occurrence of the specified element in this
309 * deque (when traversing the deque from head to tail).
310 * If the deque does not contain the element, it is unchanged.
311 * More formally, removes the first element {@code e} such that
312 * {@code o.equals(e)} (if such an element exists).
313 * Returns {@code true} if this deque contained the specified element
314 * (or equivalently, if this deque changed as a result of the call).
315 *
316 * @param o element to be removed from this deque, if present
317 * @return {@code true} if the deque contained the specified element
318 */
319 public boolean removeFirstOccurrence(Object o) {
320 if (o != null) {
321 int mask = elements.length - 1;
322 int i = head;
323 for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
324 if (o.equals(x)) {
325 delete(i);
326 return true;
327 }
328 }
329 }
330 return false;
331 }
332
333 /**
334 * Removes the last occurrence of the specified element in this
335 * deque (when traversing the deque from head to tail).
336 * If the deque does not contain the element, it is unchanged.
337 * More formally, removes the last element {@code e} such that
338 * {@code o.equals(e)} (if such an element exists).
339 * Returns {@code true} if this deque contained the specified element
340 * (or equivalently, if this deque changed as a result of the call).
341 *
342 * @param o element to be removed from this deque, if present
343 * @return {@code true} if the deque contained the specified element
344 */
345 public boolean removeLastOccurrence(Object o) {
346 if (o != null) {
347 int mask = elements.length - 1;
348 int i = (tail - 1) & mask;
349 for (Object x; (x = elements[i]) != null; i = (i - 1) & mask) {
350 if (o.equals(x)) {
351 delete(i);
352 return true;
353 }
354 }
355 }
356 return false;
357 }
358
359 // *** Queue methods ***
360
361 /**
362 * Inserts the specified element at the end of this deque.
363 *
364 * <p>This method is equivalent to {@link #addLast}.
365 *
366 * @param e the element to add
367 * @return {@code true} (as specified by {@link Collection#add})
368 * @throws NullPointerException if the specified element is null
369 */
370 public boolean add(E e) {
371 addLast(e);
372 return true;
373 }
374
375 /**
376 * Inserts the specified element at the end of this deque.
377 *
378 * <p>This method is equivalent to {@link #offerLast}.
379 *
380 * @param e the element to add
381 * @return {@code true} (as specified by {@link Queue#offer})
382 * @throws NullPointerException if the specified element is null
383 */
384 public boolean offer(E e) {
385 return offerLast(e);
386 }
387
388 /**
389 * Retrieves and removes the head of the queue represented by this deque.
390 *
391 * This method differs from {@link #poll poll} only in that it throws an
392 * exception if this deque is empty.
393 *
394 * <p>This method is equivalent to {@link #removeFirst}.
395 *
396 * @return the head of the queue represented by this deque
397 * @throws NoSuchElementException {@inheritDoc}
398 */
399 public E remove() {
400 return removeFirst();
401 }
402
403 /**
404 * Retrieves and removes the head of the queue represented by this deque
405 * (in other words, the first element of this deque), or returns
406 * {@code null} if this deque is empty.
407 *
408 * <p>This method is equivalent to {@link #pollFirst}.
409 *
410 * @return the head of the queue represented by this deque, or
411 * {@code null} if this deque is empty
412 */
413 public E poll() {
414 return pollFirst();
415 }
416
417 /**
418 * Retrieves, but does not remove, the head of the queue represented by
419 * this deque. This method differs from {@link #peek peek} only in
420 * that it throws an exception if this deque is empty.
421 *
422 * <p>This method is equivalent to {@link #getFirst}.
423 *
424 * @return the head of the queue represented by this deque
425 * @throws NoSuchElementException {@inheritDoc}
426 */
427 public E element() {
428 return getFirst();
429 }
430
431 /**
432 * Retrieves, but does not remove, the head of the queue represented by
433 * this deque, or returns {@code null} if this deque is empty.
434 *
435 * <p>This method is equivalent to {@link #peekFirst}.
436 *
437 * @return the head of the queue represented by this deque, or
438 * {@code null} if this deque is empty
439 */
440 public E peek() {
441 return peekFirst();
442 }
443
444 // *** Stack methods ***
445
446 /**
447 * Pushes an element onto the stack represented by this deque. In other
448 * words, inserts the element at the front of this deque.
449 *
450 * <p>This method is equivalent to {@link #addFirst}.
451 *
452 * @param e the element to push
453 * @throws NullPointerException if the specified element is null
454 */
455 public void push(E e) {
456 addFirst(e);
457 }
458
459 /**
460 * Pops an element from the stack represented by this deque. In other
461 * words, removes and returns the first element of this deque.
462 *
463 * <p>This method is equivalent to {@link #removeFirst()}.
464 *
465 * @return the element at the front of this deque (which is the top
466 * of the stack represented by this deque)
467 * @throws NoSuchElementException {@inheritDoc}
468 */
469 public E pop() {
470 return removeFirst();
471 }
472
473 private void checkInvariants() {
474 assert elements[tail] == null;
475 assert head == tail ? elements[head] == null :
476 (elements[head] != null &&
477 elements[(tail - 1) & (elements.length - 1)] != null);
478 assert elements[(head - 1) & (elements.length - 1)] == null;
479 }
480
481 /**
482 * Removes the element at the specified position in the elements array,
483 * adjusting head and tail as necessary. This can result in motion of
484 * elements backwards or forwards in the array.
485 *
486 * <p>This method is called delete rather than remove to emphasize
487 * that its semantics differ from those of {@link List#remove(int)}.
488 *
489 * @return true if elements moved backwards
490 */
491 private boolean delete(int i) {
492 checkInvariants();
493 final Object[] elements = this.elements;
494 final int mask = elements.length - 1;
495 final int h = head;
496 final int t = tail;
497 final int front = (i - h) & mask;
498 final int back = (t - i) & mask;
499
500 // Invariant: head <= i < tail mod circularity
501 if (front >= ((t - h) & mask))
502 throw new ConcurrentModificationException();
503
504 // Optimize for least element motion
505 if (front < back) {
506 if (h <= i) {
507 System.arraycopy(elements, h, elements, h + 1, front);
508 } else { // Wrap around
509 System.arraycopy(elements, 0, elements, 1, i);
510 elements[0] = elements[mask];
511 System.arraycopy(elements, h, elements, h + 1, mask - h);
512 }
513 elements[h] = null;
514 head = (h + 1) & mask;
515 return false;
516 } else {
517 if (i < t) { // Copy the null tail as well
518 System.arraycopy(elements, i + 1, elements, i, back);
519 tail = t - 1;
520 } else { // Wrap around
521 System.arraycopy(elements, i + 1, elements, i, mask - i);
522 elements[mask] = elements[0];
523 System.arraycopy(elements, 1, elements, 0, t);
524 tail = (t - 1) & mask;
525 }
526 return true;
527 }
528 }
529
530 // *** Collection Methods ***
531
532 /**
533 * Returns the number of elements in this deque.
534 *
535 * @return the number of elements in this deque
536 */
537 public int size() {
538 return (tail - head) & (elements.length - 1);
539 }
540
541 /**
542 * Returns {@code true} if this deque contains no elements.
543 *
544 * @return {@code true} if this deque contains no elements
545 */
546 public boolean isEmpty() {
547 return head == tail;
548 }
549
550 /**
551 * Returns an iterator over the elements in this deque. The elements
552 * will be ordered from first (head) to last (tail). This is the same
553 * order that elements would be dequeued (via successive calls to
554 * {@link #remove} or popped (via successive calls to {@link #pop}).
555 *
556 * @return an iterator over the elements in this deque
557 */
558 public Iterator<E> iterator() {
559 return new DeqIterator();
560 }
561
562 public Iterator<E> descendingIterator() {
563 return new DescendingIterator();
564 }
565
566 private class DeqIterator implements Iterator<E> {
567 /**
568 * Index of element to be returned by subsequent call to next.
569 */
570 private int cursor = head;
571
572 /**
573 * Tail recorded at construction (also in remove), to stop
574 * iterator and also to check for comodification.
575 */
576 private int fence = tail;
577
578 /**
579 * Index of element returned by most recent call to next.
580 * Reset to -1 if element is deleted by a call to remove.
581 */
582 private int lastRet = -1;
583
584 public boolean hasNext() {
585 return cursor != fence;
586 }
587
588 public E next() {
589 if (cursor == fence)
590 throw new NoSuchElementException();
591 @SuppressWarnings("unchecked")
592 E result = (E) elements[cursor];
593 // This check doesn't catch all possible comodifications,
594 // but does catch the ones that corrupt traversal
595 if (tail != fence || result == null)
596 throw new ConcurrentModificationException();
597 lastRet = cursor;
598 cursor = (cursor + 1) & (elements.length - 1);
599 return result;
600 }
601
602 public void remove() {
603 if (lastRet < 0)
604 throw new IllegalStateException();
605 if (delete(lastRet)) { // if left-shifted, undo increment in next()
606 cursor = (cursor - 1) & (elements.length - 1);
607 fence = tail;
608 }
609 lastRet = -1;
610 }
611 }
612
613 /**
614 * This class is nearly a mirror-image of DeqIterator, using tail
615 * instead of head for initial cursor, and head instead of tail
616 * for fence.
617 */
618 private class DescendingIterator implements Iterator<E> {
619 private int cursor = tail;
620 private int fence = head;
621 private int lastRet = -1;
622
623 public boolean hasNext() {
624 return cursor != fence;
625 }
626
627 public E next() {
628 if (cursor == fence)
629 throw new NoSuchElementException();
630 cursor = (cursor - 1) & (elements.length - 1);
631 @SuppressWarnings("unchecked")
632 E result = (E) elements[cursor];
633 if (head != fence || result == null)
634 throw new ConcurrentModificationException();
635 lastRet = cursor;
636 return result;
637 }
638
639 public void remove() {
640 if (lastRet < 0)
641 throw new IllegalStateException();
642 if (!delete(lastRet)) {
643 cursor = (cursor + 1) & (elements.length - 1);
644 fence = head;
645 }
646 lastRet = -1;
647 }
648 }
649
650 /**
651 * Returns {@code true} if this deque contains the specified element.
652 * More formally, returns {@code true} if and only if this deque contains
653 * at least one element {@code e} such that {@code o.equals(e)}.
654 *
655 * @param o object to be checked for containment in this deque
656 * @return {@code true} if this deque contains the specified element
657 */
658 public boolean contains(Object o) {
659 if (o != null) {
660 int mask = elements.length - 1;
661 int i = head;
662 for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
663 if (o.equals(x))
664 return true;
665 }
666 }
667 return false;
668 }
669
670 /**
671 * Removes a single instance of the specified element from this deque.
672 * If the deque does not contain the element, it is unchanged.
673 * More formally, removes the first element {@code e} such that
674 * {@code o.equals(e)} (if such an element exists).
675 * Returns {@code true} if this deque contained the specified element
676 * (or equivalently, if this deque changed as a result of the call).
677 *
678 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
679 *
680 * @param o element to be removed from this deque, if present
681 * @return {@code true} if this deque contained the specified element
682 */
683 public boolean remove(Object o) {
684 return removeFirstOccurrence(o);
685 }
686
687 /**
688 * Removes all of the elements from this deque.
689 * The deque will be empty after this call returns.
690 */
691 public void clear() {
692 int h = head;
693 int t = tail;
694 if (h != t) { // clear all cells
695 head = tail = 0;
696 int i = h;
697 int mask = elements.length - 1;
698 do {
699 elements[i] = null;
700 i = (i + 1) & mask;
701 } while (i != t);
702 }
703 }
704
705 /**
706 * Returns an array containing all of the elements in this deque
707 * in proper sequence (from first to last element).
708 *
709 * <p>The returned array will be "safe" in that no references to it are
710 * maintained by this deque. (In other words, this method must allocate
711 * a new array). The caller is thus free to modify the returned array.
712 *
713 * <p>This method acts as bridge between array-based and collection-based
714 * APIs.
715 *
716 * @return an array containing all of the elements in this deque
717 */
718 public Object[] toArray() {
719 final int head = this.head;
720 final int tail = this.tail;
721 boolean wrap = (tail < head);
722 int end = wrap ? tail + elements.length : tail;
723 Object[] a = Arrays.copyOfRange(elements, head, end);
724 if (wrap)
725 System.arraycopy(elements, 0, a, elements.length - head, tail);
726 return a;
727 }
728
729 /**
730 * Returns an array containing all of the elements in this deque in
731 * proper sequence (from first to last element); the runtime type of the
732 * returned array is that of the specified array. If the deque fits in
733 * the specified array, it is returned therein. Otherwise, a new array
734 * is allocated with the runtime type of the specified array and the
735 * size of this deque.
736 *
737 * <p>If this deque fits in the specified array with room to spare
738 * (i.e., the array has more elements than this deque), the element in
739 * the array immediately following the end of the deque is set to
740 * {@code null}.
741 *
742 * <p>Like the {@link #toArray()} method, this method acts as bridge between
743 * array-based and collection-based APIs. Further, this method allows
744 * precise control over the runtime type of the output array, and may,
745 * under certain circumstances, be used to save allocation costs.
746 *
747 * <p>Suppose {@code x} is a deque known to contain only strings.
748 * The following code can be used to dump the deque into a newly
749 * allocated array of {@code String}:
750 *
751 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
752 *
753 * Note that {@code toArray(new Object[0])} is identical in function to
754 * {@code toArray()}.
755 *
756 * @param a the array into which the elements of the deque are to
757 * be stored, if it is big enough; otherwise, a new array of the
758 * same runtime type is allocated for this purpose
759 * @return an array containing all of the elements in this deque
760 * @throws ArrayStoreException if the runtime type of the specified array
761 * is not a supertype of the runtime type of every element in
762 * this deque
763 * @throws NullPointerException if the specified array is null
764 */
765 @SuppressWarnings("unchecked")
766 public <T> T[] toArray(T[] a) {
767 final int head = this.head;
768 final int tail = this.tail;
769 boolean wrap = (tail < head);
770 int size = (tail - head) + (wrap ? elements.length : 0);
771 int firstLeg = size - (wrap ? tail : 0);
772 int len = a.length;
773 if (size > len) {
774 a = (T[]) Arrays.copyOfRange(elements, head, head + size,
775 a.getClass());
776 } else {
777 System.arraycopy(elements, head, a, 0, firstLeg);
778 if (size < len)
779 a[size] = null;
780 }
781 if (wrap)
782 System.arraycopy(elements, 0, a, firstLeg, tail);
783 return a;
784 }
785
786 // *** Object methods ***
787
788 /**
789 * Returns a copy of this deque.
790 *
791 * @return a copy of this deque
792 */
793 public ArrayDeque<E> clone() {
794 try {
795 @SuppressWarnings("unchecked")
796 ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
797 result.elements = Arrays.copyOf(elements, elements.length);
798 return result;
799 } catch (CloneNotSupportedException e) {
800 throw new AssertionError();
801 }
802 }
803
804 private static final long serialVersionUID = 2340985798034038923L;
805
806 /**
807 * Saves this deque to a stream (that is, serializes it).
808 *
809 * @param s the stream
810 * @throws java.io.IOException if an I/O error occurs
811 * @serialData The current size ({@code int}) of the deque,
812 * followed by all of its elements (each an object reference) in
813 * first-to-last order.
814 */
815 private void writeObject(java.io.ObjectOutputStream s)
816 throws java.io.IOException {
817 s.defaultWriteObject();
818
819 // Write out size
820 s.writeInt(size());
821
822 // Write out elements in order.
823 int mask = elements.length - 1;
824 for (int i = head; i != tail; i = (i + 1) & mask)
825 s.writeObject(elements[i]);
826 }
827
828 /**
829 * Reconstitutes this deque from a stream (that is, deserializes it).
830 * @param s the stream
831 * @throws ClassNotFoundException if the class of a serialized object
832 * could not be found
833 * @throws java.io.IOException if an I/O error occurs
834 */
835 private void readObject(java.io.ObjectInputStream s)
836 throws java.io.IOException, ClassNotFoundException {
837 s.defaultReadObject();
838
839 // Read in size and allocate array
840 int size = s.readInt();
841 allocateElements(size);
842 head = 0;
843 tail = size;
844
845 // Read in all elements in the proper order.
846 for (int i = 0; i < size; i++)
847 elements[i] = s.readObject();
848 }
849
850 public Spliterator<E> spliterator() {
851 return new DeqSpliterator<>(this, -1, -1);
852 }
853
854 static final class DeqSpliterator<E> implements Spliterator<E> {
855 private final ArrayDeque<E> deq;
856 private int fence; // -1 until first use
857 private int index; // current index, modified on traverse/split
858
859 /** Creates new spliterator covering the given array and range */
860 DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
861 this.deq = deq;
862 this.index = origin;
863 this.fence = fence;
864 }
865
866 private int getFence() { // force initialization
867 int t;
868 if ((t = fence) < 0) {
869 t = fence = deq.tail;
870 index = deq.head;
871 }
872 return t;
873 }
874
875 public Spliterator<E> trySplit() {
876 int t = getFence(), h = index, n = deq.elements.length;
877 if (h != t && ((h + 1) & (n - 1)) != t) {
878 if (h > t)
879 t += n;
880 int m = ((h + t) >>> 1) & (n - 1);
881 return new DeqSpliterator<>(deq, h, index = m);
882 }
883 return null;
884 }
885
886 public void forEachRemaining(Consumer<? super E> consumer) {
887 if (consumer == null)
888 throw new NullPointerException();
889 Object[] a = deq.elements;
890 int m = a.length - 1, f = getFence(), i = index;
891 index = f;
892 while (i != f) {
893 @SuppressWarnings("unchecked") E e = (E)a[i];
894 i = (i + 1) & m;
895 if (e == null)
896 throw new ConcurrentModificationException();
897 consumer.accept(e);
898 }
899 }
900
901 public boolean tryAdvance(Consumer<? super E> consumer) {
902 if (consumer == null)
903 throw new NullPointerException();
904 Object[] a = deq.elements;
905 int m = a.length - 1, f = getFence(), i = index;
906 if (i != f) {
907 @SuppressWarnings("unchecked") E e = (E)a[i];
908 index = (i + 1) & m;
909 if (e == null)
910 throw new ConcurrentModificationException();
911 consumer.accept(e);
912 return true;
913 }
914 return false;
915 }
916
917 public long estimateSize() {
918 int n = getFence() - index;
919 if (n < 0)
920 n += deq.elements.length;
921 return (long) n;
922 }
923
924 @Override
925 public int characteristics() {
926 return Spliterator.ORDERED | Spliterator.SIZED |
927 Spliterator.NONNULL | Spliterator.SUBSIZED;
928 }
929 }
930
931 }