ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
Revision: 1.98
Committed: Sat Oct 29 22:47:55 2016 UTC (7 years, 7 months ago) by jsr166
Branch: MAIN
Changes since 1.97: +11 -15 lines
Log Message:
null actions should throw NPE even when nothing to do

File Contents

# Content
1 /*
2 * Written by Josh Bloch of Google Inc. and released to the public domain,
3 * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4 */
5
6 package java.util;
7
8 import java.io.Serializable;
9 import java.util.function.Consumer;
10 import java.util.function.Predicate;
11 import java.util.function.UnaryOperator;
12
13 /**
14 * Resizable-array implementation of the {@link Deque} interface. Array
15 * deques have no capacity restrictions; they grow as necessary to support
16 * usage. They are not thread-safe; in the absence of external
17 * synchronization, they do not support concurrent access by multiple threads.
18 * Null elements are prohibited. This class is likely to be faster than
19 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20 * when used as a queue.
21 *
22 * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 * Exceptions include
24 * {@link #remove(Object) remove},
25 * {@link #removeFirstOccurrence removeFirstOccurrence},
26 * {@link #removeLastOccurrence removeLastOccurrence},
27 * {@link #contains contains},
28 * {@link #iterator iterator.remove()},
29 * and the bulk operations, all of which run in linear time.
30 *
31 * <p>The iterators returned by this class's {@link #iterator() iterator}
32 * method are <em>fail-fast</em>: If the deque is modified at any time after
33 * the iterator is created, in any way except through the iterator's own
34 * {@code remove} method, the iterator will generally throw a {@link
35 * ConcurrentModificationException}. Thus, in the face of concurrent
36 * modification, the iterator fails quickly and cleanly, rather than risking
37 * arbitrary, non-deterministic behavior at an undetermined time in the
38 * future.
39 *
40 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41 * as it is, generally speaking, impossible to make any hard guarantees in the
42 * presence of unsynchronized concurrent modification. Fail-fast iterators
43 * throw {@code ConcurrentModificationException} on a best-effort basis.
44 * Therefore, it would be wrong to write a program that depended on this
45 * exception for its correctness: <i>the fail-fast behavior of iterators
46 * should be used only to detect bugs.</i>
47 *
48 * <p>This class and its iterator implement all of the
49 * <em>optional</em> methods of the {@link Collection} and {@link
50 * Iterator} interfaces.
51 *
52 * <p>This class is a member of the
53 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 * Java Collections Framework</a>.
55 *
56 * @author Josh Bloch and Doug Lea
57 * @param <E> the type of elements held in this deque
58 * @since 1.6
59 */
60 public class ArrayDeque<E> extends AbstractCollection<E>
61 implements Deque<E>, Cloneable, Serializable
62 {
63 /**
64 * The array in which the elements of the deque are stored.
65 * We guarantee that all array cells not holding deque elements
66 * are always null.
67 */
68 transient Object[] elements;
69
70 /**
71 * The index of the element at the head of the deque (which is the
72 * element that would be removed by remove() or pop()); or an
73 * arbitrary number 0 <= head < elements.length if the deque is empty.
74 */
75 transient int head;
76
77 /** Number of elements in this collection. */
78 transient int size;
79
80 /**
81 * The maximum size of array to allocate.
82 * Some VMs reserve some header words in an array.
83 * Attempts to allocate larger arrays may result in
84 * OutOfMemoryError: Requested array size exceeds VM limit
85 */
86 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
87
88 /**
89 * Increases the capacity of this deque by at least the given amount.
90 *
91 * @param needed the required minimum extra capacity; must be positive
92 */
93 private void grow(int needed) {
94 // overflow-conscious code
95 // checkInvariants();
96 final int oldCapacity = elements.length;
97 int newCapacity;
98 // Double size if small; else grow by 50%
99 int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
100 if (jump < needed
101 || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
102 newCapacity = newCapacity(needed, jump);
103 elements = Arrays.copyOf(elements, newCapacity);
104 if (oldCapacity - head < size) {
105 // wrap around; slide first leg forward to end of array
106 int newSpace = newCapacity - oldCapacity;
107 System.arraycopy(elements, head,
108 elements, head + newSpace,
109 oldCapacity - head);
110 Arrays.fill(elements, head, head + newSpace, null);
111 head += newSpace;
112 }
113 // checkInvariants();
114 }
115
116 /** Capacity calculation for edge conditions, especially overflow. */
117 private int newCapacity(int needed, int jump) {
118 final int oldCapacity = elements.length, minCapacity;
119 if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
120 if (minCapacity < 0)
121 throw new IllegalStateException("Sorry, deque too big");
122 return Integer.MAX_VALUE;
123 }
124 if (needed > jump)
125 return minCapacity;
126 return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
127 ? oldCapacity + jump
128 : MAX_ARRAY_SIZE;
129 }
130
131 /**
132 * Increases the internal storage of this collection, if necessary,
133 * to ensure that it can hold at least the given number of elements.
134 *
135 * @param minCapacity the desired minimum capacity
136 * @since TBD
137 */
138 /* public */ void ensureCapacity(int minCapacity) {
139 if (minCapacity > elements.length)
140 grow(minCapacity - elements.length);
141 // checkInvariants();
142 }
143
144 /**
145 * Minimizes the internal storage of this collection.
146 *
147 * @since TBD
148 */
149 /* public */ void trimToSize() {
150 if (size < elements.length) {
151 elements = toArray();
152 head = 0;
153 }
154 // checkInvariants();
155 }
156
157 /**
158 * Constructs an empty array deque with an initial capacity
159 * sufficient to hold 16 elements.
160 */
161 public ArrayDeque() {
162 elements = new Object[16];
163 }
164
165 /**
166 * Constructs an empty array deque with an initial capacity
167 * sufficient to hold the specified number of elements.
168 *
169 * @param numElements lower bound on initial capacity of the deque
170 */
171 public ArrayDeque(int numElements) {
172 elements = new Object[numElements];
173 }
174
175 /**
176 * Constructs a deque containing the elements of the specified
177 * collection, in the order they are returned by the collection's
178 * iterator. (The first element returned by the collection's
179 * iterator becomes the first element, or <i>front</i> of the
180 * deque.)
181 *
182 * @param c the collection whose elements are to be placed into the deque
183 * @throws NullPointerException if the specified collection is null
184 */
185 public ArrayDeque(Collection<? extends E> c) {
186 Object[] es = c.toArray();
187 // defend against c.toArray (incorrectly) not returning Object[]
188 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
189 if (es.getClass() != Object[].class)
190 es = Arrays.copyOf(es, es.length, Object[].class);
191 for (Object obj : es)
192 Objects.requireNonNull(obj);
193 this.elements = es;
194 this.size = es.length;
195 }
196
197 /**
198 * Increments i, mod modulus.
199 * Precondition and postcondition: 0 <= i < modulus.
200 */
201 static final int inc(int i, int modulus) {
202 if (++i >= modulus) i = 0;
203 return i;
204 }
205
206 /**
207 * Decrements i, mod modulus.
208 * Precondition and postcondition: 0 <= i < modulus.
209 */
210 static final int dec(int i, int modulus) {
211 if (--i < 0) i = modulus - 1;
212 return i;
213 }
214
215 /**
216 * Adds i and j, mod modulus.
217 * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
218 */
219 static final int add(int i, int j, int modulus) {
220 if ((i += j) - modulus >= 0) i -= modulus;
221 return i;
222 }
223
224 /**
225 * Returns the array index of the last element.
226 * May return invalid index -1 if there are no elements.
227 */
228 final int tail() {
229 return add(head, size - 1, elements.length);
230 }
231
232 /**
233 * Returns element at array index i.
234 */
235 @SuppressWarnings("unchecked")
236 private E elementAt(int i) {
237 return (E) elements[i];
238 }
239
240 /**
241 * A version of elementAt that checks for null elements.
242 * This check doesn't catch all possible comodifications,
243 * but does catch ones that corrupt traversal. It's a little
244 * surprising that javac allows this abuse of generics.
245 */
246 static final <E> E nonNullElementAt(Object[] es, int i) {
247 @SuppressWarnings("unchecked") E e = (E) es[i];
248 if (e == null)
249 throw new ConcurrentModificationException();
250 return e;
251 }
252
253 // The main insertion and extraction methods are addFirst,
254 // addLast, pollFirst, pollLast. The other methods are defined in
255 // terms of these.
256
257 /**
258 * Inserts the specified element at the front of this deque.
259 *
260 * @param e the element to add
261 * @throws NullPointerException if the specified element is null
262 */
263 public void addFirst(E e) {
264 // checkInvariants();
265 Objects.requireNonNull(e);
266 Object[] es;
267 int capacity, h;
268 final int s;
269 if ((s = size) == (capacity = (es = elements).length)) {
270 grow(1);
271 capacity = (es = elements).length;
272 }
273 if ((h = head - 1) < 0) h = capacity - 1;
274 es[head = h] = e;
275 size = s + 1;
276 // checkInvariants();
277 }
278
279 /**
280 * Inserts the specified element at the end of this deque.
281 *
282 * <p>This method is equivalent to {@link #add}.
283 *
284 * @param e the element to add
285 * @throws NullPointerException if the specified element is null
286 */
287 public void addLast(E e) {
288 // checkInvariants();
289 Objects.requireNonNull(e);
290 Object[] es;
291 int capacity;
292 final int s;
293 if ((s = size) == (capacity = (es = elements).length)) {
294 grow(1);
295 capacity = (es = elements).length;
296 }
297 es[add(head, s, capacity)] = e;
298 size = s + 1;
299 // checkInvariants();
300 }
301
302 /**
303 * Adds all of the elements in the specified collection at the end
304 * of this deque, as if by calling {@link #addLast} on each one,
305 * in the order that they are returned by the collection's
306 * iterator.
307 *
308 * @param c the elements to be inserted into this deque
309 * @return {@code true} if this deque changed as a result of the call
310 * @throws NullPointerException if the specified collection or any
311 * of its elements are null
312 */
313 public boolean addAll(Collection<? extends E> c) {
314 final int s = size, needed = c.size() - (elements.length - s);
315 if (needed > 0)
316 grow(needed);
317 c.forEach((e) -> addLast(e));
318 // checkInvariants();
319 return size > s;
320 }
321
322 /**
323 * Inserts the specified element at the front of this deque.
324 *
325 * @param e the element to add
326 * @return {@code true} (as specified by {@link Deque#offerFirst})
327 * @throws NullPointerException if the specified element is null
328 */
329 public boolean offerFirst(E e) {
330 addFirst(e);
331 return true;
332 }
333
334 /**
335 * Inserts the specified element at the end of this deque.
336 *
337 * @param e the element to add
338 * @return {@code true} (as specified by {@link Deque#offerLast})
339 * @throws NullPointerException if the specified element is null
340 */
341 public boolean offerLast(E e) {
342 addLast(e);
343 return true;
344 }
345
346 /**
347 * @throws NoSuchElementException {@inheritDoc}
348 */
349 public E removeFirst() {
350 // checkInvariants();
351 E e = pollFirst();
352 if (e == null)
353 throw new NoSuchElementException();
354 return e;
355 }
356
357 /**
358 * @throws NoSuchElementException {@inheritDoc}
359 */
360 public E removeLast() {
361 // checkInvariants();
362 E e = pollLast();
363 if (e == null)
364 throw new NoSuchElementException();
365 return e;
366 }
367
368 public E pollFirst() {
369 // checkInvariants();
370 int s, h;
371 if ((s = size) <= 0)
372 return null;
373 final Object[] elements = this.elements;
374 @SuppressWarnings("unchecked") E e = (E) elements[h = head];
375 elements[h] = null;
376 if (++h >= elements.length) h = 0;
377 head = h;
378 size = s - 1;
379 return e;
380 }
381
382 public E pollLast() {
383 // checkInvariants();
384 final int s, tail;
385 if ((s = size) <= 0)
386 return null;
387 final Object[] elements = this.elements;
388 @SuppressWarnings("unchecked")
389 E e = (E) elements[tail = add(head, s - 1, elements.length)];
390 elements[tail] = null;
391 size = s - 1;
392 return e;
393 }
394
395 /**
396 * @throws NoSuchElementException {@inheritDoc}
397 */
398 public E getFirst() {
399 // checkInvariants();
400 if (size <= 0) throw new NoSuchElementException();
401 return elementAt(head);
402 }
403
404 /**
405 * @throws NoSuchElementException {@inheritDoc}
406 */
407 @SuppressWarnings("unchecked")
408 public E getLast() {
409 // checkInvariants();
410 final int s;
411 if ((s = size) <= 0) throw new NoSuchElementException();
412 final Object[] elements = this.elements;
413 return (E) elements[add(head, s - 1, elements.length)];
414 }
415
416 public E peekFirst() {
417 // checkInvariants();
418 return (size <= 0) ? null : elementAt(head);
419 }
420
421 @SuppressWarnings("unchecked")
422 public E peekLast() {
423 // checkInvariants();
424 final int s;
425 if ((s = size) <= 0) return null;
426 final Object[] elements = this.elements;
427 return (E) elements[add(head, s - 1, elements.length)];
428 }
429
430 /**
431 * Removes the first occurrence of the specified element in this
432 * deque (when traversing the deque from head to tail).
433 * If the deque does not contain the element, it is unchanged.
434 * More formally, removes the first element {@code e} such that
435 * {@code o.equals(e)} (if such an element exists).
436 * Returns {@code true} if this deque contained the specified element
437 * (or equivalently, if this deque changed as a result of the call).
438 *
439 * @param o element to be removed from this deque, if present
440 * @return {@code true} if the deque contained the specified element
441 */
442 public boolean removeFirstOccurrence(Object o) {
443 if (o != null) {
444 final Object[] elements = this.elements;
445 final int capacity = elements.length;
446 int i, end, to, todo;
447 todo = (end = (i = head) + size)
448 - (to = (capacity - end >= 0) ? end : capacity);
449 for (;; to = todo, i = 0, todo = 0) {
450 for (; i < to; i++)
451 if (o.equals(elements[i])) {
452 delete(i);
453 return true;
454 }
455 if (todo == 0) break;
456 }
457 }
458 return false;
459 }
460
461 /**
462 * Removes the last occurrence of the specified element in this
463 * deque (when traversing the deque from head to tail).
464 * If the deque does not contain the element, it is unchanged.
465 * More formally, removes the last element {@code e} such that
466 * {@code o.equals(e)} (if such an element exists).
467 * Returns {@code true} if this deque contained the specified element
468 * (or equivalently, if this deque changed as a result of the call).
469 *
470 * @param o element to be removed from this deque, if present
471 * @return {@code true} if the deque contained the specified element
472 */
473 public boolean removeLastOccurrence(Object o) {
474 if (o != null) {
475 final Object[] elements = this.elements;
476 final int capacity = elements.length;
477 int i, to, end, todo;
478 todo = (to = ((end = (i = tail()) - size) >= -1) ? end : -1) - end;
479 for (;; to = (i = capacity - 1) - todo, todo = 0) {
480 for (; i > to; i--)
481 if (o.equals(elements[i])) {
482 delete(i);
483 return true;
484 }
485 if (todo == 0) break;
486 }
487 }
488 return false;
489 }
490
491 // *** Queue methods ***
492
493 /**
494 * Inserts the specified element at the end of this deque.
495 *
496 * <p>This method is equivalent to {@link #addLast}.
497 *
498 * @param e the element to add
499 * @return {@code true} (as specified by {@link Collection#add})
500 * @throws NullPointerException if the specified element is null
501 */
502 public boolean add(E e) {
503 addLast(e);
504 return true;
505 }
506
507 /**
508 * Inserts the specified element at the end of this deque.
509 *
510 * <p>This method is equivalent to {@link #offerLast}.
511 *
512 * @param e the element to add
513 * @return {@code true} (as specified by {@link Queue#offer})
514 * @throws NullPointerException if the specified element is null
515 */
516 public boolean offer(E e) {
517 return offerLast(e);
518 }
519
520 /**
521 * Retrieves and removes the head of the queue represented by this deque.
522 *
523 * This method differs from {@link #poll poll} only in that it throws an
524 * exception if this deque is empty.
525 *
526 * <p>This method is equivalent to {@link #removeFirst}.
527 *
528 * @return the head of the queue represented by this deque
529 * @throws NoSuchElementException {@inheritDoc}
530 */
531 public E remove() {
532 return removeFirst();
533 }
534
535 /**
536 * Retrieves and removes the head of the queue represented by this deque
537 * (in other words, the first element of this deque), or returns
538 * {@code null} if this deque is empty.
539 *
540 * <p>This method is equivalent to {@link #pollFirst}.
541 *
542 * @return the head of the queue represented by this deque, or
543 * {@code null} if this deque is empty
544 */
545 public E poll() {
546 return pollFirst();
547 }
548
549 /**
550 * Retrieves, but does not remove, the head of the queue represented by
551 * this deque. This method differs from {@link #peek peek} only in
552 * that it throws an exception if this deque is empty.
553 *
554 * <p>This method is equivalent to {@link #getFirst}.
555 *
556 * @return the head of the queue represented by this deque
557 * @throws NoSuchElementException {@inheritDoc}
558 */
559 public E element() {
560 return getFirst();
561 }
562
563 /**
564 * Retrieves, but does not remove, the head of the queue represented by
565 * this deque, or returns {@code null} if this deque is empty.
566 *
567 * <p>This method is equivalent to {@link #peekFirst}.
568 *
569 * @return the head of the queue represented by this deque, or
570 * {@code null} if this deque is empty
571 */
572 public E peek() {
573 return peekFirst();
574 }
575
576 // *** Stack methods ***
577
578 /**
579 * Pushes an element onto the stack represented by this deque. In other
580 * words, inserts the element at the front of this deque.
581 *
582 * <p>This method is equivalent to {@link #addFirst}.
583 *
584 * @param e the element to push
585 * @throws NullPointerException if the specified element is null
586 */
587 public void push(E e) {
588 addFirst(e);
589 }
590
591 /**
592 * Pops an element from the stack represented by this deque. In other
593 * words, removes and returns the first element of this deque.
594 *
595 * <p>This method is equivalent to {@link #removeFirst()}.
596 *
597 * @return the element at the front of this deque (which is the top
598 * of the stack represented by this deque)
599 * @throws NoSuchElementException {@inheritDoc}
600 */
601 public E pop() {
602 return removeFirst();
603 }
604
605 /**
606 * Removes the element at the specified position in the elements array.
607 * This can result in forward or backwards motion of array elements.
608 * We optimize for least element motion.
609 *
610 * <p>This method is called delete rather than remove to emphasize
611 * that its semantics differ from those of {@link List#remove(int)}.
612 *
613 * @return true if elements moved backwards
614 */
615 boolean delete(int i) {
616 // checkInvariants();
617 final Object[] elements = this.elements;
618 final int capacity = elements.length;
619 final int h = head;
620 int front; // number of elements before to-be-deleted elt
621 if ((front = i - h) < 0) front += capacity;
622 final int back = size - front - 1; // number of elements after
623 if (front < back) {
624 // move front elements forwards
625 if (h <= i) {
626 System.arraycopy(elements, h, elements, h + 1, front);
627 } else { // Wrap around
628 System.arraycopy(elements, 0, elements, 1, i);
629 elements[0] = elements[capacity - 1];
630 System.arraycopy(elements, h, elements, h + 1, front - (i + 1));
631 }
632 elements[h] = null;
633 if ((head = (h + 1)) >= capacity) head = 0;
634 size--;
635 // checkInvariants();
636 return false;
637 } else {
638 // move back elements backwards
639 int tail = tail();
640 if (i <= tail) {
641 System.arraycopy(elements, i + 1, elements, i, back);
642 } else { // Wrap around
643 int firstLeg = capacity - (i + 1);
644 System.arraycopy(elements, i + 1, elements, i, firstLeg);
645 elements[capacity - 1] = elements[0];
646 System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1);
647 }
648 elements[tail] = null;
649 size--;
650 // checkInvariants();
651 return true;
652 }
653 }
654
655 // *** Collection Methods ***
656
657 /**
658 * Returns the number of elements in this deque.
659 *
660 * @return the number of elements in this deque
661 */
662 public int size() {
663 return size;
664 }
665
666 /**
667 * Returns {@code true} if this deque contains no elements.
668 *
669 * @return {@code true} if this deque contains no elements
670 */
671 public boolean isEmpty() {
672 return size == 0;
673 }
674
675 /**
676 * Returns an iterator over the elements in this deque. The elements
677 * will be ordered from first (head) to last (tail). This is the same
678 * order that elements would be dequeued (via successive calls to
679 * {@link #remove} or popped (via successive calls to {@link #pop}).
680 *
681 * @return an iterator over the elements in this deque
682 */
683 public Iterator<E> iterator() {
684 return new DeqIterator();
685 }
686
687 public Iterator<E> descendingIterator() {
688 return new DescendingIterator();
689 }
690
691 private class DeqIterator implements Iterator<E> {
692 /** Index of element to be returned by subsequent call to next. */
693 int cursor;
694
695 /** Number of elements yet to be returned. */
696 int remaining = size;
697
698 /**
699 * Index of element returned by most recent call to next.
700 * Reset to -1 if element is deleted by a call to remove.
701 */
702 int lastRet = -1;
703
704 DeqIterator() { cursor = head; }
705
706 public final boolean hasNext() {
707 return remaining > 0;
708 }
709
710 public E next() {
711 if (remaining <= 0)
712 throw new NoSuchElementException();
713 final Object[] elements = ArrayDeque.this.elements;
714 E e = nonNullElementAt(elements, cursor);
715 lastRet = cursor;
716 if (++cursor >= elements.length) cursor = 0;
717 remaining--;
718 return e;
719 }
720
721 void postDelete(boolean leftShifted) {
722 if (leftShifted)
723 if (--cursor < 0) cursor = elements.length - 1;
724 }
725
726 public final void remove() {
727 if (lastRet < 0)
728 throw new IllegalStateException();
729 postDelete(delete(lastRet));
730 lastRet = -1;
731 }
732
733 public void forEachRemaining(Consumer<? super E> action) {
734 Objects.requireNonNull(action);
735 final int k;
736 if ((k = remaining) > 0) {
737 remaining = 0;
738 ArrayDeque.forEachRemaining(action, elements, cursor, k);
739 if ((lastRet = cursor + k - 1) >= elements.length)
740 lastRet -= elements.length;
741 }
742 }
743 }
744
745 private class DescendingIterator extends DeqIterator {
746 DescendingIterator() { cursor = tail(); }
747
748 public final E next() {
749 if (remaining <= 0)
750 throw new NoSuchElementException();
751 final Object[] elements = ArrayDeque.this.elements;
752 E e = nonNullElementAt(elements, cursor);
753 lastRet = cursor;
754 if (--cursor < 0) cursor = elements.length - 1;
755 remaining--;
756 return e;
757 }
758
759 void postDelete(boolean leftShifted) {
760 if (!leftShifted)
761 if (++cursor >= elements.length) cursor = 0;
762 }
763
764 public final void forEachRemaining(Consumer<? super E> action) {
765 Objects.requireNonNull(action);
766 final int k;
767 if ((k = remaining) > 0) {
768 remaining = 0;
769 final Object[] elements = ArrayDeque.this.elements;
770 int i, end, to, todo;
771 todo = (to = ((end = (i = cursor) - k) >= -1) ? end : -1) - end;
772 for (;; to = (i = elements.length - 1) - todo, todo = 0) {
773 for (; i > to; i--)
774 action.accept(nonNullElementAt(elements, i));
775 if (todo == 0) break;
776 }
777 if ((lastRet = cursor - (k - 1)) < 0)
778 lastRet += elements.length;
779 }
780 }
781 }
782
783 /**
784 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
785 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
786 * deque.
787 *
788 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
789 * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
790 * {@link Spliterator#NONNULL}. Overriding implementations should document
791 * the reporting of additional characteristic values.
792 *
793 * @return a {@code Spliterator} over the elements in this deque
794 * @since 1.8
795 */
796 public Spliterator<E> spliterator() {
797 return new ArrayDequeSpliterator();
798 }
799
800 final class ArrayDequeSpliterator implements Spliterator<E> {
801 private int cursor;
802 private int remaining; // -1 until late-binding first use
803
804 /** Constructs late-binding spliterator over all elements. */
805 ArrayDequeSpliterator() {
806 this.remaining = -1;
807 }
808
809 /** Constructs spliterator over the given slice. */
810 ArrayDequeSpliterator(int cursor, int count) {
811 this.cursor = cursor;
812 this.remaining = count;
813 }
814
815 /** Ensures late-binding initialization; then returns remaining. */
816 private int remaining() {
817 if (remaining < 0) {
818 cursor = head;
819 remaining = size;
820 }
821 return remaining;
822 }
823
824 public ArrayDequeSpliterator trySplit() {
825 final int mid;
826 if ((mid = remaining() >> 1) > 0) {
827 int oldCursor = cursor;
828 cursor = add(cursor, mid, elements.length);
829 remaining -= mid;
830 return new ArrayDequeSpliterator(oldCursor, mid);
831 }
832 return null;
833 }
834
835 public void forEachRemaining(Consumer<? super E> action) {
836 Objects.requireNonNull(action);
837 final int k = remaining(); // side effect!
838 remaining = 0;
839 ArrayDeque.forEachRemaining(action, elements, cursor, k);
840 }
841
842 public boolean tryAdvance(Consumer<? super E> action) {
843 Objects.requireNonNull(action);
844 final int k;
845 if ((k = remaining()) <= 0)
846 return false;
847 action.accept(nonNullElementAt(elements, cursor));
848 if (++cursor >= elements.length) cursor = 0;
849 remaining = k - 1;
850 return true;
851 }
852
853 public long estimateSize() {
854 return remaining();
855 }
856
857 public int characteristics() {
858 return Spliterator.NONNULL
859 | Spliterator.ORDERED
860 | Spliterator.SIZED
861 | Spliterator.SUBSIZED;
862 }
863 }
864
865 @SuppressWarnings("unchecked")
866 public void forEach(Consumer<? super E> action) {
867 Objects.requireNonNull(action);
868 final Object[] elements = this.elements;
869 final int capacity = elements.length;
870 int i, end, to, todo;
871 todo = (end = (i = head) + size)
872 - (to = (capacity - end >= 0) ? end : capacity);
873 for (;; to = todo, i = 0, todo = 0) {
874 for (; i < to; i++)
875 action.accept((E) elements[i]);
876 if (todo == 0) break;
877 }
878 // checkInvariants();
879 }
880
881 /**
882 * Calls action on remaining elements, starting at index i and
883 * traversing in ascending order. A variant of forEach that also
884 * checks for concurrent modification, for use in iterators.
885 */
886 static <E> void forEachRemaining(
887 Consumer<? super E> action, Object[] es, int i, int remaining) {
888 final int capacity = es.length;
889 int end, to, todo;
890 todo = (end = i + remaining)
891 - (to = (capacity - end >= 0) ? end : capacity);
892 for (;; to = todo, i = 0, todo = 0) {
893 for (; i < to; i++)
894 action.accept(nonNullElementAt(es, i));
895 if (todo == 0) break;
896 }
897 }
898
899 /**
900 * Replaces each element of this deque with the result of applying the
901 * operator to that element, as specified by {@link List#replaceAll}.
902 *
903 * @param operator the operator to apply to each element
904 * @since TBD
905 */
906 /* public */ void replaceAll(UnaryOperator<E> operator) {
907 Objects.requireNonNull(operator);
908 final Object[] elements = this.elements;
909 final int capacity = elements.length;
910 int i, end, to, todo;
911 todo = (end = (i = head) + size)
912 - (to = (capacity - end >= 0) ? end : capacity);
913 for (;; to = todo, i = 0, todo = 0) {
914 for (; i < to; i++)
915 elements[i] = operator.apply(elementAt(i));
916 if (todo == 0) break;
917 }
918 // checkInvariants();
919 }
920
921 /**
922 * @throws NullPointerException {@inheritDoc}
923 */
924 public boolean removeIf(Predicate<? super E> filter) {
925 Objects.requireNonNull(filter);
926 return bulkRemove(filter);
927 }
928
929 /**
930 * @throws NullPointerException {@inheritDoc}
931 */
932 public boolean removeAll(Collection<?> c) {
933 Objects.requireNonNull(c);
934 return bulkRemove(e -> c.contains(e));
935 }
936
937 /**
938 * @throws NullPointerException {@inheritDoc}
939 */
940 public boolean retainAll(Collection<?> c) {
941 Objects.requireNonNull(c);
942 return bulkRemove(e -> !c.contains(e));
943 }
944
945 /** Implementation of bulk remove methods. */
946 private boolean bulkRemove(Predicate<? super E> filter) {
947 // checkInvariants();
948 final Object[] elements = this.elements;
949 final int capacity = elements.length;
950 int i = head, j = i, remaining = size, deleted = 0;
951 try {
952 for (; remaining > 0; remaining--) {
953 @SuppressWarnings("unchecked") E e = (E) elements[i];
954 if (filter.test(e))
955 deleted++;
956 else {
957 if (j != i)
958 elements[j] = e;
959 if (++j >= capacity) j = 0;
960 }
961 if (++i >= capacity) i = 0;
962 }
963 return deleted > 0;
964 } catch (Throwable ex) {
965 if (deleted > 0)
966 for (; remaining > 0; remaining--) {
967 elements[j] = elements[i];
968 if (++i >= capacity) i = 0;
969 if (++j >= capacity) j = 0;
970 }
971 throw ex;
972 } finally {
973 size -= deleted;
974 clearSlice(elements, j, deleted);
975 // checkInvariants();
976 }
977 }
978
979 /**
980 * Returns {@code true} if this deque contains the specified element.
981 * More formally, returns {@code true} if and only if this deque contains
982 * at least one element {@code e} such that {@code o.equals(e)}.
983 *
984 * @param o object to be checked for containment in this deque
985 * @return {@code true} if this deque contains the specified element
986 */
987 public boolean contains(Object o) {
988 if (o != null) {
989 final Object[] elements = this.elements;
990 final int capacity = elements.length;
991 int i, end, to, todo;
992 todo = (end = (i = head) + size)
993 - (to = (capacity - end >= 0) ? end : capacity);
994 for (;; to = todo, i = 0, todo = 0) {
995 for (; i < to; i++)
996 if (o.equals(elements[i]))
997 return true;
998 if (todo == 0) break;
999 }
1000 }
1001 return false;
1002 }
1003
1004 /**
1005 * Removes a single instance of the specified element from this deque.
1006 * If the deque does not contain the element, it is unchanged.
1007 * More formally, removes the first element {@code e} such that
1008 * {@code o.equals(e)} (if such an element exists).
1009 * Returns {@code true} if this deque contained the specified element
1010 * (or equivalently, if this deque changed as a result of the call).
1011 *
1012 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1013 *
1014 * @param o element to be removed from this deque, if present
1015 * @return {@code true} if this deque contained the specified element
1016 */
1017 public boolean remove(Object o) {
1018 return removeFirstOccurrence(o);
1019 }
1020
1021 /**
1022 * Removes all of the elements from this deque.
1023 * The deque will be empty after this call returns.
1024 */
1025 public void clear() {
1026 clearSlice(elements, head, size);
1027 size = head = 0;
1028 // checkInvariants();
1029 }
1030
1031 /**
1032 * Nulls out count elements, starting at array index from.
1033 */
1034 private static void clearSlice(Object[] es, int from, int count) {
1035 final int capacity = es.length, end = from + count;
1036 final int leg = (capacity - end >= 0) ? end : capacity;
1037 Arrays.fill(es, from, leg, null);
1038 if (leg != end)
1039 Arrays.fill(es, 0, end - capacity, null);
1040 }
1041
1042 /**
1043 * Returns an array containing all of the elements in this deque
1044 * in proper sequence (from first to last element).
1045 *
1046 * <p>The returned array will be "safe" in that no references to it are
1047 * maintained by this deque. (In other words, this method must allocate
1048 * a new array). The caller is thus free to modify the returned array.
1049 *
1050 * <p>This method acts as bridge between array-based and collection-based
1051 * APIs.
1052 *
1053 * @return an array containing all of the elements in this deque
1054 */
1055 public Object[] toArray() {
1056 return toArray(Object[].class);
1057 }
1058
1059 private <T> T[] toArray(Class<T[]> klazz) {
1060 final Object[] elements = this.elements;
1061 final int capacity = elements.length;
1062 final int head = this.head, end = head + size;
1063 final T[] a;
1064 if (end >= 0) {
1065 a = Arrays.copyOfRange(elements, head, end, klazz);
1066 } else {
1067 // integer overflow!
1068 a = Arrays.copyOfRange(elements, 0, size, klazz);
1069 System.arraycopy(elements, head, a, 0, capacity - head);
1070 }
1071 if (end - capacity > 0)
1072 System.arraycopy(elements, 0, a, capacity - head, end - capacity);
1073 return a;
1074 }
1075
1076 /**
1077 * Returns an array containing all of the elements in this deque in
1078 * proper sequence (from first to last element); the runtime type of the
1079 * returned array is that of the specified array. If the deque fits in
1080 * the specified array, it is returned therein. Otherwise, a new array
1081 * is allocated with the runtime type of the specified array and the
1082 * size of this deque.
1083 *
1084 * <p>If this deque fits in the specified array with room to spare
1085 * (i.e., the array has more elements than this deque), the element in
1086 * the array immediately following the end of the deque is set to
1087 * {@code null}.
1088 *
1089 * <p>Like the {@link #toArray()} method, this method acts as bridge between
1090 * array-based and collection-based APIs. Further, this method allows
1091 * precise control over the runtime type of the output array, and may,
1092 * under certain circumstances, be used to save allocation costs.
1093 *
1094 * <p>Suppose {@code x} is a deque known to contain only strings.
1095 * The following code can be used to dump the deque into a newly
1096 * allocated array of {@code String}:
1097 *
1098 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1099 *
1100 * Note that {@code toArray(new Object[0])} is identical in function to
1101 * {@code toArray()}.
1102 *
1103 * @param a the array into which the elements of the deque are to
1104 * be stored, if it is big enough; otherwise, a new array of the
1105 * same runtime type is allocated for this purpose
1106 * @return an array containing all of the elements in this deque
1107 * @throws ArrayStoreException if the runtime type of the specified array
1108 * is not a supertype of the runtime type of every element in
1109 * this deque
1110 * @throws NullPointerException if the specified array is null
1111 */
1112 @SuppressWarnings("unchecked")
1113 public <T> T[] toArray(T[] a) {
1114 final int size = this.size;
1115 if (size > a.length)
1116 return toArray((Class<T[]>) a.getClass());
1117 final Object[] elements = this.elements;
1118 final int capacity = elements.length;
1119 final int head = this.head, end = head + size;
1120 final int front = (capacity - end >= 0) ? size : capacity - head;
1121 System.arraycopy(elements, head, a, 0, front);
1122 if (front != size)
1123 System.arraycopy(elements, 0, a, capacity - head, end - capacity);
1124 if (size < a.length)
1125 a[size] = null;
1126 return a;
1127 }
1128
1129 // *** Object methods ***
1130
1131 /**
1132 * Returns a copy of this deque.
1133 *
1134 * @return a copy of this deque
1135 */
1136 public ArrayDeque<E> clone() {
1137 try {
1138 @SuppressWarnings("unchecked")
1139 ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1140 result.elements = Arrays.copyOf(elements, elements.length);
1141 return result;
1142 } catch (CloneNotSupportedException e) {
1143 throw new AssertionError();
1144 }
1145 }
1146
1147 private static final long serialVersionUID = 2340985798034038923L;
1148
1149 /**
1150 * Saves this deque to a stream (that is, serializes it).
1151 *
1152 * @param s the stream
1153 * @throws java.io.IOException if an I/O error occurs
1154 * @serialData The current size ({@code int}) of the deque,
1155 * followed by all of its elements (each an object reference) in
1156 * first-to-last order.
1157 */
1158 private void writeObject(java.io.ObjectOutputStream s)
1159 throws java.io.IOException {
1160 s.defaultWriteObject();
1161
1162 // Write out size
1163 s.writeInt(size);
1164
1165 // Write out elements in order.
1166 final Object[] elements = this.elements;
1167 final int capacity = elements.length;
1168 int i, end, to, todo;
1169 todo = (end = (i = head) + size)
1170 - (to = (capacity - end >= 0) ? end : capacity);
1171 for (;; to = todo, i = 0, todo = 0) {
1172 for (; i < to; i++)
1173 s.writeObject(elements[i]);
1174 if (todo == 0) break;
1175 }
1176 }
1177
1178 /**
1179 * Reconstitutes this deque from a stream (that is, deserializes it).
1180 * @param s the stream
1181 * @throws ClassNotFoundException if the class of a serialized object
1182 * could not be found
1183 * @throws java.io.IOException if an I/O error occurs
1184 */
1185 private void readObject(java.io.ObjectInputStream s)
1186 throws java.io.IOException, ClassNotFoundException {
1187 s.defaultReadObject();
1188
1189 // Read in size and allocate array
1190 elements = new Object[size = s.readInt()];
1191
1192 // Read in all elements in the proper order.
1193 for (int i = 0; i < size; i++)
1194 elements[i] = s.readObject();
1195 }
1196
1197 /** debugging */
1198 void checkInvariants() {
1199 try {
1200 int capacity = elements.length;
1201 // assert size >= 0 && size <= capacity;
1202 // assert head >= 0;
1203 // assert capacity == 0 || head < capacity;
1204 // assert size == 0 || elements[head] != null;
1205 // assert size == 0 || elements[tail()] != null;
1206 // assert size == capacity || elements[dec(head, capacity)] == null;
1207 // assert size == capacity || elements[inc(tail(), capacity)] == null;
1208 } catch (Throwable t) {
1209 System.err.printf("head=%d size=%d capacity=%d%n",
1210 head, size, elements.length);
1211 System.err.printf("elements=%s%n",
1212 Arrays.toString(elements));
1213 throw t;
1214 }
1215 }
1216
1217 }