ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayList.java (file contents):
Revision 1.12 by jsr166, Mon Nov 28 04:06:29 2005 UTC vs.
Revision 1.36 by jsr166, Mon Oct 31 23:02:42 2016 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > import java.util.function.UnaryOperator;
31  
32   /**
33 < * Resizable-array implementation of the <tt>List</tt> interface.  Implements
33 > * Resizable-array implementation of the {@code List} interface.  Implements
34   * all optional list operations, and permits all elements, including
35 < * <tt>null</tt>.  In addition to implementing the <tt>List</tt> interface,
35 > * {@code null}.  In addition to implementing the {@code List} interface,
36   * this class provides methods to manipulate the size of the array that is
37   * used internally to store the list.  (This class is roughly equivalent to
38 < * <tt>Vector</tt>, except that it is unsynchronized.)<p>
38 > * {@code Vector}, except that it is unsynchronized.)
39   *
40 < * The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
41 < * <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
42 < * time.  The <tt>add</tt> operation runs in <i>amortized constant time</i>,
40 > * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 > * {@code iterator}, and {@code listIterator} operations run in constant
42 > * time.  The {@code add} operation runs in <i>amortized constant time</i>,
43   * that is, adding n elements requires O(n) time.  All of the other operations
44   * run in linear time (roughly speaking).  The constant factor is low compared
45 < * to that for the <tt>LinkedList</tt> implementation.<p>
45 > * to that for the {@code LinkedList} implementation.
46   *
47 < * Each <tt>ArrayList</tt> instance has a <i>capacity</i>.  The capacity is
47 > * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
48   * the size of the array used to store the elements in the list.  It is always
49   * at least as large as the list size.  As elements are added to an ArrayList,
50   * its capacity grows automatically.  The details of the growth policy are not
51   * specified beyond the fact that adding an element has constant amortized
52 < * time cost.<p>
52 > * time cost.
53   *
54 < * An application can increase the capacity of an <tt>ArrayList</tt> instance
55 < * before adding a large number of elements using the <tt>ensureCapacity</tt>
54 > * <p>An application can increase the capacity of an {@code ArrayList} instance
55 > * before adding a large number of elements using the {@code ensureCapacity}
56   * operation.  This may reduce the amount of incremental reallocation.
57   *
58   * <p><strong>Note that this implementation is not synchronized.</strong>
59 < * If multiple threads access an <tt>ArrayList</tt> instance concurrently,
59 > * If multiple threads access an {@code ArrayList} instance concurrently,
60   * and at least one of the threads modifies the list structurally, it
61   * <i>must</i> be synchronized externally.  (A structural modification is
62   * any operation that adds or deletes one or more elements, or explicitly
# Line 49 | Line 70 | import java.util.*; // for javadoc (till
70   * unsynchronized access to the list:<pre>
71   *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
72   *
73 < * <p>The iterators returned by this class's <tt>iterator</tt> and
74 < * <tt>listIterator</tt> methods are <i>fail-fast</i>: if the list is
75 < * structurally modified at any time after the iterator is created, in any way
76 < * except through the iterator's own <tt>remove</tt> or <tt>add</tt> methods,
77 < * the iterator will throw a {@link ConcurrentModificationException}.  Thus, in
78 < * the face of concurrent modification, the iterator fails quickly and cleanly,
79 < * rather than risking arbitrary, non-deterministic behavior at an undetermined
80 < * time in the future.<p>
73 > * <p id="fail-fast">
74 > * The iterators returned by this class's {@link #iterator() iterator} and
75 > * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 > * if the list is structurally modified at any time after the iterator is
77 > * created, in any way except through the iterator's own
78 > * {@link ListIterator#remove() remove} or
79 > * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 > * {@link ConcurrentModificationException}.  Thus, in the face of
81 > * concurrent modification, the iterator fails quickly and cleanly, rather
82 > * than risking arbitrary, non-deterministic behavior at an undetermined
83 > * time in the future.
84   *
85 < * Note that the fail-fast behavior of an iterator cannot be guaranteed
85 > * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86   * as it is, generally speaking, impossible to make any hard guarantees in the
87   * presence of unsynchronized concurrent modification.  Fail-fast iterators
88 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
88 > * throw {@code ConcurrentModificationException} on a best-effort basis.
89   * Therefore, it would be wrong to write a program that depended on this
90 < * exception for its correctness: <i>the fail-fast behavior of iterators
91 < * should be used only to detect bugs.</i><p>
90 > * exception for its correctness:  <i>the fail-fast behavior of iterators
91 > * should be used only to detect bugs.</i>
92   *
93 < * This class is a member of the
94 < * <a href="{@docRoot}/../guide/collections/index.html">
93 > * <p>This class is a member of the
94 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95   * Java Collections Framework</a>.
96   *
97 + * @param <E> the type of elements in this list
98 + *
99   * @author  Josh Bloch
100   * @author  Neal Gafter
101 < * @version %I%, %G%
102 < * @see     Collection
103 < * @see     List
104 < * @see     LinkedList
79 < * @see     Vector
101 > * @see     Collection
102 > * @see     List
103 > * @see     LinkedList
104 > * @see     Vector
105   * @since   1.2
106   */
82
107   public class ArrayList<E> extends AbstractList<E>
108          implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109   {
110      private static final long serialVersionUID = 8683452581122892189L;
111  
112      /**
113 +     * Default initial capacity.
114 +     */
115 +    private static final int DEFAULT_CAPACITY = 10;
116 +
117 +    /**
118 +     * Shared empty array instance used for empty instances.
119 +     */
120 +    private static final Object[] EMPTY_ELEMENTDATA = {};
121 +
122 +    /**
123 +     * Shared empty array instance used for default sized empty instances. We
124 +     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 +     * first element is added.
126 +     */
127 +    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128 +
129 +    /**
130       * The array buffer into which the elements of the ArrayList are stored.
131 <     * The capacity of the ArrayList is the length of this array buffer.
131 >     * The capacity of the ArrayList is the length of this array buffer. Any
132 >     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 >     * will be expanded to DEFAULT_CAPACITY when the first element is added.
134       */
135 <    private transient Object[] elementData;
135 >    transient Object[] elementData; // non-private to simplify nested class access
136  
137      /**
138       * The size of the ArrayList (the number of elements it contains).
# Line 101 | Line 144 | public class ArrayList<E> extends Abstra
144      /**
145       * Constructs an empty list with the specified initial capacity.
146       *
147 <     * @param initialCapacity the initial capacity of the list
147 >     * @param  initialCapacity  the initial capacity of the list
148       * @throws IllegalArgumentException if the specified initial capacity
149       *         is negative
150       */
151      public ArrayList(int initialCapacity) {
152 <        super();
153 <        if (initialCapacity < 0)
152 >        if (initialCapacity > 0) {
153 >            this.elementData = new Object[initialCapacity];
154 >        } else if (initialCapacity == 0) {
155 >            this.elementData = EMPTY_ELEMENTDATA;
156 >        } else {
157              throw new IllegalArgumentException("Illegal Capacity: "+
158                                                 initialCapacity);
159 <        this.elementData = new Object[initialCapacity];
159 >        }
160      }
161  
162      /**
163       * Constructs an empty list with an initial capacity of ten.
164       */
165      public ArrayList() {
166 <        this(10);
166 >        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167      }
168  
169      /**
170       * Constructs a list containing the elements of the specified
171       * collection, in the order they are returned by the collection's
172 <     * iterator.  The <tt>ArrayList</tt> instance has an initial capacity of
127 <     * 110% the size of the specified collection.
172 >     * iterator.
173       *
174       * @param c the collection whose elements are to be placed into this list
175       * @throws NullPointerException if the specified collection is null
176       */
177      public ArrayList(Collection<? extends E> c) {
178 <        int size = c.size();
179 <        // 10% for growth
180 <        int cap = ((size/10)+1)*11;
181 <        if (cap > 0) {
182 <            Object[] a = new Object[cap];
183 <            a[size] = a[size+1] = UNALLOCATED;
184 <            Object[] b = c.toArray(a);
185 <            if (b[size] == null && b[size+1] == UNALLOCATED) {
186 <                b[size+1] = null;
187 <                elementData = b;
143 <                this.size = size;
144 <                return;
145 <            }
146 <        }
147 <        initFromConcurrentlyMutating(c);
148 <    }
149 <
150 <    private void initFromConcurrentlyMutating(Collection<? extends E> c) {
151 <        elementData = c.toArray();
152 <        size = elementData.length;
153 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
154 <        if (elementData.getClass() != Object[].class)
155 <            elementData = Arrays.copyOf(elementData, size, Object[].class);
178 >        elementData = c.toArray();
179 >        if ((size = elementData.length) != 0) {
180 >            // defend against c.toArray (incorrectly) not returning Object[]
181 >            // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 >            if (elementData.getClass() != Object[].class)
183 >                elementData = Arrays.copyOf(elementData, size, Object[].class);
184 >        } else {
185 >            // replace with empty array.
186 >            this.elementData = EMPTY_ELEMENTDATA;
187 >        }
188      }
189  
158    private final static Object UNALLOCATED = new Object();
159
190      /**
191 <     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
191 >     * Trims the capacity of this {@code ArrayList} instance to be the
192       * list's current size.  An application can use this operation to minimize
193 <     * the storage of an <tt>ArrayList</tt> instance.
193 >     * the storage of an {@code ArrayList} instance.
194       */
195      public void trimToSize() {
196 <        modCount++;
197 <        int oldCapacity = elementData.length;
198 <        if (size < oldCapacity) {
199 <            elementData = Arrays.copyOf(elementData, size);
200 <        }
196 >        modCount++;
197 >        if (size < elementData.length) {
198 >            elementData = (size == 0)
199 >              ? EMPTY_ELEMENTDATA
200 >              : Arrays.copyOf(elementData, size);
201 >        }
202      }
203  
204      /**
205 <     * Increases the capacity of this <tt>ArrayList</tt> instance, if
205 >     * Increases the capacity of this {@code ArrayList} instance, if
206       * necessary, to ensure that it can hold at least the number of elements
207       * specified by the minimum capacity argument.
208       *
209       * @param minCapacity the desired minimum capacity
210       */
211      public void ensureCapacity(int minCapacity) {
212 <        modCount++;
213 <        if (minCapacity > elementData.length)
214 <            growArray(minCapacity);
212 >        if (minCapacity > elementData.length
213 >            && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 >                 && minCapacity <= DEFAULT_CAPACITY)) {
215 >            modCount++;
216 >            grow(minCapacity);
217 >        }
218      }
219  
220      /**
221 <     * Increases the capacity of the array.
221 >     * The maximum size of array to allocate (unless necessary).
222 >     * Some VMs reserve some header words in an array.
223 >     * Attempts to allocate larger arrays may result in
224 >     * OutOfMemoryError: Requested array size exceeds VM limit
225 >     */
226 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227 >
228 >    /**
229 >     * Increases the capacity to ensure that it can hold at least the
230 >     * number of elements specified by the minimum capacity argument.
231       *
232       * @param minCapacity the desired minimum capacity
233 +     * @throws OutOfMemoryError if minCapacity is less than zero
234       */
235 <    private void growArray(int minCapacity) {
236 <        if (minCapacity < 0)
237 <            throw new OutOfMemoryError(); // int overflow
238 <        int oldCapacity = elementData.length;
239 <        // Double size if small; else grow by 50%
240 <        int newCapacity = ((oldCapacity < 64)?
241 <                           ((oldCapacity + 1) * 2):
242 <                           ((oldCapacity * 3) / 2));
243 <        if (newCapacity < minCapacity)
244 <            newCapacity = minCapacity;
245 <        elementData = Arrays.copyOf(elementData, newCapacity);
235 >    private Object[] grow(int minCapacity) {
236 >        return elementData = Arrays.copyOf(elementData,
237 >                                           newCapacity(minCapacity));
238 >    }
239 >
240 >    private Object[] grow() {
241 >        return grow(size + 1);
242 >    }
243 >
244 >    /**
245 >     * Returns a capacity at least as large as the given minimum capacity.
246 >     * Returns the current capacity increased by 50% if that suffices.
247 >     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 >     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249 >     *
250 >     * @param minCapacity the desired minimum capacity
251 >     * @throws OutOfMemoryError if minCapacity is less than zero
252 >     */
253 >    private int newCapacity(int minCapacity) {
254 >        // overflow-conscious code
255 >        int oldCapacity = elementData.length;
256 >        int newCapacity = oldCapacity + (oldCapacity >> 1);
257 >        if (newCapacity - minCapacity <= 0) {
258 >            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 >                return Math.max(DEFAULT_CAPACITY, minCapacity);
260 >            if (minCapacity < 0) // overflow
261 >                throw new OutOfMemoryError();
262 >            return minCapacity;
263 >        }
264 >        return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 >            ? newCapacity
266 >            : hugeCapacity(minCapacity);
267 >    }
268 >
269 >    private static int hugeCapacity(int minCapacity) {
270 >        if (minCapacity < 0) // overflow
271 >            throw new OutOfMemoryError();
272 >        return (minCapacity > MAX_ARRAY_SIZE)
273 >            ? Integer.MAX_VALUE
274 >            : MAX_ARRAY_SIZE;
275      }
276  
277      /**
# Line 207 | Line 280 | public class ArrayList<E> extends Abstra
280       * @return the number of elements in this list
281       */
282      public int size() {
283 <        return size;
283 >        return size;
284      }
285  
286      /**
287 <     * Returns <tt>true</tt> if this list contains no elements.
287 >     * Returns {@code true} if this list contains no elements.
288       *
289 <     * @return <tt>true</tt> if this list contains no elements
289 >     * @return {@code true} if this list contains no elements
290       */
291      public boolean isEmpty() {
292 <        return size == 0;
292 >        return size == 0;
293      }
294  
295      /**
296 <     * Returns <tt>true</tt> if this list contains the specified element.
297 <     * More formally, returns <tt>true</tt> if and only if this list contains
298 <     * at least one element <tt>e</tt> such that
299 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
296 >     * Returns {@code true} if this list contains the specified element.
297 >     * More formally, returns {@code true} if and only if this list contains
298 >     * at least one element {@code e} such that
299 >     * {@code Objects.equals(o, e)}.
300       *
301       * @param o element whose presence in this list is to be tested
302 <     * @return <tt>true</tt> if this list contains the specified element
302 >     * @return {@code true} if this list contains the specified element
303       */
304      public boolean contains(Object o) {
305 <        return indexOf(o) >= 0;
305 >        return indexOf(o) >= 0;
306      }
307  
308      /**
309       * Returns the index of the first occurrence of the specified element
310       * in this list, or -1 if this list does not contain the element.
311 <     * More formally, returns the lowest index <tt>i</tt> such that
312 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
311 >     * More formally, returns the lowest index {@code i} such that
312 >     * {@code Objects.equals(o, get(i))},
313       * or -1 if there is no such index.
314       */
315      public int indexOf(Object o) {
316 <        if (o == null) {
317 <            for (int i = 0; i < size; i++)
318 <                if (elementData[i]==null)
319 <                    return i;
320 <        } else {
321 <            for (int i = 0; i < size; i++)
322 <                if (o.equals(elementData[i]))
323 <                    return i;
324 <        }
325 <        return -1;
316 >        if (o == null) {
317 >            for (int i = 0; i < size; i++)
318 >                if (elementData[i]==null)
319 >                    return i;
320 >        } else {
321 >            for (int i = 0; i < size; i++)
322 >                if (o.equals(elementData[i]))
323 >                    return i;
324 >        }
325 >        return -1;
326      }
327  
328      /**
329       * Returns the index of the last occurrence of the specified element
330       * in this list, or -1 if this list does not contain the element.
331 <     * More formally, returns the highest index <tt>i</tt> such that
332 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
331 >     * More formally, returns the highest index {@code i} such that
332 >     * {@code Objects.equals(o, get(i))},
333       * or -1 if there is no such index.
334       */
335      public int lastIndexOf(Object o) {
336 <        if (o == null) {
337 <            for (int i = size-1; i >= 0; i--)
338 <                if (elementData[i]==null)
339 <                    return i;
340 <        } else {
341 <            for (int i = size-1; i >= 0; i--)
342 <                if (o.equals(elementData[i]))
343 <                    return i;
344 <        }
345 <        return -1;
336 >        if (o == null) {
337 >            for (int i = size-1; i >= 0; i--)
338 >                if (elementData[i]==null)
339 >                    return i;
340 >        } else {
341 >            for (int i = size-1; i >= 0; i--)
342 >                if (o.equals(elementData[i]))
343 >                    return i;
344 >        }
345 >        return -1;
346      }
347  
348      /**
349 <     * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
349 >     * Returns a shallow copy of this {@code ArrayList} instance.  (The
350       * elements themselves are not copied.)
351       *
352 <     * @return a clone of this <tt>ArrayList</tt> instance
352 >     * @return a clone of this {@code ArrayList} instance
353       */
354      public Object clone() {
355 <        try {
356 <            ArrayList<E> v = (ArrayList<E>) super.clone();
357 <            v.elementData = Arrays.copyOf(elementData, size);
358 <            v.modCount = 0;
359 <            return v;
360 <        } catch (CloneNotSupportedException e) {
361 <            // this shouldn't happen, since we are Cloneable
362 <            throw new InternalError();
363 <        }
355 >        try {
356 >            ArrayList<?> v = (ArrayList<?>) super.clone();
357 >            v.elementData = Arrays.copyOf(elementData, size);
358 >            v.modCount = 0;
359 >            return v;
360 >        } catch (CloneNotSupportedException e) {
361 >            // this shouldn't happen, since we are Cloneable
362 >            throw new InternalError(e);
363 >        }
364      }
365  
366      /**
# Line 319 | Line 392 | public class ArrayList<E> extends Abstra
392       * <p>If the list fits in the specified array with room to spare
393       * (i.e., the array has more elements than the list), the element in
394       * the array immediately following the end of the collection is set to
395 <     * <tt>null</tt>.  (This is useful in determining the length of the
395 >     * {@code null}.  (This is useful in determining the length of the
396       * list <i>only</i> if the caller knows that the list does not contain
397       * any null elements.)
398       *
# Line 332 | Line 405 | public class ArrayList<E> extends Abstra
405       *         this list
406       * @throws NullPointerException if the specified array is null
407       */
408 +    @SuppressWarnings("unchecked")
409      public <T> T[] toArray(T[] a) {
410          if (a.length < size)
411              // Make a new array of a's runtime type, but my contents:
412              return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 <        System.arraycopy(elementData, 0, a, 0, size);
413 >        System.arraycopy(elementData, 0, a, 0, size);
414          if (a.length > size)
415              a[size] = null;
416          return a;
# Line 344 | Line 418 | public class ArrayList<E> extends Abstra
418  
419      // Positional Access Operations
420  
421 <    /**
422 <     * Returns error message string for IndexOutOfBoundsExceptions
423 <     */
350 <    private String ioobe(int index) {
351 <        return "Index: " + index + ", Size: " + size;
421 >    @SuppressWarnings("unchecked")
422 >    E elementData(int index) {
423 >        return (E) elementData[index];
424      }
425  
426      /**
# Line 359 | Line 431 | public class ArrayList<E> extends Abstra
431       * @throws IndexOutOfBoundsException {@inheritDoc}
432       */
433      public E get(int index) {
434 <        if (index >= size)
435 <            throw new IndexOutOfBoundsException(ioobe(index));
364 <        return (E)elementData[index];
434 >        Objects.checkIndex(index, size);
435 >        return elementData(index);
436      }
437  
438      /**
# Line 374 | Line 445 | public class ArrayList<E> extends Abstra
445       * @throws IndexOutOfBoundsException {@inheritDoc}
446       */
447      public E set(int index, E element) {
448 <        if (index >= size)
449 <            throw new IndexOutOfBoundsException(ioobe(index));
448 >        Objects.checkIndex(index, size);
449 >        E oldValue = elementData(index);
450 >        elementData[index] = element;
451 >        return oldValue;
452 >    }
453  
454 <        E oldValue = (E) elementData[index];
455 <        elementData[index] = element;
456 <        return oldValue;
454 >    /**
455 >     * This helper method split out from add(E) to keep method
456 >     * bytecode size under 35 (the -XX:MaxInlineSize default value),
457 >     * which helps when add(E) is called in a C1-compiled loop.
458 >     */
459 >    private void add(E e, Object[] elementData, int s) {
460 >        if (s == elementData.length)
461 >            elementData = grow();
462 >        elementData[s] = e;
463 >        size = s + 1;
464      }
465  
466      /**
467       * Appends the specified element to the end of this list.
468       *
469       * @param e element to be appended to this list
470 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
470 >     * @return {@code true} (as specified by {@link Collection#add})
471       */
472      public boolean add(E e) {
473          modCount++;
474 <        int s = size;
475 <        if (s >= elementData.length)
395 <            growArray(s + 1);
396 <        elementData[s] = e;
397 <        size = s + 1;
398 <        return true;
474 >        add(e, elementData, size);
475 >        return true;
476      }
477  
478      /**
# Line 408 | Line 485 | public class ArrayList<E> extends Abstra
485       * @throws IndexOutOfBoundsException {@inheritDoc}
486       */
487      public void add(int index, E element) {
488 <        int s = size;
489 <        if (index > s || index < 0)
490 <            throw new IndexOutOfBoundsException(ioobe(index));
491 <        modCount++;
492 <        if (s >= elementData.length)
493 <            growArray(s + 1);
494 <        System.arraycopy(elementData, index,
495 <                         elementData, index + 1, s - index);
496 <        elementData[index] = element;
488 >        rangeCheckForAdd(index);
489 >        modCount++;
490 >        final int s;
491 >        Object[] elementData;
492 >        if ((s = size) == (elementData = this.elementData).length)
493 >            elementData = grow();
494 >        System.arraycopy(elementData, index,
495 >                         elementData, index + 1,
496 >                         s - index);
497 >        elementData[index] = element;
498          size = s + 1;
499      }
500  
# Line 430 | Line 508 | public class ArrayList<E> extends Abstra
508       * @throws IndexOutOfBoundsException {@inheritDoc}
509       */
510      public E remove(int index) {
511 <        int s = size - 1;
512 <        if (index > s)
513 <            throw new IndexOutOfBoundsException(ioobe(index));
514 <        modCount++;
515 <        E oldValue = (E)elementData[index];
516 <        int numMoved = s - index;
517 <        if (numMoved > 0)
518 <            System.arraycopy(elementData, index + 1,
519 <                             elementData, index, numMoved);
520 <        elementData[s] = null;
521 <        size = s;
522 <        return oldValue;
511 >        Objects.checkIndex(index, size);
512 >
513 >        modCount++;
514 >        E oldValue = elementData(index);
515 >
516 >        int numMoved = size - index - 1;
517 >        if (numMoved > 0)
518 >            System.arraycopy(elementData, index+1, elementData, index,
519 >                             numMoved);
520 >        elementData[--size] = null; // clear to let GC do its work
521 >
522 >        return oldValue;
523      }
524  
525      /**
526       * Removes the first occurrence of the specified element from this list,
527       * if it is present.  If the list does not contain the element, it is
528       * unchanged.  More formally, removes the element with the lowest index
529 <     * <tt>i</tt> such that
530 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
531 <     * (if such an element exists).  Returns <tt>true</tt> if this list
529 >     * {@code i} such that
530 >     * {@code Objects.equals(o, get(i))}
531 >     * (if such an element exists).  Returns {@code true} if this list
532       * contained the specified element (or equivalently, if this list
533       * changed as a result of the call).
534       *
535       * @param o element to be removed from this list, if present
536 <     * @return <tt>true</tt> if this list contained the specified element
536 >     * @return {@code true} if this list contained the specified element
537       */
538      public boolean remove(Object o) {
539 <        if (o == null) {
539 >        if (o == null) {
540              for (int index = 0; index < size; index++)
541 <                if (elementData[index] == null) {
542 <                    fastRemove(index);
543 <                    return true;
544 <                }
545 <        } else {
546 <            for (int index = 0; index < size; index++)
547 <                if (o.equals(elementData[index])) {
548 <                    fastRemove(index);
549 <                    return true;
550 <                }
541 >                if (elementData[index] == null) {
542 >                    fastRemove(index);
543 >                    return true;
544 >                }
545 >        } else {
546 >            for (int index = 0; index < size; index++)
547 >                if (o.equals(elementData[index])) {
548 >                    fastRemove(index);
549 >                    return true;
550 >                }
551          }
552 <        return false;
552 >        return false;
553      }
554  
555      /*
# Line 484 | Line 562 | public class ArrayList<E> extends Abstra
562          if (numMoved > 0)
563              System.arraycopy(elementData, index+1, elementData, index,
564                               numMoved);
565 <        elementData[--size] = null; // Let gc do its work
565 >        elementData[--size] = null; // clear to let GC do its work
566      }
567  
568      /**
# Line 492 | Line 570 | public class ArrayList<E> extends Abstra
570       * be empty after this call returns.
571       */
572      public void clear() {
573 <        modCount++;
573 >        modCount++;
574  
575 <        // Let gc do its work
576 <        for (int i = 0; i < size; i++)
577 <            elementData[i] = null;
575 >        // clear to let GC do its work
576 >        for (int i = 0; i < size; i++)
577 >            elementData[i] = null;
578  
579 <        size = 0;
579 >        size = 0;
580      }
581  
582      /**
# Line 511 | Line 589 | public class ArrayList<E> extends Abstra
589       * list is nonempty.)
590       *
591       * @param c collection containing elements to be added to this list
592 <     * @return <tt>true</tt> if this list changed as a result of the call
592 >     * @return {@code true} if this list changed as a result of the call
593       * @throws NullPointerException if the specified collection is null
594       */
595      public boolean addAll(Collection<? extends E> c) {
596 <        Object[] a = c.toArray();
596 >        Object[] a = c.toArray();
597 >        modCount++;
598          int numNew = a.length;
599 <        ensureCapacity(size + numNew);  // Increments modCount
600 <        System.arraycopy(a, 0, elementData, size, numNew);
601 <        size += numNew;
602 <        return numNew != 0;
599 >        if (numNew == 0)
600 >            return false;
601 >        Object[] elementData;
602 >        final int s;
603 >        if (numNew > (elementData = this.elementData).length - (s = size))
604 >            elementData = grow(s + numNew);
605 >        System.arraycopy(a, 0, elementData, s, numNew);
606 >        size = s + numNew;
607 >        return true;
608      }
609  
610      /**
# Line 534 | Line 618 | public class ArrayList<E> extends Abstra
618       * @param index index at which to insert the first element from the
619       *              specified collection
620       * @param c collection containing elements to be added to this list
621 <     * @return <tt>true</tt> if this list changed as a result of the call
621 >     * @return {@code true} if this list changed as a result of the call
622       * @throws IndexOutOfBoundsException {@inheritDoc}
623       * @throws NullPointerException if the specified collection is null
624       */
625      public boolean addAll(int index, Collection<? extends E> c) {
626 <        if (index > size || index < 0)
543 <            throw new IndexOutOfBoundsException(ioobe(index));
626 >        rangeCheckForAdd(index);
627  
628 <        Object[] a = c.toArray();
629 <        int numNew = a.length;
630 <        ensureCapacity(size + numNew);  // Increments modCount
631 <
632 <        int numMoved = size - index;
633 <        if (numMoved > 0)
634 <            System.arraycopy(elementData, index, elementData, index + numNew,
635 <                             numMoved);
628 >        Object[] a = c.toArray();
629 >        modCount++;
630 >        int numNew = a.length;
631 >        if (numNew == 0)
632 >            return false;
633 >        Object[] elementData;
634 >        final int s;
635 >        if (numNew > (elementData = this.elementData).length - (s = size))
636 >            elementData = grow(s + numNew);
637  
638 +        int numMoved = s - index;
639 +        if (numMoved > 0)
640 +            System.arraycopy(elementData, index,
641 +                             elementData, index + numNew,
642 +                             numMoved);
643          System.arraycopy(a, 0, elementData, index, numNew);
644 <        size += numNew;
645 <        return numNew != 0;
644 >        size = s + numNew;
645 >        return true;
646      }
647  
648      /**
649       * Removes from this list all of the elements whose index is between
650 <     * <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive.
650 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
651       * Shifts any succeeding elements to the left (reduces their index).
652 <     * This call shortens the list by <tt>(toIndex - fromIndex)</tt> elements.
653 <     * (If <tt>toIndex==fromIndex</tt>, this operation has no effect.)
652 >     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
653 >     * (If {@code toIndex==fromIndex}, this operation has no effect.)
654       *
655 <     * @param fromIndex index of first element to be removed
656 <     * @param toIndex index after last element to be removed
657 <     * @throws IndexOutOfBoundsException if fromIndex or toIndex out of
658 <     *              range (fromIndex &lt; 0 || fromIndex &gt;= size() || toIndex
659 <     *              &gt; size() || toIndex &lt; fromIndex)
655 >     * @throws IndexOutOfBoundsException if {@code fromIndex} or
656 >     *         {@code toIndex} is out of range
657 >     *         ({@code fromIndex < 0 ||
658 >     *          toIndex > size() ||
659 >     *          toIndex < fromIndex})
660       */
661      protected void removeRange(int fromIndex, int toIndex) {
662 <        modCount++;
663 <        int numMoved = size - toIndex;
662 >        if (fromIndex > toIndex) {
663 >            throw new IndexOutOfBoundsException(
664 >                    outOfBoundsMsg(fromIndex, toIndex));
665 >        }
666 >        modCount++;
667 >        int numMoved = size - toIndex;
668          System.arraycopy(elementData, toIndex, elementData, fromIndex,
669                           numMoved);
670  
671 <        // Let gc do its work
672 <        int newSize = size - (toIndex-fromIndex);
673 <        while (size != newSize)
674 <            elementData[--size] = null;
671 >        // clear to let GC do its work
672 >        int newSize = size - (toIndex-fromIndex);
673 >        for (int i = newSize; i < size; i++) {
674 >            elementData[i] = null;
675 >        }
676 >        size = newSize;
677 >    }
678 >
679 >    /**
680 >     * A version of rangeCheck used by add and addAll.
681 >     */
682 >    private void rangeCheckForAdd(int index) {
683 >        if (index > size || index < 0)
684 >            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
685 >    }
686 >
687 >    /**
688 >     * Constructs an IndexOutOfBoundsException detail message.
689 >     * Of the many possible refactorings of the error handling code,
690 >     * this "outlining" performs best with both server and client VMs.
691 >     */
692 >    private String outOfBoundsMsg(int index) {
693 >        return "Index: "+index+", Size: "+size;
694 >    }
695 >
696 >    /**
697 >     * A version used in checking (fromIndex > toIndex) condition
698 >     */
699 >    private static String outOfBoundsMsg(int fromIndex, int toIndex) {
700 >        return "From Index: " + fromIndex + " > To Index: " + toIndex;
701 >    }
702 >
703 >    /**
704 >     * Removes from this list all of its elements that are contained in the
705 >     * specified collection.
706 >     *
707 >     * @param c collection containing elements to be removed from this list
708 >     * @return {@code true} if this list changed as a result of the call
709 >     * @throws ClassCastException if the class of an element of this list
710 >     *         is incompatible with the specified collection
711 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
712 >     * @throws NullPointerException if this list contains a null element and the
713 >     *         specified collection does not permit null elements
714 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
715 >     *         or if the specified collection is null
716 >     * @see Collection#contains(Object)
717 >     */
718 >    public boolean removeAll(Collection<?> c) {
719 >        Objects.requireNonNull(c);
720 >        return batchRemove(c, false);
721      }
722  
723      /**
724 <     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
724 >     * Retains only the elements in this list that are contained in the
725 >     * specified collection.  In other words, removes from this list all
726 >     * of its elements that are not contained in the specified collection.
727 >     *
728 >     * @param c collection containing elements to be retained in this list
729 >     * @return {@code true} if this list changed as a result of the call
730 >     * @throws ClassCastException if the class of an element of this list
731 >     *         is incompatible with the specified collection
732 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
733 >     * @throws NullPointerException if this list contains a null element and the
734 >     *         specified collection does not permit null elements
735 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
736 >     *         or if the specified collection is null
737 >     * @see Collection#contains(Object)
738 >     */
739 >    public boolean retainAll(Collection<?> c) {
740 >        Objects.requireNonNull(c);
741 >        return batchRemove(c, true);
742 >    }
743 >
744 >    private boolean batchRemove(Collection<?> c, boolean complement) {
745 >        final Object[] elementData = this.elementData;
746 >        int r = 0, w = 0;
747 >        boolean modified = false;
748 >        try {
749 >            for (; r < size; r++)
750 >                if (c.contains(elementData[r]) == complement)
751 >                    elementData[w++] = elementData[r];
752 >        } finally {
753 >            // Preserve behavioral compatibility with AbstractCollection,
754 >            // even if c.contains() throws.
755 >            if (r != size) {
756 >                System.arraycopy(elementData, r,
757 >                                 elementData, w,
758 >                                 size - r);
759 >                w += size - r;
760 >            }
761 >            if (w != size) {
762 >                // clear to let GC do its work
763 >                for (int i = w; i < size; i++)
764 >                    elementData[i] = null;
765 >                modCount += size - w;
766 >                size = w;
767 >                modified = true;
768 >            }
769 >        }
770 >        return modified;
771 >    }
772 >
773 >    /**
774 >     * Save the state of the {@code ArrayList} instance to a stream (that
775       * is, serialize it).
776       *
777 <     * @serialData The length of the array backing the <tt>ArrayList</tt>
777 >     * @serialData The length of the array backing the {@code ArrayList}
778       *             instance is emitted (int), followed by all of its elements
779 <     *             (each an <tt>Object</tt>) in the proper order.
779 >     *             (each an {@code Object}) in the proper order.
780       */
781      private void writeObject(java.io.ObjectOutputStream s)
782          throws java.io.IOException{
783 <        // Write out element count, and any hidden stuff
784 <        int expectedModCount = modCount;
785 <        s.defaultWriteObject();
783 >        // Write out element count, and any hidden stuff
784 >        int expectedModCount = modCount;
785 >        s.defaultWriteObject();
786  
787 <        // Write out array length
788 <        s.writeInt(elementData.length);
787 >        // Write out size as capacity for behavioural compatibility with clone()
788 >        s.writeInt(size);
789  
790 <        // Write out all elements in the proper order.
791 <        for (int i=0; i<size; i++)
790 >        // Write out all elements in the proper order.
791 >        for (int i=0; i<size; i++) {
792              s.writeObject(elementData[i]);
793 +        }
794  
795 <        if (expectedModCount != modCount) {
795 >        if (modCount != expectedModCount) {
796              throw new ConcurrentModificationException();
797          }
608
798      }
799  
800      /**
801 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
801 >     * Reconstitute the {@code ArrayList} instance from a stream (that is,
802       * deserialize it).
803       */
804      private void readObject(java.io.ObjectInputStream s)
805          throws java.io.IOException, ClassNotFoundException {
617        // Read in size, and any hidden stuff
618        s.defaultReadObject();
806  
807 <        // Read in array length and allocate array
808 <        int arrayLength = s.readInt();
622 <        Object[] a = elementData = new Object[arrayLength];
807 >        // Read in size, and any hidden stuff
808 >        s.defaultReadObject();
809  
810 <        // Read in all elements in the proper order.
811 <        for (int i=0; i<size; i++)
626 <            a[i] = s.readObject();
627 <    }
810 >        // Read in capacity
811 >        s.readInt(); // ignored
812  
813 +        if (size > 0) {
814 +            // like clone(), allocate array based upon size not capacity
815 +            Object[] elements = new Object[size];
816 +
817 +            // Read in all elements in the proper order.
818 +            for (int i = 0; i < size; i++) {
819 +                elements[i] = s.readObject();
820 +            }
821 +
822 +            elementData = elements;
823 +        } else if (size == 0) {
824 +            elementData = EMPTY_ELEMENTDATA;
825 +        } else {
826 +            throw new java.io.InvalidObjectException("Invalid size: " + size);
827 +        }
828 +    }
829  
830      /**
831 <     * Returns a list-iterator of the elements in this list (in proper
831 >     * Returns a list iterator over the elements in this list (in proper
832       * sequence), starting at the specified position in the list.
833 <     * Obeys the general contract of <tt>List.listIterator(int)</tt>.<p>
833 >     * The specified index indicates the first element that would be
834 >     * returned by an initial call to {@link ListIterator#next next}.
835 >     * An initial call to {@link ListIterator#previous previous} would
836 >     * return the element with the specified index minus one.
837 >     *
838 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
839       *
635     * The list-iterator is <i>fail-fast</i>: if the list is structurally
636     * modified at any time after the Iterator is created, in any way except
637     * through the list-iterator's own <tt>remove</tt> or <tt>add</tt>
638     * methods, the list-iterator will throw a
639     * <tt>ConcurrentModificationException</tt>.  Thus, in the face of
640     * concurrent modification, the iterator fails quickly and cleanly, rather
641     * than risking arbitrary, non-deterministic behavior at an undetermined
642     * time in the future.
643     *
644     * @param index index of the first element to be returned from the
645     *              list-iterator (by a call to <tt>next</tt>)
646     * @return a ListIterator of the elements in this list (in proper
647     *         sequence), starting at the specified position in the list
840       * @throws IndexOutOfBoundsException {@inheritDoc}
649     * @see List#listIterator(int)
841       */
842      public ListIterator<E> listIterator(int index) {
843 <        if (index < 0 || index > size)
844 <            throw new IndexOutOfBoundsException(ioobe(index));
654 <        return new ArrayListIterator(index);
843 >        rangeCheckForAdd(index);
844 >        return new ListItr(index);
845      }
846  
847      /**
848 <     * {@inheritDoc}
848 >     * Returns a list iterator over the elements in this list (in proper
849 >     * sequence).
850 >     *
851 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
852 >     *
853 >     * @see #listIterator(int)
854       */
855      public ListIterator<E> listIterator() {
856 <        return new ArrayListIterator(0);
856 >        return new ListItr(0);
857      }
858  
859      /**
860       * Returns an iterator over the elements in this list in proper sequence.
861       *
862 +     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
863 +     *
864       * @return an iterator over the elements in this list in proper sequence
865       */
866      public Iterator<E> iterator() {
867 <        return new ArrayListIterator(0);
867 >        return new Itr();
868      }
869  
870      /**
871 <     * A streamlined version of AbstractList.ListItr
871 >     * An optimized version of AbstractList.Itr
872       */
873 <    final class ArrayListIterator implements ListIterator<E> {
874 <        int cursor;           // index of next element to return;
875 <        int lastRet;          // index of last element, or -1 if no such
876 <        int expectedModCount; // to check for CME
680 <
681 <        ArrayListIterator(int index) {
682 <            cursor = index;
683 <            lastRet = -1;
684 <            expectedModCount = modCount;
685 <        }
873 >    private class Itr implements Iterator<E> {
874 >        int cursor;       // index of next element to return
875 >        int lastRet = -1; // index of last element returned; -1 if no such
876 >        int expectedModCount = modCount;
877  
878 <        public boolean hasNext() {
879 <            return cursor < size;
689 <        }
878 >        // prevent creating a synthetic constructor
879 >        Itr() {}
880  
881 <        public boolean hasPrevious() {
882 <            return cursor > 0;
883 <        }
881 >        public boolean hasNext() {
882 >            return cursor != size;
883 >        }
884  
885 <        public int nextIndex() {
886 <            return cursor;
887 <        }
885 >        @SuppressWarnings("unchecked")
886 >        public E next() {
887 >            checkForComodification();
888 >            int i = cursor;
889 >            if (i >= size)
890 >                throw new NoSuchElementException();
891 >            Object[] elementData = ArrayList.this.elementData;
892 >            if (i >= elementData.length)
893 >                throw new ConcurrentModificationException();
894 >            cursor = i + 1;
895 >            return (E) elementData[lastRet = i];
896 >        }
897  
898 <        public int previousIndex() {
899 <            return cursor - 1;
900 <        }
898 >        public void remove() {
899 >            if (lastRet < 0)
900 >                throw new IllegalStateException();
901 >            checkForComodification();
902  
703        public E next() {
903              try {
904 <                int i = cursor;
905 <                E next = get(i);
906 <                lastRet = i;
907 <                cursor = i + 1;
709 <                return next;
904 >                ArrayList.this.remove(lastRet);
905 >                cursor = lastRet;
906 >                lastRet = -1;
907 >                expectedModCount = modCount;
908              } catch (IndexOutOfBoundsException ex) {
909 <                throw new NoSuchElementException();
712 <            } finally {
713 <                if (expectedModCount != modCount)
714 <                    throw new ConcurrentModificationException();
909 >                throw new ConcurrentModificationException();
910              }
911 <        }
911 >        }
912  
913 +        @Override
914 +        @SuppressWarnings("unchecked")
915 +        public void forEachRemaining(Consumer<? super E> consumer) {
916 +            Objects.requireNonNull(consumer);
917 +            final int size = ArrayList.this.size;
918 +            int i = cursor;
919 +            if (i >= size) {
920 +                return;
921 +            }
922 +            final Object[] elementData = ArrayList.this.elementData;
923 +            if (i >= elementData.length) {
924 +                throw new ConcurrentModificationException();
925 +            }
926 +            while (i != size && modCount == expectedModCount) {
927 +                consumer.accept((E) elementData[i++]);
928 +            }
929 +            // update once at end of iteration to reduce heap write traffic
930 +            cursor = i;
931 +            lastRet = i - 1;
932 +            checkForComodification();
933 +        }
934 +
935 +        final void checkForComodification() {
936 +            if (modCount != expectedModCount)
937 +                throw new ConcurrentModificationException();
938 +        }
939 +    }
940 +
941 +    /**
942 +     * An optimized version of AbstractList.ListItr
943 +     */
944 +    private class ListItr extends Itr implements ListIterator<E> {
945 +        ListItr(int index) {
946 +            super();
947 +            cursor = index;
948 +        }
949 +
950 +        public boolean hasPrevious() {
951 +            return cursor != 0;
952 +        }
953 +
954 +        public int nextIndex() {
955 +            return cursor;
956 +        }
957 +
958 +        public int previousIndex() {
959 +            return cursor - 1;
960 +        }
961 +
962 +        @SuppressWarnings("unchecked")
963          public E previous() {
964 +            checkForComodification();
965 +            int i = cursor - 1;
966 +            if (i < 0)
967 +                throw new NoSuchElementException();
968 +            Object[] elementData = ArrayList.this.elementData;
969 +            if (i >= elementData.length)
970 +                throw new ConcurrentModificationException();
971 +            cursor = i;
972 +            return (E) elementData[lastRet = i];
973 +        }
974 +
975 +        public void set(E e) {
976 +            if (lastRet < 0)
977 +                throw new IllegalStateException();
978 +            checkForComodification();
979 +
980              try {
981 <                int i = cursor - 1;
721 <                E prev = get(i);
722 <                lastRet = i;
723 <                cursor = i;
724 <                return prev;
981 >                ArrayList.this.set(lastRet, e);
982              } catch (IndexOutOfBoundsException ex) {
983 <                throw new NoSuchElementException();
727 <            } finally {
728 <                if (expectedModCount != modCount)
729 <                    throw new ConcurrentModificationException();
983 >                throw new ConcurrentModificationException();
984              }
985          }
986  
987 <        public void remove() {
988 <            if (lastRet < 0)
989 <                throw new IllegalStateException();
990 <            if (expectedModCount != modCount)
991 <                throw new ConcurrentModificationException();
992 <            ArrayList.this.remove(lastRet);
993 <            if (lastRet < cursor)
994 <                cursor--;
995 <            lastRet = -1;
996 <            expectedModCount = modCount;
743 <        }
744 <
745 <        public void set(E e) {
746 <            if (lastRet < 0)
747 <                throw new IllegalStateException();
748 <            if (expectedModCount != modCount)
987 >        public void add(E e) {
988 >            checkForComodification();
989 >
990 >            try {
991 >                int i = cursor;
992 >                ArrayList.this.add(i, e);
993 >                cursor = i + 1;
994 >                lastRet = -1;
995 >                expectedModCount = modCount;
996 >            } catch (IndexOutOfBoundsException ex) {
997                  throw new ConcurrentModificationException();
998 <            ArrayList.this.set(lastRet, e);
999 <            expectedModCount = modCount;
1000 <        }
998 >            }
999 >        }
1000 >    }
1001 >
1002 >    /**
1003 >     * Returns a view of the portion of this list between the specified
1004 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1005 >     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1006 >     * empty.)  The returned list is backed by this list, so non-structural
1007 >     * changes in the returned list are reflected in this list, and vice-versa.
1008 >     * The returned list supports all of the optional list operations.
1009 >     *
1010 >     * <p>This method eliminates the need for explicit range operations (of
1011 >     * the sort that commonly exist for arrays).  Any operation that expects
1012 >     * a list can be used as a range operation by passing a subList view
1013 >     * instead of a whole list.  For example, the following idiom
1014 >     * removes a range of elements from a list:
1015 >     * <pre>
1016 >     *      list.subList(from, to).clear();
1017 >     * </pre>
1018 >     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1019 >     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1020 >     * {@link Collections} class can be applied to a subList.
1021 >     *
1022 >     * <p>The semantics of the list returned by this method become undefined if
1023 >     * the backing list (i.e., this list) is <i>structurally modified</i> in
1024 >     * any way other than via the returned list.  (Structural modifications are
1025 >     * those that change the size of this list, or otherwise perturb it in such
1026 >     * a fashion that iterations in progress may yield incorrect results.)
1027 >     *
1028 >     * @throws IndexOutOfBoundsException {@inheritDoc}
1029 >     * @throws IllegalArgumentException {@inheritDoc}
1030 >     */
1031 >    public List<E> subList(int fromIndex, int toIndex) {
1032 >        subListRangeCheck(fromIndex, toIndex, size);
1033 >        return new SubList<>(this, fromIndex, toIndex);
1034 >    }
1035 >
1036 >    private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1037 >        private final ArrayList<E> root;
1038 >        private final SubList<E> parent;
1039 >        private final int offset;
1040 >        private int size;
1041 >
1042 >        /**
1043 >         * Constructs a sublist of an arbitrary ArrayList.
1044 >         */
1045 >        public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1046 >            this.root = root;
1047 >            this.parent = null;
1048 >            this.offset = fromIndex;
1049 >            this.size = toIndex - fromIndex;
1050 >            this.modCount = root.modCount;
1051 >        }
1052  
1053 <        public void add(E e) {
1054 <            if (expectedModCount != modCount)
1053 >        /**
1054 >         * Constructs a sublist of another SubList.
1055 >         */
1056 >        private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1057 >            this.root = parent.root;
1058 >            this.parent = parent;
1059 >            this.offset = parent.offset + fromIndex;
1060 >            this.size = toIndex - fromIndex;
1061 >            this.modCount = root.modCount;
1062 >        }
1063 >
1064 >        public E set(int index, E element) {
1065 >            Objects.checkIndex(index, size);
1066 >            checkForComodification();
1067 >            E oldValue = root.elementData(offset + index);
1068 >            root.elementData[offset + index] = element;
1069 >            return oldValue;
1070 >        }
1071 >
1072 >        public E get(int index) {
1073 >            Objects.checkIndex(index, size);
1074 >            checkForComodification();
1075 >            return root.elementData(offset + index);
1076 >        }
1077 >
1078 >        public int size() {
1079 >            checkForComodification();
1080 >            return size;
1081 >        }
1082 >
1083 >        public void add(int index, E element) {
1084 >            rangeCheckForAdd(index);
1085 >            checkForComodification();
1086 >            root.add(offset + index, element);
1087 >            updateSizeAndModCount(1);
1088 >        }
1089 >
1090 >        public E remove(int index) {
1091 >            Objects.checkIndex(index, size);
1092 >            checkForComodification();
1093 >            E result = root.remove(offset + index);
1094 >            updateSizeAndModCount(-1);
1095 >            return result;
1096 >        }
1097 >
1098 >        protected void removeRange(int fromIndex, int toIndex) {
1099 >            checkForComodification();
1100 >            root.removeRange(offset + fromIndex, offset + toIndex);
1101 >            updateSizeAndModCount(fromIndex - toIndex);
1102 >        }
1103 >
1104 >        public boolean addAll(Collection<? extends E> c) {
1105 >            return addAll(this.size, c);
1106 >        }
1107 >
1108 >        public boolean addAll(int index, Collection<? extends E> c) {
1109 >            rangeCheckForAdd(index);
1110 >            int cSize = c.size();
1111 >            if (cSize==0)
1112 >                return false;
1113 >            checkForComodification();
1114 >            root.addAll(offset + index, c);
1115 >            updateSizeAndModCount(cSize);
1116 >            return true;
1117 >        }
1118 >
1119 >        public Iterator<E> iterator() {
1120 >            return listIterator();
1121 >        }
1122 >
1123 >        public ListIterator<E> listIterator(int index) {
1124 >            checkForComodification();
1125 >            rangeCheckForAdd(index);
1126 >
1127 >            return new ListIterator<E>() {
1128 >                int cursor = index;
1129 >                int lastRet = -1;
1130 >                int expectedModCount = root.modCount;
1131 >
1132 >                public boolean hasNext() {
1133 >                    return cursor != SubList.this.size;
1134 >                }
1135 >
1136 >                @SuppressWarnings("unchecked")
1137 >                public E next() {
1138 >                    checkForComodification();
1139 >                    int i = cursor;
1140 >                    if (i >= SubList.this.size)
1141 >                        throw new NoSuchElementException();
1142 >                    Object[] elementData = root.elementData;
1143 >                    if (offset + i >= elementData.length)
1144 >                        throw new ConcurrentModificationException();
1145 >                    cursor = i + 1;
1146 >                    return (E) elementData[offset + (lastRet = i)];
1147 >                }
1148 >
1149 >                public boolean hasPrevious() {
1150 >                    return cursor != 0;
1151 >                }
1152 >
1153 >                @SuppressWarnings("unchecked")
1154 >                public E previous() {
1155 >                    checkForComodification();
1156 >                    int i = cursor - 1;
1157 >                    if (i < 0)
1158 >                        throw new NoSuchElementException();
1159 >                    Object[] elementData = root.elementData;
1160 >                    if (offset + i >= elementData.length)
1161 >                        throw new ConcurrentModificationException();
1162 >                    cursor = i;
1163 >                    return (E) elementData[offset + (lastRet = i)];
1164 >                }
1165 >
1166 >                @SuppressWarnings("unchecked")
1167 >                public void forEachRemaining(Consumer<? super E> consumer) {
1168 >                    Objects.requireNonNull(consumer);
1169 >                    final int size = SubList.this.size;
1170 >                    int i = cursor;
1171 >                    if (i >= size) {
1172 >                        return;
1173 >                    }
1174 >                    final Object[] elementData = root.elementData;
1175 >                    if (offset + i >= elementData.length) {
1176 >                        throw new ConcurrentModificationException();
1177 >                    }
1178 >                    while (i != size && modCount == expectedModCount) {
1179 >                        consumer.accept((E) elementData[offset + (i++)]);
1180 >                    }
1181 >                    // update once at end of iteration to reduce heap write traffic
1182 >                    lastRet = cursor = i;
1183 >                    checkForComodification();
1184 >                }
1185 >
1186 >                public int nextIndex() {
1187 >                    return cursor;
1188 >                }
1189 >
1190 >                public int previousIndex() {
1191 >                    return cursor - 1;
1192 >                }
1193 >
1194 >                public void remove() {
1195 >                    if (lastRet < 0)
1196 >                        throw new IllegalStateException();
1197 >                    checkForComodification();
1198 >
1199 >                    try {
1200 >                        SubList.this.remove(lastRet);
1201 >                        cursor = lastRet;
1202 >                        lastRet = -1;
1203 >                        expectedModCount = root.modCount;
1204 >                    } catch (IndexOutOfBoundsException ex) {
1205 >                        throw new ConcurrentModificationException();
1206 >                    }
1207 >                }
1208 >
1209 >                public void set(E e) {
1210 >                    if (lastRet < 0)
1211 >                        throw new IllegalStateException();
1212 >                    checkForComodification();
1213 >
1214 >                    try {
1215 >                        root.set(offset + lastRet, e);
1216 >                    } catch (IndexOutOfBoundsException ex) {
1217 >                        throw new ConcurrentModificationException();
1218 >                    }
1219 >                }
1220 >
1221 >                public void add(E e) {
1222 >                    checkForComodification();
1223 >
1224 >                    try {
1225 >                        int i = cursor;
1226 >                        SubList.this.add(i, e);
1227 >                        cursor = i + 1;
1228 >                        lastRet = -1;
1229 >                        expectedModCount = root.modCount;
1230 >                    } catch (IndexOutOfBoundsException ex) {
1231 >                        throw new ConcurrentModificationException();
1232 >                    }
1233 >                }
1234 >
1235 >                final void checkForComodification() {
1236 >                    if (root.modCount != expectedModCount)
1237 >                        throw new ConcurrentModificationException();
1238 >                }
1239 >            };
1240 >        }
1241 >
1242 >        public List<E> subList(int fromIndex, int toIndex) {
1243 >            subListRangeCheck(fromIndex, toIndex, size);
1244 >            return new SubList<>(this, fromIndex, toIndex);
1245 >        }
1246 >
1247 >        private void rangeCheckForAdd(int index) {
1248 >            if (index < 0 || index > this.size)
1249 >                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1250 >        }
1251 >
1252 >        private String outOfBoundsMsg(int index) {
1253 >            return "Index: "+index+", Size: "+this.size;
1254 >        }
1255 >
1256 >        private void checkForComodification() {
1257 >            if (root.modCount != modCount)
1258                  throw new ConcurrentModificationException();
1259 <            ArrayList.this.add(cursor++, e);
1260 <            lastRet = -1;
1261 <            expectedModCount = modCount;
1262 <        }
1259 >        }
1260 >
1261 >        private void updateSizeAndModCount(int sizeChange) {
1262 >            SubList<E> slist = this;
1263 >            do {
1264 >                slist.size += sizeChange;
1265 >                slist.modCount = root.modCount;
1266 >                slist = slist.parent;
1267 >            } while (slist != null);
1268 >        }
1269 >
1270 >        public Spliterator<E> spliterator() {
1271 >            checkForComodification();
1272 >
1273 >            // ArrayListSpliterator is not used because late-binding logic
1274 >            // is different here
1275 >            return new Spliterator<>() {
1276 >                private int index = offset; // current index, modified on advance/split
1277 >                private int fence = -1; // -1 until used; then one past last index
1278 >                private int expectedModCount; // initialized when fence set
1279 >
1280 >                private int getFence() { // initialize fence to size on first use
1281 >                    int hi; // (a specialized variant appears in method forEach)
1282 >                    if ((hi = fence) < 0) {
1283 >                        expectedModCount = modCount;
1284 >                        hi = fence = offset + size;
1285 >                    }
1286 >                    return hi;
1287 >                }
1288 >
1289 >                public ArrayListSpliterator<E> trySplit() {
1290 >                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1291 >                    // ArrayListSpliterator could be used here as the source is already bound
1292 >                    return (lo >= mid) ? null : // divide range in half unless too small
1293 >                        new ArrayListSpliterator<>(root, lo, index = mid,
1294 >                                                   expectedModCount);
1295 >                }
1296 >
1297 >                public boolean tryAdvance(Consumer<? super E> action) {
1298 >                    Objects.requireNonNull(action);
1299 >                    int hi = getFence(), i = index;
1300 >                    if (i < hi) {
1301 >                        index = i + 1;
1302 >                        @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1303 >                        action.accept(e);
1304 >                        if (root.modCount != expectedModCount)
1305 >                            throw new ConcurrentModificationException();
1306 >                        return true;
1307 >                    }
1308 >                    return false;
1309 >                }
1310 >
1311 >                public void forEachRemaining(Consumer<? super E> action) {
1312 >                    Objects.requireNonNull(action);
1313 >                    int i, hi, mc; // hoist accesses and checks from loop
1314 >                    ArrayList<E> lst = root;
1315 >                    Object[] a;
1316 >                    if ((a = lst.elementData) != null) {
1317 >                        if ((hi = fence) < 0) {
1318 >                            mc = modCount;
1319 >                            hi = offset + size;
1320 >                        }
1321 >                        else
1322 >                            mc = expectedModCount;
1323 >                        if ((i = index) >= 0 && (index = hi) <= a.length) {
1324 >                            for (; i < hi; ++i) {
1325 >                                @SuppressWarnings("unchecked") E e = (E) a[i];
1326 >                                action.accept(e);
1327 >                            }
1328 >                            if (lst.modCount == mc)
1329 >                                return;
1330 >                        }
1331 >                    }
1332 >                    throw new ConcurrentModificationException();
1333 >                }
1334 >
1335 >                public long estimateSize() {
1336 >                    return (long) (getFence() - index);
1337 >                }
1338 >
1339 >                public int characteristics() {
1340 >                    return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1341 >                }
1342 >            };
1343 >        }
1344 >    }
1345 >
1346 >    @Override
1347 >    public void forEach(Consumer<? super E> action) {
1348 >        Objects.requireNonNull(action);
1349 >        final int expectedModCount = modCount;
1350 >        @SuppressWarnings("unchecked")
1351 >        final E[] elementData = (E[]) this.elementData;
1352 >        final int size = this.size;
1353 >        for (int i=0; modCount == expectedModCount && i < size; i++) {
1354 >            action.accept(elementData[i]);
1355 >        }
1356 >        if (modCount != expectedModCount) {
1357 >            throw new ConcurrentModificationException();
1358 >        }
1359 >    }
1360 >
1361 >    /**
1362 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1363 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1364 >     * list.
1365 >     *
1366 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1367 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1368 >     * Overriding implementations should document the reporting of additional
1369 >     * characteristic values.
1370 >     *
1371 >     * @return a {@code Spliterator} over the elements in this list
1372 >     * @since 1.8
1373 >     */
1374 >    @Override
1375 >    public Spliterator<E> spliterator() {
1376 >        return new ArrayListSpliterator<>(this, 0, -1, 0);
1377 >    }
1378 >
1379 >    /** Index-based split-by-two, lazily initialized Spliterator */
1380 >    static final class ArrayListSpliterator<E> implements Spliterator<E> {
1381 >
1382 >        /*
1383 >         * If ArrayLists were immutable, or structurally immutable (no
1384 >         * adds, removes, etc), we could implement their spliterators
1385 >         * with Arrays.spliterator. Instead we detect as much
1386 >         * interference during traversal as practical without
1387 >         * sacrificing much performance. We rely primarily on
1388 >         * modCounts. These are not guaranteed to detect concurrency
1389 >         * violations, and are sometimes overly conservative about
1390 >         * within-thread interference, but detect enough problems to
1391 >         * be worthwhile in practice. To carry this out, we (1) lazily
1392 >         * initialize fence and expectedModCount until the latest
1393 >         * point that we need to commit to the state we are checking
1394 >         * against; thus improving precision.  (This doesn't apply to
1395 >         * SubLists, that create spliterators with current non-lazy
1396 >         * values).  (2) We perform only a single
1397 >         * ConcurrentModificationException check at the end of forEach
1398 >         * (the most performance-sensitive method). When using forEach
1399 >         * (as opposed to iterators), we can normally only detect
1400 >         * interference after actions, not before. Further
1401 >         * CME-triggering checks apply to all other possible
1402 >         * violations of assumptions for example null or too-small
1403 >         * elementData array given its size(), that could only have
1404 >         * occurred due to interference.  This allows the inner loop
1405 >         * of forEach to run without any further checks, and
1406 >         * simplifies lambda-resolution. While this does entail a
1407 >         * number of checks, note that in the common case of
1408 >         * list.stream().forEach(a), no checks or other computation
1409 >         * occur anywhere other than inside forEach itself.  The other
1410 >         * less-often-used methods cannot take advantage of most of
1411 >         * these streamlinings.
1412 >         */
1413 >
1414 >        private final ArrayList<E> list;
1415 >        private int index; // current index, modified on advance/split
1416 >        private int fence; // -1 until used; then one past last index
1417 >        private int expectedModCount; // initialized when fence set
1418 >
1419 >        /** Create new spliterator covering the given  range */
1420 >        ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1421 >                             int expectedModCount) {
1422 >            this.list = list; // OK if null unless traversed
1423 >            this.index = origin;
1424 >            this.fence = fence;
1425 >            this.expectedModCount = expectedModCount;
1426 >        }
1427 >
1428 >        private int getFence() { // initialize fence to size on first use
1429 >            int hi; // (a specialized variant appears in method forEach)
1430 >            ArrayList<E> lst;
1431 >            if ((hi = fence) < 0) {
1432 >                if ((lst = list) == null)
1433 >                    hi = fence = 0;
1434 >                else {
1435 >                    expectedModCount = lst.modCount;
1436 >                    hi = fence = lst.size;
1437 >                }
1438 >            }
1439 >            return hi;
1440 >        }
1441 >
1442 >        public ArrayListSpliterator<E> trySplit() {
1443 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1444 >            return (lo >= mid) ? null : // divide range in half unless too small
1445 >                new ArrayListSpliterator<>(list, lo, index = mid,
1446 >                                           expectedModCount);
1447 >        }
1448 >
1449 >        public boolean tryAdvance(Consumer<? super E> action) {
1450 >            if (action == null)
1451 >                throw new NullPointerException();
1452 >            int hi = getFence(), i = index;
1453 >            if (i < hi) {
1454 >                index = i + 1;
1455 >                @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1456 >                action.accept(e);
1457 >                if (list.modCount != expectedModCount)
1458 >                    throw new ConcurrentModificationException();
1459 >                return true;
1460 >            }
1461 >            return false;
1462 >        }
1463 >
1464 >        public void forEachRemaining(Consumer<? super E> action) {
1465 >            int i, hi, mc; // hoist accesses and checks from loop
1466 >            ArrayList<E> lst; Object[] a;
1467 >            if (action == null)
1468 >                throw new NullPointerException();
1469 >            if ((lst = list) != null && (a = lst.elementData) != null) {
1470 >                if ((hi = fence) < 0) {
1471 >                    mc = lst.modCount;
1472 >                    hi = lst.size;
1473 >                }
1474 >                else
1475 >                    mc = expectedModCount;
1476 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
1477 >                    for (; i < hi; ++i) {
1478 >                        @SuppressWarnings("unchecked") E e = (E) a[i];
1479 >                        action.accept(e);
1480 >                    }
1481 >                    if (lst.modCount == mc)
1482 >                        return;
1483 >                }
1484 >            }
1485 >            throw new ConcurrentModificationException();
1486 >        }
1487 >
1488 >        public long estimateSize() {
1489 >            return (long) (getFence() - index);
1490 >        }
1491 >
1492 >        public int characteristics() {
1493 >            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1494 >        }
1495 >    }
1496 >
1497 >    @SuppressWarnings("unchecked")
1498 >    @Override
1499 >    public boolean removeIf(Predicate<? super E> filter) {
1500 >        Objects.requireNonNull(filter);
1501 >        int expectedModCount = modCount;
1502 >        final Object[] es = elementData;
1503 >        final int size = this.size;
1504 >        final boolean modified;
1505 >        int r;
1506 >        for (r = 0; r < size; r++)
1507 >            if (filter.test((E) es[r]))
1508 >                break;
1509 >        if (modified = (r < size)) {
1510 >            expectedModCount++;
1511 >            modCount++;
1512 >            int w = r++;
1513 >            try {
1514 >                for (E e; r < size; r++)
1515 >                    if (!filter.test(e = (E) es[r]))
1516 >                        es[w++] = e;
1517 >                Arrays.fill(es, (this.size = w), size, null);
1518 >            } catch (Throwable ex) {
1519 >                // copy remaining elements
1520 >                System.arraycopy(es, r, es, w, size - r);
1521 >                Arrays.fill(es, (this.size = w + size - r), size, null);
1522 >                throw ex;
1523 >            }
1524 >        }
1525 >        if (modCount != expectedModCount)
1526 >            throw new ConcurrentModificationException();
1527 >        return modified;
1528 >    }
1529 >
1530 >    @Override
1531 >    @SuppressWarnings("unchecked")
1532 >    public void replaceAll(UnaryOperator<E> operator) {
1533 >        Objects.requireNonNull(operator);
1534 >        final int expectedModCount = modCount;
1535 >        final int size = this.size;
1536 >        for (int i=0; modCount == expectedModCount && i < size; i++) {
1537 >            elementData[i] = operator.apply((E) elementData[i]);
1538 >        }
1539 >        if (modCount != expectedModCount) {
1540 >            throw new ConcurrentModificationException();
1541 >        }
1542 >        modCount++;
1543 >    }
1544 >
1545 >    @Override
1546 >    @SuppressWarnings("unchecked")
1547 >    public void sort(Comparator<? super E> c) {
1548 >        final int expectedModCount = modCount;
1549 >        Arrays.sort((E[]) elementData, 0, size, c);
1550 >        if (modCount != expectedModCount) {
1551 >            throw new ConcurrentModificationException();
1552 >        }
1553 >        modCount++;
1554      }
1555   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines