ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayList.java (file contents):
Revision 1.2 by dl, Fri Nov 25 13:34:29 2005 UTC vs.
Revision 1.55 by jsr166, Mon Jan 8 21:51:07 2018 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > import java.util.function.UnaryOperator;
31 > import jdk.internal.misc.SharedSecrets;
32  
33   /**
34 < * Resizable-array implementation of the <tt>List</tt> interface.  Implements
34 > * Resizable-array implementation of the {@code List} interface.  Implements
35   * all optional list operations, and permits all elements, including
36 < * <tt>null</tt>.  In addition to implementing the <tt>List</tt> interface,
36 > * {@code null}.  In addition to implementing the {@code List} interface,
37   * this class provides methods to manipulate the size of the array that is
38   * used internally to store the list.  (This class is roughly equivalent to
39 < * <tt>Vector</tt>, except that it is unsynchronized.)<p>
39 > * {@code Vector}, except that it is unsynchronized.)
40   *
41 < * The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
42 < * <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
43 < * time.  The <tt>add</tt> operation runs in <i>amortized constant time</i>,
41 > * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
42 > * {@code iterator}, and {@code listIterator} operations run in constant
43 > * time.  The {@code add} operation runs in <i>amortized constant time</i>,
44   * that is, adding n elements requires O(n) time.  All of the other operations
45   * run in linear time (roughly speaking).  The constant factor is low compared
46 < * to that for the <tt>LinkedList</tt> implementation.<p>
46 > * to that for the {@code LinkedList} implementation.
47   *
48 < * Each <tt>ArrayList</tt> instance has a <i>capacity</i>.  The capacity is
48 > * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
49   * the size of the array used to store the elements in the list.  It is always
50   * at least as large as the list size.  As elements are added to an ArrayList,
51   * its capacity grows automatically.  The details of the growth policy are not
52   * specified beyond the fact that adding an element has constant amortized
53 < * time cost.<p>
53 > * time cost.
54   *
55 < * An application can increase the capacity of an <tt>ArrayList</tt> instance
56 < * before adding a large number of elements using the <tt>ensureCapacity</tt>
55 > * <p>An application can increase the capacity of an {@code ArrayList} instance
56 > * before adding a large number of elements using the {@code ensureCapacity}
57   * operation.  This may reduce the amount of incremental reallocation.
58   *
59   * <p><strong>Note that this implementation is not synchronized.</strong>
60 < * If multiple threads access an <tt>ArrayList</tt> instance concurrently,
60 > * If multiple threads access an {@code ArrayList} instance concurrently,
61   * and at least one of the threads modifies the list structurally, it
62   * <i>must</i> be synchronized externally.  (A structural modification is
63   * any operation that adds or deletes one or more elements, or explicitly
# Line 49 | Line 71 | import java.util.*; // for javadoc (till
71   * unsynchronized access to the list:<pre>
72   *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
73   *
74 < * <p>The iterators returned by this class's <tt>iterator</tt> and
75 < * <tt>listIterator</tt> methods are <i>fail-fast</i>: if the list is
76 < * structurally modified at any time after the iterator is created, in any way
77 < * except through the iterator's own <tt>remove</tt> or <tt>add</tt> methods,
78 < * the iterator will throw a {@link ConcurrentModificationException}.  Thus, in
79 < * the face of concurrent modification, the iterator fails quickly and cleanly,
80 < * rather than risking arbitrary, non-deterministic behavior at an undetermined
81 < * time in the future.<p>
74 > * <p id="fail-fast">
75 > * The iterators returned by this class's {@link #iterator() iterator} and
76 > * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
77 > * if the list is structurally modified at any time after the iterator is
78 > * created, in any way except through the iterator's own
79 > * {@link ListIterator#remove() remove} or
80 > * {@link ListIterator#add(Object) add} methods, the iterator will throw a
81 > * {@link ConcurrentModificationException}.  Thus, in the face of
82 > * concurrent modification, the iterator fails quickly and cleanly, rather
83 > * than risking arbitrary, non-deterministic behavior at an undetermined
84 > * time in the future.
85   *
86 < * Note that the fail-fast behavior of an iterator cannot be guaranteed
86 > * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
87   * as it is, generally speaking, impossible to make any hard guarantees in the
88   * presence of unsynchronized concurrent modification.  Fail-fast iterators
89 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
89 > * throw {@code ConcurrentModificationException} on a best-effort basis.
90   * Therefore, it would be wrong to write a program that depended on this
91 < * exception for its correctness: <i>the fail-fast behavior of iterators
92 < * should be used only to detect bugs.</i><p>
91 > * exception for its correctness:  <i>the fail-fast behavior of iterators
92 > * should be used only to detect bugs.</i>
93   *
94 < * This class is a member of the
95 < * <a href="{@docRoot}/../guide/collections/index.html">
94 > * <p>This class is a member of the
95 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
96   * Java Collections Framework</a>.
97   *
98 + * @param <E> the type of elements in this list
99 + *
100   * @author  Josh Bloch
101   * @author  Neal Gafter
102 < * @version %I%, %G%
103 < * @see     Collection
104 < * @see     List
105 < * @see     LinkedList
79 < * @see     Vector
102 > * @see     Collection
103 > * @see     List
104 > * @see     LinkedList
105 > * @see     Vector
106   * @since   1.2
107   */
82
108   public class ArrayList<E> extends AbstractList<E>
109          implements List<E>, RandomAccess, Cloneable, java.io.Serializable
110   {
111      private static final long serialVersionUID = 8683452581122892189L;
112  
113      /**
114 +     * Default initial capacity.
115 +     */
116 +    private static final int DEFAULT_CAPACITY = 10;
117 +
118 +    /**
119 +     * Shared empty array instance used for empty instances.
120 +     */
121 +    private static final Object[] EMPTY_ELEMENTDATA = {};
122 +
123 +    /**
124 +     * Shared empty array instance used for default sized empty instances. We
125 +     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
126 +     * first element is added.
127 +     */
128 +    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
129 +
130 +    /**
131       * The array buffer into which the elements of the ArrayList are stored.
132 <     * The capacity of the ArrayList is the length of this array buffer.
132 >     * The capacity of the ArrayList is the length of this array buffer. Any
133 >     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
134 >     * will be expanded to DEFAULT_CAPACITY when the first element is added.
135       */
136 <    private transient Object[] elementData;
136 >    transient Object[] elementData; // non-private to simplify nested class access
137  
138      /**
139       * The size of the ArrayList (the number of elements it contains).
# Line 101 | Line 145 | public class ArrayList<E> extends Abstra
145      /**
146       * Constructs an empty list with the specified initial capacity.
147       *
148 <     * @param   initialCapacity   the initial capacity of the list
149 <     * @exception IllegalArgumentException if the specified initial capacity
150 <     *            is negative
148 >     * @param  initialCapacity  the initial capacity of the list
149 >     * @throws IllegalArgumentException if the specified initial capacity
150 >     *         is negative
151       */
152      public ArrayList(int initialCapacity) {
153 <        super();
154 <        if (initialCapacity < 0)
153 >        if (initialCapacity > 0) {
154 >            this.elementData = new Object[initialCapacity];
155 >        } else if (initialCapacity == 0) {
156 >            this.elementData = EMPTY_ELEMENTDATA;
157 >        } else {
158              throw new IllegalArgumentException("Illegal Capacity: "+
159                                                 initialCapacity);
160 <        this.elementData = new Object[initialCapacity];
160 >        }
161      }
162  
163      /**
164       * Constructs an empty list with an initial capacity of ten.
165       */
166      public ArrayList() {
167 <        this(10);
167 >        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
168      }
169  
170      /**
171       * Constructs a list containing the elements of the specified
172       * collection, in the order they are returned by the collection's
173 <     * iterator.  The <tt>ArrayList</tt> instance has an initial capacity of
127 <     * 110% the size of the specified collection.
173 >     * iterator.
174       *
175       * @param c the collection whose elements are to be placed into this list
176       * @throws NullPointerException if the specified collection is null
177       */
178      public ArrayList(Collection<? extends E> c) {
179 <        int size = c.size();
180 <        // 10% for growth
181 <        int cap = ((size/10)+1)*11;
182 <        if (cap > 0) {
183 <            Object[] a = new Object[cap];
184 <            a[size] = a[size+1] = UNALLOCATED;
185 <            Object[] b = c.toArray(a);
186 <            if (b[size] == null && b[size+1] == UNALLOCATED) {
187 <                b[size+1] = null;
188 <                elementData = b;
189 <                this.size = size;
190 <                return;
145 <            }
146 <        }
147 <        initFromConcurrentlyMutating(c);
148 <    }
149 <    
150 <    private void initFromConcurrentlyMutating(Collection<? extends E> c) {
151 <        elementData = c.toArray();
152 <        size = elementData.length;
153 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
154 <        if (elementData.getClass() != Object[].class)
155 <            elementData = Arrays.copyOf(elementData, size, Object[].class);
156 <    }
157 <    
158 <    private final static Object UNALLOCATED = new Object();
159 <    
179 >        elementData = c.toArray();
180 >        if ((size = elementData.length) != 0) {
181 >            // defend against c.toArray (incorrectly) not returning Object[]
182 >            // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
183 >            if (elementData.getClass() != Object[].class)
184 >                elementData = Arrays.copyOf(elementData, size, Object[].class);
185 >        } else {
186 >            // replace with empty array.
187 >            this.elementData = EMPTY_ELEMENTDATA;
188 >        }
189 >    }
190 >
191      /**
192 <     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
192 >     * Trims the capacity of this {@code ArrayList} instance to be the
193       * list's current size.  An application can use this operation to minimize
194 <     * the storage of an <tt>ArrayList</tt> instance.
194 >     * the storage of an {@code ArrayList} instance.
195       */
196      public void trimToSize() {
197 <        modCount++;
198 <        int oldCapacity = elementData.length;
199 <        if (size < oldCapacity) {
200 <            elementData = Arrays.copyOf(elementData, size);
201 <        }
197 >        modCount++;
198 >        if (size < elementData.length) {
199 >            elementData = (size == 0)
200 >              ? EMPTY_ELEMENTDATA
201 >              : Arrays.copyOf(elementData, size);
202 >        }
203      }
204  
205      /**
206 <     * Increases the capacity of this <tt>ArrayList</tt> instance, if
206 >     * Increases the capacity of this {@code ArrayList} instance, if
207       * necessary, to ensure that it can hold at least the number of elements
208       * specified by the minimum capacity argument.
209       *
210 <     * @param   minCapacity   the desired minimum capacity
210 >     * @param minCapacity the desired minimum capacity
211       */
212 +    public void ensureCapacity(int minCapacity) {
213 +        if (minCapacity > elementData.length
214 +            && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
215 +                 && minCapacity <= DEFAULT_CAPACITY)) {
216 +            modCount++;
217 +            grow(minCapacity);
218 +        }
219 +    }
220 +
221      /**
222 <     * Increases the capacity of this <tt>ArrayList</tt> instance, if
223 <     * necessary, to ensure that it can hold at least the number of elements
224 <     * specified by the minimum capacity argument.
222 >     * The maximum size of array to allocate (unless necessary).
223 >     * Some VMs reserve some header words in an array.
224 >     * Attempts to allocate larger arrays may result in
225 >     * OutOfMemoryError: Requested array size exceeds VM limit
226 >     */
227 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
228 >
229 >    /**
230 >     * Increases the capacity to ensure that it can hold at least the
231 >     * number of elements specified by the minimum capacity argument.
232       *
233 <     * @param   minCapacity   the desired minimum capacity
233 >     * @param minCapacity the desired minimum capacity
234 >     * @throws OutOfMemoryError if minCapacity is less than zero
235       */
236 <    public void ensureCapacity(int minCapacity) {
237 <        modCount++;
238 <        if (minCapacity > elementData.length)
239 <            growArray(minCapacity);
236 >    private Object[] grow(int minCapacity) {
237 >        return elementData = Arrays.copyOf(elementData,
238 >                                           newCapacity(minCapacity));
239 >    }
240 >
241 >    private Object[] grow() {
242 >        return grow(size + 1);
243      }
244  
245      /**
246 <     * Increase the capacity of the array.
247 <     * @param   minCapacity   the desired minimum capacity
248 <     */
249 <    private void growArray(int minCapacity) {
250 <        int oldCapacity = elementData.length;
251 <        // Double size if small; else grow by 50%
252 <        int newCapacity = ((oldCapacity < 64)?
253 <                           (oldCapacity * 2):
254 <                           ((oldCapacity * 3)/2 + 1));
255 <        if (newCapacity < minCapacity)
256 <            newCapacity = minCapacity;
257 <        elementData = Arrays.copyOf(elementData, newCapacity);
246 >     * Returns a capacity at least as large as the given minimum capacity.
247 >     * Returns the current capacity increased by 50% if that suffices.
248 >     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
249 >     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
250 >     *
251 >     * @param minCapacity the desired minimum capacity
252 >     * @throws OutOfMemoryError if minCapacity is less than zero
253 >     */
254 >    private int newCapacity(int minCapacity) {
255 >        // overflow-conscious code
256 >        int oldCapacity = elementData.length;
257 >        int newCapacity = oldCapacity + (oldCapacity >> 1);
258 >        if (newCapacity - minCapacity <= 0) {
259 >            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
260 >                return Math.max(DEFAULT_CAPACITY, minCapacity);
261 >            if (minCapacity < 0) // overflow
262 >                throw new OutOfMemoryError();
263 >            return minCapacity;
264 >        }
265 >        return (newCapacity - MAX_ARRAY_SIZE <= 0)
266 >            ? newCapacity
267 >            : hugeCapacity(minCapacity);
268 >    }
269 >
270 >    private static int hugeCapacity(int minCapacity) {
271 >        if (minCapacity < 0) // overflow
272 >            throw new OutOfMemoryError();
273 >        return (minCapacity > MAX_ARRAY_SIZE)
274 >            ? Integer.MAX_VALUE
275 >            : MAX_ARRAY_SIZE;
276      }
277  
278      /**
# Line 211 | Line 281 | public class ArrayList<E> extends Abstra
281       * @return the number of elements in this list
282       */
283      public int size() {
284 <        return size;
284 >        return size;
285      }
286  
287      /**
288 <     * Returns <tt>true</tt> if this list contains no elements.
288 >     * Returns {@code true} if this list contains no elements.
289       *
290 <     * @return <tt>true</tt> if this list contains no elements
290 >     * @return {@code true} if this list contains no elements
291       */
292      public boolean isEmpty() {
293 <        return size == 0;
293 >        return size == 0;
294      }
295  
296      /**
297 <     * Returns <tt>true</tt> if this list contains the specified element.
298 <     * More formally, returns <tt>true</tt> if and only if this list contains
299 <     * at least one element <tt>e</tt> such that
300 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
297 >     * Returns {@code true} if this list contains the specified element.
298 >     * More formally, returns {@code true} if and only if this list contains
299 >     * at least one element {@code e} such that
300 >     * {@code Objects.equals(o, e)}.
301       *
302       * @param o element whose presence in this list is to be tested
303 <     * @return <tt>true</tt> if this list contains the specified element
303 >     * @return {@code true} if this list contains the specified element
304       */
305      public boolean contains(Object o) {
306 <        return indexOf(o) >= 0;
306 >        return indexOf(o) >= 0;
307      }
308  
309      /**
310       * Returns the index of the first occurrence of the specified element
311       * in this list, or -1 if this list does not contain the element.
312 <     * More formally, returns the lowest index <tt>i</tt> such that
313 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
312 >     * More formally, returns the lowest index {@code i} such that
313 >     * {@code Objects.equals(o, get(i))},
314       * or -1 if there is no such index.
315       */
316      public int indexOf(Object o) {
317 <        if (o == null) {
318 <            for (int i = 0; i < size; i++)
319 <                if (elementData[i]==null)
320 <                    return i;
321 <        } else {
322 <            for (int i = 0; i < size; i++)
323 <                if (o.equals(elementData[i]))
324 <                    return i;
325 <        }
326 <        return -1;
317 >        if (o == null) {
318 >            for (int i = 0; i < size; i++)
319 >                if (elementData[i]==null)
320 >                    return i;
321 >        } else {
322 >            for (int i = 0; i < size; i++)
323 >                if (o.equals(elementData[i]))
324 >                    return i;
325 >        }
326 >        return -1;
327      }
328  
329      /**
330       * Returns the index of the last occurrence of the specified element
331       * in this list, or -1 if this list does not contain the element.
332 <     * More formally, returns the highest index <tt>i</tt> such that
333 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
332 >     * More formally, returns the highest index {@code i} such that
333 >     * {@code Objects.equals(o, get(i))},
334       * or -1 if there is no such index.
335       */
336      public int lastIndexOf(Object o) {
337 <        if (o == null) {
338 <            for (int i = size-1; i >= 0; i--)
339 <                if (elementData[i]==null)
340 <                    return i;
341 <        } else {
342 <            for (int i = size-1; i >= 0; i--)
343 <                if (o.equals(elementData[i]))
344 <                    return i;
345 <        }
346 <        return -1;
337 >        if (o == null) {
338 >            for (int i = size-1; i >= 0; i--)
339 >                if (elementData[i]==null)
340 >                    return i;
341 >        } else {
342 >            for (int i = size-1; i >= 0; i--)
343 >                if (o.equals(elementData[i]))
344 >                    return i;
345 >        }
346 >        return -1;
347      }
348  
349      /**
350 <     * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
350 >     * Returns a shallow copy of this {@code ArrayList} instance.  (The
351       * elements themselves are not copied.)
352       *
353 <     * @return a clone of this <tt>ArrayList</tt> instance
353 >     * @return a clone of this {@code ArrayList} instance
354       */
355      public Object clone() {
356 <        try {
357 <            ArrayList<E> v = (ArrayList<E>) super.clone();
358 <            v.elementData = Arrays.copyOf(elementData, size);
359 <            v.modCount = 0;
360 <            return v;
361 <        } catch (CloneNotSupportedException e) {
362 <            // this shouldn't happen, since we are Cloneable
363 <            throw new InternalError();
364 <        }
356 >        try {
357 >            ArrayList<?> v = (ArrayList<?>) super.clone();
358 >            v.elementData = Arrays.copyOf(elementData, size);
359 >            v.modCount = 0;
360 >            return v;
361 >        } catch (CloneNotSupportedException e) {
362 >            // this shouldn't happen, since we are Cloneable
363 >            throw new InternalError(e);
364 >        }
365      }
366  
367      /**
# Line 323 | Line 393 | public class ArrayList<E> extends Abstra
393       * <p>If the list fits in the specified array with room to spare
394       * (i.e., the array has more elements than the list), the element in
395       * the array immediately following the end of the collection is set to
396 <     * <tt>null</tt>.  (This is useful in determining the length of the
396 >     * {@code null}.  (This is useful in determining the length of the
397       * list <i>only</i> if the caller knows that the list does not contain
398       * any null elements.)
399       *
# Line 336 | Line 406 | public class ArrayList<E> extends Abstra
406       *         this list
407       * @throws NullPointerException if the specified array is null
408       */
409 +    @SuppressWarnings("unchecked")
410      public <T> T[] toArray(T[] a) {
411          if (a.length < size)
412              // Make a new array of a's runtime type, but my contents:
413              return (T[]) Arrays.copyOf(elementData, size, a.getClass());
414 <        System.arraycopy(elementData, 0, a, 0, size);
414 >        System.arraycopy(elementData, 0, a, 0, size);
415          if (a.length > size)
416              a[size] = null;
417          return a;
# Line 348 | Line 419 | public class ArrayList<E> extends Abstra
419  
420      // Positional Access Operations
421  
422 <    /**
423 <     * Create and return an appropriate exception for indexing errors
424 <     */
354 <    private static IndexOutOfBoundsException rangeException(int i, int s) {
355 <        return new IndexOutOfBoundsException("Index: " + i + ", Size: " + s);
422 >    @SuppressWarnings("unchecked")
423 >    E elementData(int index) {
424 >        return (E) elementData[index];
425      }
426  
427 <    // Positional Access Operations
427 >    @SuppressWarnings("unchecked")
428 >    static <E> E elementAt(Object[] es, int index) {
429 >        return (E) es[index];
430 >    }
431  
432      /**
433       * Returns the element at the specified position in this list.
# Line 365 | Line 437 | public class ArrayList<E> extends Abstra
437       * @throws IndexOutOfBoundsException {@inheritDoc}
438       */
439      public E get(int index) {
440 <        if (index >= size)
441 <            throw rangeException(index, size);
370 <        return (E)elementData[index];
440 >        Objects.checkIndex(index, size);
441 >        return elementData(index);
442      }
443  
444      /**
# Line 380 | Line 451 | public class ArrayList<E> extends Abstra
451       * @throws IndexOutOfBoundsException {@inheritDoc}
452       */
453      public E set(int index, E element) {
454 <        if (index >= size)
455 <             throw rangeException(index, size);
454 >        Objects.checkIndex(index, size);
455 >        E oldValue = elementData(index);
456 >        elementData[index] = element;
457 >        return oldValue;
458 >    }
459  
460 <        E oldValue = (E) elementData[index];
461 <        elementData[index] = element;
462 <        return oldValue;
460 >    /**
461 >     * This helper method split out from add(E) to keep method
462 >     * bytecode size under 35 (the -XX:MaxInlineSize default value),
463 >     * which helps when add(E) is called in a C1-compiled loop.
464 >     */
465 >    private void add(E e, Object[] elementData, int s) {
466 >        if (s == elementData.length)
467 >            elementData = grow();
468 >        elementData[s] = e;
469 >        size = s + 1;
470      }
471  
472      /**
473       * Appends the specified element to the end of this list.
474       *
475       * @param e element to be appended to this list
476 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
476 >     * @return {@code true} (as specified by {@link Collection#add})
477       */
478      public boolean add(E e) {
479 <        ++modCount;
480 <        int s = size++;
481 <        if (s >= elementData.length)
401 <            growArray(s + 1);
402 <        elementData[s] = e;
403 <        return true;
479 >        modCount++;
480 >        add(e, elementData, size);
481 >        return true;
482      }
483  
484      /**
# Line 413 | Line 491 | public class ArrayList<E> extends Abstra
491       * @throws IndexOutOfBoundsException {@inheritDoc}
492       */
493      public void add(int index, E element) {
494 <        int s = size;
495 <        if (index > s || index < 0)
496 <            throw rangeException(index, s);
497 <        ++modCount;
494 >        rangeCheckForAdd(index);
495 >        modCount++;
496 >        final int s;
497 >        Object[] elementData;
498 >        if ((s = size) == (elementData = this.elementData).length)
499 >            elementData = grow();
500 >        System.arraycopy(elementData, index,
501 >                         elementData, index + 1,
502 >                         s - index);
503 >        elementData[index] = element;
504          size = s + 1;
505 <        if (s >= elementData.length)
422 <            growArray(s + 1);
423 <        System.arraycopy(elementData, index, elementData, index + 1,
424 <                         s - index);
425 <        elementData[index] = element;
505 >        // checkInvariants();
506      }
507  
508      /**
# Line 435 | Line 515 | public class ArrayList<E> extends Abstra
515       * @throws IndexOutOfBoundsException {@inheritDoc}
516       */
517      public E remove(int index) {
518 <        int s = size - 1;
519 <        if (index > s)
520 <            throw rangeException(index, size);
521 <        size = s;
522 <        modCount++;
523 <        Object oldValue = elementData[index];
524 <        int numMoved = s - index;
525 <        if (numMoved > 0)
446 <            System.arraycopy(elementData, index+1, elementData, index,
447 <                             numMoved);
448 <        elementData[s] = null; // forget removed element
449 <        return (E)oldValue;
518 >        Objects.checkIndex(index, size);
519 >        final Object[] es = elementData;
520 >
521 >        @SuppressWarnings("unchecked") E oldValue = (E) es[index];
522 >        fastRemove(es, index);
523 >
524 >        // checkInvariants();
525 >        return oldValue;
526      }
527  
528      /**
529       * Removes the first occurrence of the specified element from this list,
530       * if it is present.  If the list does not contain the element, it is
531       * unchanged.  More formally, removes the element with the lowest index
532 <     * <tt>i</tt> such that
533 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
534 <     * (if such an element exists).  Returns <tt>true</tt> if this list
532 >     * {@code i} such that
533 >     * {@code Objects.equals(o, get(i))}
534 >     * (if such an element exists).  Returns {@code true} if this list
535       * contained the specified element (or equivalently, if this list
536       * changed as a result of the call).
537       *
538       * @param o element to be removed from this list, if present
539 <     * @return <tt>true</tt> if this list contained the specified element
539 >     * @return {@code true} if this list contained the specified element
540       */
541      public boolean remove(Object o) {
542 <        if (o == null) {
543 <            for (int index = 0; index < size; index++)
544 <                if (elementData[index] == null) {
545 <                    fastRemove(index);
546 <                    return true;
547 <                }
548 <        } else {
549 <            for (int index = 0; index < size; index++)
550 <                if (o.equals(elementData[index])) {
551 <                    fastRemove(index);
552 <                    return true;
553 <                }
542 >        final Object[] es = elementData;
543 >        final int size = this.size;
544 >        int i = 0;
545 >        found: {
546 >            if (o == null) {
547 >                for (; i < size; i++)
548 >                    if (es[i] == null)
549 >                        break found;
550 >            } else {
551 >                for (; i < size; i++)
552 >                    if (o.equals(es[i]))
553 >                        break found;
554 >            }
555 >            return false;
556          }
557 <        return false;
557 >        fastRemove(es, i);
558 >        return true;
559      }
560  
561 <    /*
561 >    /**
562       * Private remove method that skips bounds checking and does not
563       * return the value removed.
564       */
565 <    private void fastRemove(int index) {
565 >    private void fastRemove(Object[] es, int i) {
566          modCount++;
567 <        int numMoved = size - index - 1;
568 <        if (numMoved > 0)
569 <            System.arraycopy(elementData, index+1, elementData, index,
570 <                             numMoved);
492 <        elementData[--size] = null; // Let gc do its work
567 >        final int newSize;
568 >        if ((newSize = size - 1) > i)
569 >            System.arraycopy(es, i + 1, es, i, newSize - i);
570 >        es[size = newSize] = null;
571      }
572  
573      /**
# Line 497 | Line 575 | public class ArrayList<E> extends Abstra
575       * be empty after this call returns.
576       */
577      public void clear() {
578 <        modCount++;
579 <
580 <        // Let gc do its work
581 <        for (int i = 0; i < size; i++)
504 <            elementData[i] = null;
505 <
506 <        size = 0;
578 >        modCount++;
579 >        final Object[] es = elementData;
580 >        for (int to = size, i = size = 0; i < to; i++)
581 >            es[i] = null;
582      }
583  
584      /**
# Line 516 | Line 591 | public class ArrayList<E> extends Abstra
591       * list is nonempty.)
592       *
593       * @param c collection containing elements to be added to this list
594 <     * @return <tt>true</tt> if this list changed as a result of the call
594 >     * @return {@code true} if this list changed as a result of the call
595       * @throws NullPointerException if the specified collection is null
596       */
597      public boolean addAll(Collection<? extends E> c) {
598 <        Object[] a = c.toArray();
598 >        Object[] a = c.toArray();
599 >        modCount++;
600          int numNew = a.length;
601 <        ensureCapacity(size + numNew);  // Increments modCount
602 <        System.arraycopy(a, 0, elementData, size, numNew);
603 <        size += numNew;
604 <        return numNew != 0;
601 >        if (numNew == 0)
602 >            return false;
603 >        Object[] elementData;
604 >        final int s;
605 >        if (numNew > (elementData = this.elementData).length - (s = size))
606 >            elementData = grow(s + numNew);
607 >        System.arraycopy(a, 0, elementData, s, numNew);
608 >        size = s + numNew;
609 >        // checkInvariants();
610 >        return true;
611      }
612  
613      /**
# Line 539 | Line 621 | public class ArrayList<E> extends Abstra
621       * @param index index at which to insert the first element from the
622       *              specified collection
623       * @param c collection containing elements to be added to this list
624 <     * @return <tt>true</tt> if this list changed as a result of the call
624 >     * @return {@code true} if this list changed as a result of the call
625       * @throws IndexOutOfBoundsException {@inheritDoc}
626       * @throws NullPointerException if the specified collection is null
627       */
628      public boolean addAll(int index, Collection<? extends E> c) {
629 <        if (index > size || index < 0)
630 <            throw new IndexOutOfBoundsException(
631 <                "Index: " + index + ", Size: " + size);
632 <
633 <        Object[] a = c.toArray();
634 <        int numNew = a.length;
635 <        ensureCapacity(size + numNew);  // Increments modCount
636 <
637 <        int numMoved = size - index;
638 <        if (numMoved > 0)
639 <            System.arraycopy(elementData, index, elementData, index + numNew,
558 <                             numMoved);
629 >        rangeCheckForAdd(index);
630 >
631 >        Object[] a = c.toArray();
632 >        modCount++;
633 >        int numNew = a.length;
634 >        if (numNew == 0)
635 >            return false;
636 >        Object[] elementData;
637 >        final int s;
638 >        if (numNew > (elementData = this.elementData).length - (s = size))
639 >            elementData = grow(s + numNew);
640  
641 +        int numMoved = s - index;
642 +        if (numMoved > 0)
643 +            System.arraycopy(elementData, index,
644 +                             elementData, index + numNew,
645 +                             numMoved);
646          System.arraycopy(a, 0, elementData, index, numNew);
647 <        size += numNew;
648 <        return numNew != 0;
647 >        size = s + numNew;
648 >        // checkInvariants();
649 >        return true;
650      }
651  
652      /**
653       * Removes from this list all of the elements whose index is between
654 <     * <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive.
654 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
655       * Shifts any succeeding elements to the left (reduces their index).
656 <     * This call shortens the list by <tt>(toIndex - fromIndex)</tt> elements.
657 <     * (If <tt>toIndex==fromIndex</tt>, this operation has no effect.)
656 >     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
657 >     * (If {@code toIndex==fromIndex}, this operation has no effect.)
658       *
659 <     * @param fromIndex index of first element to be removed
660 <     * @param toIndex index after last element to be removed
661 <     * @throws IndexOutOfBoundsException if fromIndex or toIndex out of
662 <     *              range (fromIndex &lt; 0 || fromIndex &gt;= size() || toIndex
663 <     *              &gt; size() || toIndex &lt; fromIndex)
659 >     * @throws IndexOutOfBoundsException if {@code fromIndex} or
660 >     *         {@code toIndex} is out of range
661 >     *         ({@code fromIndex < 0 ||
662 >     *          toIndex > size() ||
663 >     *          toIndex < fromIndex})
664       */
665      protected void removeRange(int fromIndex, int toIndex) {
666 <        modCount++;
667 <        int numMoved = size - toIndex;
668 <        System.arraycopy(elementData, toIndex, elementData, fromIndex,
669 <                         numMoved);
666 >        if (fromIndex > toIndex) {
667 >            throw new IndexOutOfBoundsException(
668 >                    outOfBoundsMsg(fromIndex, toIndex));
669 >        }
670 >        modCount++;
671 >        shiftTailOverGap(elementData, fromIndex, toIndex);
672 >        // checkInvariants();
673 >    }
674 >
675 >    /** Erases the gap from lo to hi, by sliding down following elements. */
676 >    private void shiftTailOverGap(Object[] es, int lo, int hi) {
677 >        System.arraycopy(es, hi, es, lo, size - hi);
678 >        for (int to = size, i = (size -= hi - lo); i < to; i++)
679 >            es[i] = null;
680 >    }
681 >
682 >    /**
683 >     * A version of rangeCheck used by add and addAll.
684 >     */
685 >    private void rangeCheckForAdd(int index) {
686 >        if (index > size || index < 0)
687 >            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
688 >    }
689 >
690 >    /**
691 >     * Constructs an IndexOutOfBoundsException detail message.
692 >     * Of the many possible refactorings of the error handling code,
693 >     * this "outlining" performs best with both server and client VMs.
694 >     */
695 >    private String outOfBoundsMsg(int index) {
696 >        return "Index: "+index+", Size: "+size;
697 >    }
698  
699 <        // Let gc do its work
700 <        int newSize = size - (toIndex-fromIndex);
701 <        while (size != newSize)
702 <            elementData[--size] = null;
699 >    /**
700 >     * A version used in checking (fromIndex > toIndex) condition
701 >     */
702 >    private static String outOfBoundsMsg(int fromIndex, int toIndex) {
703 >        return "From Index: " + fromIndex + " > To Index: " + toIndex;
704      }
705  
706      /**
707 <     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
708 <     * is, serialize it).
707 >     * Removes from this list all of its elements that are contained in the
708 >     * specified collection.
709       *
710 <     * @serialData The length of the array backing the <tt>ArrayList</tt>
710 >     * @param c collection containing elements to be removed from this list
711 >     * @return {@code true} if this list changed as a result of the call
712 >     * @throws ClassCastException if the class of an element of this list
713 >     *         is incompatible with the specified collection
714 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
715 >     * @throws NullPointerException if this list contains a null element and the
716 >     *         specified collection does not permit null elements
717 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
718 >     *         or if the specified collection is null
719 >     * @see Collection#contains(Object)
720 >     */
721 >    public boolean removeAll(Collection<?> c) {
722 >        return batchRemove(c, false, 0, size);
723 >    }
724 >
725 >    /**
726 >     * Retains only the elements in this list that are contained in the
727 >     * specified collection.  In other words, removes from this list all
728 >     * of its elements that are not contained in the specified collection.
729 >     *
730 >     * @param c collection containing elements to be retained in this list
731 >     * @return {@code true} if this list changed as a result of the call
732 >     * @throws ClassCastException if the class of an element of this list
733 >     *         is incompatible with the specified collection
734 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
735 >     * @throws NullPointerException if this list contains a null element and the
736 >     *         specified collection does not permit null elements
737 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
738 >     *         or if the specified collection is null
739 >     * @see Collection#contains(Object)
740 >     */
741 >    public boolean retainAll(Collection<?> c) {
742 >        return batchRemove(c, true, 0, size);
743 >    }
744 >
745 >    boolean batchRemove(Collection<?> c, boolean complement,
746 >                        final int from, final int end) {
747 >        Objects.requireNonNull(c);
748 >        final Object[] es = elementData;
749 >        int r;
750 >        // Optimize for initial run of survivors
751 >        for (r = from;; r++) {
752 >            if (r == end)
753 >                return false;
754 >            if (c.contains(es[r]) != complement)
755 >                break;
756 >        }
757 >        int w = r++;
758 >        try {
759 >            for (Object e; r < end; r++)
760 >                if (c.contains(e = es[r]) == complement)
761 >                    es[w++] = e;
762 >        } catch (Throwable ex) {
763 >            // Preserve behavioral compatibility with AbstractCollection,
764 >            // even if c.contains() throws.
765 >            System.arraycopy(es, r, es, w, end - r);
766 >            w += end - r;
767 >            throw ex;
768 >        } finally {
769 >            modCount += end - w;
770 >            shiftTailOverGap(es, w, end);
771 >        }
772 >        // checkInvariants();
773 >        return true;
774 >    }
775 >
776 >    /**
777 >     * Saves the state of the {@code ArrayList} instance to a stream
778 >     * (that is, serializes it).
779 >     *
780 >     * @param s the stream
781 >     * @throws java.io.IOException if an I/O error occurs
782 >     * @serialData The length of the array backing the {@code ArrayList}
783       *             instance is emitted (int), followed by all of its elements
784 <     *             (each an <tt>Object</tt>) in the proper order.
784 >     *             (each an {@code Object}) in the proper order.
785       */
786      private void writeObject(java.io.ObjectOutputStream s)
787 <        throws java.io.IOException{
788 <        // Write out element count, and any hidden stuff
789 <        int expectedModCount = modCount;
790 <        s.defaultWriteObject();
787 >        throws java.io.IOException {
788 >        // Write out element count, and any hidden stuff
789 >        int expectedModCount = modCount;
790 >        s.defaultWriteObject();
791  
792 <        // Write out array length
793 <        s.writeInt(elementData.length);
792 >        // Write out size as capacity for behavioral compatibility with clone()
793 >        s.writeInt(size);
794  
795 <        // Write out all elements in the proper order.
796 <        for (int i=0; i<size; i++)
795 >        // Write out all elements in the proper order.
796 >        for (int i=0; i<size; i++) {
797              s.writeObject(elementData[i]);
798 +        }
799  
800 <        if (modCount != expectedModCount) {
800 >        if (modCount != expectedModCount) {
801              throw new ConcurrentModificationException();
802          }
614
803      }
804  
805      /**
806 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
807 <     * deserialize it).
806 >     * Reconstitutes the {@code ArrayList} instance from a stream (that is,
807 >     * deserializes it).
808 >     * @param s the stream
809 >     * @throws ClassNotFoundException if the class of a serialized object
810 >     *         could not be found
811 >     * @throws java.io.IOException if an I/O error occurs
812       */
813      private void readObject(java.io.ObjectInputStream s)
814          throws java.io.IOException, ClassNotFoundException {
623        // Read in size, and any hidden stuff
624        s.defaultReadObject();
815  
816 <        // Read in array length and allocate array
817 <        int arrayLength = s.readInt();
628 <        Object[] a = elementData = new Object[arrayLength];
816 >        // Read in size, and any hidden stuff
817 >        s.defaultReadObject();
818  
819 <        // Read in all elements in the proper order.
820 <        for (int i=0; i<size; i++)
821 <            a[i] = s.readObject();
822 <    }
819 >        // Read in capacity
820 >        s.readInt(); // ignored
821 >
822 >        if (size > 0) {
823 >            // like clone(), allocate array based upon size not capacity
824 >            SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
825 >            Object[] elements = new Object[size];
826 >
827 >            // Read in all elements in the proper order.
828 >            for (int i = 0; i < size; i++) {
829 >                elements[i] = s.readObject();
830 >            }
831  
832 +            elementData = elements;
833 +        } else if (size == 0) {
834 +            elementData = EMPTY_ELEMENTDATA;
835 +        } else {
836 +            throw new java.io.InvalidObjectException("Invalid size: " + size);
837 +        }
838 +    }
839  
840      /**
841 <     * Returns a list-iterator of the elements in this list (in proper
841 >     * Returns a list iterator over the elements in this list (in proper
842       * sequence), starting at the specified position in the list.
843 <     * Obeys the general contract of <tt>List.listIterator(int)</tt>.<p>
843 >     * The specified index indicates the first element that would be
844 >     * returned by an initial call to {@link ListIterator#next next}.
845 >     * An initial call to {@link ListIterator#previous previous} would
846 >     * return the element with the specified index minus one.
847 >     *
848 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
849       *
641     * The list-iterator is <i>fail-fast</i>: if the list is structurally
642     * modified at any time after the Iterator is created, in any way except
643     * through the list-iterator's own <tt>remove</tt> or <tt>add</tt>
644     * methods, the list-iterator will throw a
645     * <tt>ConcurrentModificationException</tt>.  Thus, in the face of
646     * concurrent modification, the iterator fails quickly and cleanly, rather
647     * than risking arbitrary, non-deterministic behavior at an undetermined
648     * time in the future.
649     *
650     * @param index index of the first element to be returned from the
651     *              list-iterator (by a call to <tt>next</tt>)
652     * @return a ListIterator of the elements in this list (in proper
653     *         sequence), starting at the specified position in the list
850       * @throws IndexOutOfBoundsException {@inheritDoc}
655     * @see List#listIterator(int)
851       */
852      public ListIterator<E> listIterator(int index) {
853 <        if (index < 0 || index > size)
854 <            throw new IndexOutOfBoundsException("Index: "+index);
660 <        return new ArrayListIterator(index);
853 >        rangeCheckForAdd(index);
854 >        return new ListItr(index);
855      }
856 <
856 >
857 >    /**
858 >     * Returns a list iterator over the elements in this list (in proper
859 >     * sequence).
860 >     *
861 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
862 >     *
863 >     * @see #listIterator(int)
864 >     */
865 >    public ListIterator<E> listIterator() {
866 >        return new ListItr(0);
867 >    }
868 >
869      /**
870       * Returns an iterator over the elements in this list in proper sequence.
871       *
872 +     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
873 +     *
874       * @return an iterator over the elements in this list in proper sequence
875       */
876      public Iterator<E> iterator() {
877 <        return new ArrayListIterator(0);
877 >        return new Itr();
878 >    }
879 >
880 >    /**
881 >     * An optimized version of AbstractList.Itr
882 >     */
883 >    private class Itr implements Iterator<E> {
884 >        int cursor;       // index of next element to return
885 >        int lastRet = -1; // index of last element returned; -1 if no such
886 >        int expectedModCount = modCount;
887 >
888 >        // prevent creating a synthetic constructor
889 >        Itr() {}
890 >
891 >        public boolean hasNext() {
892 >            return cursor != size;
893 >        }
894 >
895 >        @SuppressWarnings("unchecked")
896 >        public E next() {
897 >            checkForComodification();
898 >            int i = cursor;
899 >            if (i >= size)
900 >                throw new NoSuchElementException();
901 >            Object[] elementData = ArrayList.this.elementData;
902 >            if (i >= elementData.length)
903 >                throw new ConcurrentModificationException();
904 >            cursor = i + 1;
905 >            return (E) elementData[lastRet = i];
906 >        }
907 >
908 >        public void remove() {
909 >            if (lastRet < 0)
910 >                throw new IllegalStateException();
911 >            checkForComodification();
912 >
913 >            try {
914 >                ArrayList.this.remove(lastRet);
915 >                cursor = lastRet;
916 >                lastRet = -1;
917 >                expectedModCount = modCount;
918 >            } catch (IndexOutOfBoundsException ex) {
919 >                throw new ConcurrentModificationException();
920 >            }
921 >        }
922 >
923 >        @Override
924 >        public void forEachRemaining(Consumer<? super E> action) {
925 >            Objects.requireNonNull(action);
926 >            final int size = ArrayList.this.size;
927 >            int i = cursor;
928 >            if (i < size) {
929 >                final Object[] es = elementData;
930 >                if (i >= es.length)
931 >                    throw new ConcurrentModificationException();
932 >                for (; i < size && modCount == expectedModCount; i++)
933 >                    action.accept(elementAt(es, i));
934 >                // update once at end to reduce heap write traffic
935 >                cursor = i;
936 >                lastRet = i - 1;
937 >                checkForComodification();
938 >            }
939 >        }
940 >
941 >        final void checkForComodification() {
942 >            if (modCount != expectedModCount)
943 >                throw new ConcurrentModificationException();
944 >        }
945      }
946  
947      /**
948 <     * A streamlined version of AbstractList.Itr
948 >     * An optimized version of AbstractList.ListItr
949       */
950 <    final class ArrayListIterator implements ListIterator<E> {
951 <        int cursor;           // index of next element to return;
952 <        int lastRet;          // index of last element, or -1 if no such
953 <        int expectedModCount; // to check for CME
950 >    private class ListItr extends Itr implements ListIterator<E> {
951 >        ListItr(int index) {
952 >            super();
953 >            cursor = index;
954 >        }
955  
956 <        ArrayListIterator(int index) {
957 <            cursor = index;
958 <            lastRet = -1;
959 <            expectedModCount = modCount;
960 <        }
956 >        public boolean hasPrevious() {
957 >            return cursor != 0;
958 >        }
959 >
960 >        public int nextIndex() {
961 >            return cursor;
962 >        }
963  
964 <        public boolean hasNext() {
965 <            return cursor < size;
966 <        }
964 >        public int previousIndex() {
965 >            return cursor - 1;
966 >        }
967  
968 <        public boolean hasPrevious() {
969 <            return cursor > 0;
970 <        }
968 >        @SuppressWarnings("unchecked")
969 >        public E previous() {
970 >            checkForComodification();
971 >            int i = cursor - 1;
972 >            if (i < 0)
973 >                throw new NoSuchElementException();
974 >            Object[] elementData = ArrayList.this.elementData;
975 >            if (i >= elementData.length)
976 >                throw new ConcurrentModificationException();
977 >            cursor = i;
978 >            return (E) elementData[lastRet = i];
979 >        }
980  
981 <        public int nextIndex() {
982 <            return cursor;
983 <        }
981 >        public void set(E e) {
982 >            if (lastRet < 0)
983 >                throw new IllegalStateException();
984 >            checkForComodification();
985 >
986 >            try {
987 >                ArrayList.this.set(lastRet, e);
988 >            } catch (IndexOutOfBoundsException ex) {
989 >                throw new ConcurrentModificationException();
990 >            }
991 >        }
992  
993 <        public int previousIndex() {
994 <            return cursor - 1;
700 <        }
993 >        public void add(E e) {
994 >            checkForComodification();
995  
996 <        public E next() {
703 <            if (expectedModCount == modCount) {
996 >            try {
997                  int i = cursor;
998 <                if (i < size) {
998 >                ArrayList.this.add(i, e);
999 >                cursor = i + 1;
1000 >                lastRet = -1;
1001 >                expectedModCount = modCount;
1002 >            } catch (IndexOutOfBoundsException ex) {
1003 >                throw new ConcurrentModificationException();
1004 >            }
1005 >        }
1006 >    }
1007 >
1008 >    /**
1009 >     * Returns a view of the portion of this list between the specified
1010 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1011 >     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1012 >     * empty.)  The returned list is backed by this list, so non-structural
1013 >     * changes in the returned list are reflected in this list, and vice-versa.
1014 >     * The returned list supports all of the optional list operations.
1015 >     *
1016 >     * <p>This method eliminates the need for explicit range operations (of
1017 >     * the sort that commonly exist for arrays).  Any operation that expects
1018 >     * a list can be used as a range operation by passing a subList view
1019 >     * instead of a whole list.  For example, the following idiom
1020 >     * removes a range of elements from a list:
1021 >     * <pre>
1022 >     *      list.subList(from, to).clear();
1023 >     * </pre>
1024 >     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1025 >     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1026 >     * {@link Collections} class can be applied to a subList.
1027 >     *
1028 >     * <p>The semantics of the list returned by this method become undefined if
1029 >     * the backing list (i.e., this list) is <i>structurally modified</i> in
1030 >     * any way other than via the returned list.  (Structural modifications are
1031 >     * those that change the size of this list, or otherwise perturb it in such
1032 >     * a fashion that iterations in progress may yield incorrect results.)
1033 >     *
1034 >     * @throws IndexOutOfBoundsException {@inheritDoc}
1035 >     * @throws IllegalArgumentException {@inheritDoc}
1036 >     */
1037 >    public List<E> subList(int fromIndex, int toIndex) {
1038 >        subListRangeCheck(fromIndex, toIndex, size);
1039 >        return new SubList<>(this, fromIndex, toIndex);
1040 >    }
1041 >
1042 >    private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1043 >        private final ArrayList<E> root;
1044 >        private final SubList<E> parent;
1045 >        private final int offset;
1046 >        private int size;
1047 >
1048 >        /**
1049 >         * Constructs a sublist of an arbitrary ArrayList.
1050 >         */
1051 >        public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1052 >            this.root = root;
1053 >            this.parent = null;
1054 >            this.offset = fromIndex;
1055 >            this.size = toIndex - fromIndex;
1056 >            this.modCount = root.modCount;
1057 >        }
1058 >
1059 >        /**
1060 >         * Constructs a sublist of another SubList.
1061 >         */
1062 >        private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1063 >            this.root = parent.root;
1064 >            this.parent = parent;
1065 >            this.offset = parent.offset + fromIndex;
1066 >            this.size = toIndex - fromIndex;
1067 >            this.modCount = root.modCount;
1068 >        }
1069 >
1070 >        public E set(int index, E element) {
1071 >            Objects.checkIndex(index, size);
1072 >            checkForComodification();
1073 >            E oldValue = root.elementData(offset + index);
1074 >            root.elementData[offset + index] = element;
1075 >            return oldValue;
1076 >        }
1077 >
1078 >        public E get(int index) {
1079 >            Objects.checkIndex(index, size);
1080 >            checkForComodification();
1081 >            return root.elementData(offset + index);
1082 >        }
1083 >
1084 >        public int size() {
1085 >            checkForComodification();
1086 >            return size;
1087 >        }
1088 >
1089 >        public void add(int index, E element) {
1090 >            rangeCheckForAdd(index);
1091 >            checkForComodification();
1092 >            root.add(offset + index, element);
1093 >            updateSizeAndModCount(1);
1094 >        }
1095 >
1096 >        public E remove(int index) {
1097 >            Objects.checkIndex(index, size);
1098 >            checkForComodification();
1099 >            E result = root.remove(offset + index);
1100 >            updateSizeAndModCount(-1);
1101 >            return result;
1102 >        }
1103 >
1104 >        protected void removeRange(int fromIndex, int toIndex) {
1105 >            checkForComodification();
1106 >            root.removeRange(offset + fromIndex, offset + toIndex);
1107 >            updateSizeAndModCount(fromIndex - toIndex);
1108 >        }
1109 >
1110 >        public boolean addAll(Collection<? extends E> c) {
1111 >            return addAll(this.size, c);
1112 >        }
1113 >
1114 >        public boolean addAll(int index, Collection<? extends E> c) {
1115 >            rangeCheckForAdd(index);
1116 >            int cSize = c.size();
1117 >            if (cSize==0)
1118 >                return false;
1119 >            checkForComodification();
1120 >            root.addAll(offset + index, c);
1121 >            updateSizeAndModCount(cSize);
1122 >            return true;
1123 >        }
1124 >
1125 >        public boolean removeAll(Collection<?> c) {
1126 >            return batchRemove(c, false);
1127 >        }
1128 >
1129 >        public boolean retainAll(Collection<?> c) {
1130 >            return batchRemove(c, true);
1131 >        }
1132 >
1133 >        private boolean batchRemove(Collection<?> c, boolean complement) {
1134 >            checkForComodification();
1135 >            int oldSize = root.size;
1136 >            boolean modified =
1137 >                root.batchRemove(c, complement, offset, offset + size);
1138 >            if (modified)
1139 >                updateSizeAndModCount(root.size - oldSize);
1140 >            return modified;
1141 >        }
1142 >
1143 >        public boolean removeIf(Predicate<? super E> filter) {
1144 >            checkForComodification();
1145 >            int oldSize = root.size;
1146 >            boolean modified = root.removeIf(filter, offset, offset + size);
1147 >            if (modified)
1148 >                updateSizeAndModCount(root.size - oldSize);
1149 >            return modified;
1150 >        }
1151 >
1152 >        public Iterator<E> iterator() {
1153 >            return listIterator();
1154 >        }
1155 >
1156 >        public ListIterator<E> listIterator(int index) {
1157 >            checkForComodification();
1158 >            rangeCheckForAdd(index);
1159 >
1160 >            return new ListIterator<E>() {
1161 >                int cursor = index;
1162 >                int lastRet = -1;
1163 >                int expectedModCount = root.modCount;
1164 >
1165 >                public boolean hasNext() {
1166 >                    return cursor != SubList.this.size;
1167 >                }
1168 >
1169 >                @SuppressWarnings("unchecked")
1170 >                public E next() {
1171 >                    checkForComodification();
1172 >                    int i = cursor;
1173 >                    if (i >= SubList.this.size)
1174 >                        throw new NoSuchElementException();
1175 >                    Object[] elementData = root.elementData;
1176 >                    if (offset + i >= elementData.length)
1177 >                        throw new ConcurrentModificationException();
1178 >                    cursor = i + 1;
1179 >                    return (E) elementData[offset + (lastRet = i)];
1180 >                }
1181 >
1182 >                public boolean hasPrevious() {
1183 >                    return cursor != 0;
1184 >                }
1185 >
1186 >                @SuppressWarnings("unchecked")
1187 >                public E previous() {
1188 >                    checkForComodification();
1189 >                    int i = cursor - 1;
1190 >                    if (i < 0)
1191 >                        throw new NoSuchElementException();
1192 >                    Object[] elementData = root.elementData;
1193 >                    if (offset + i >= elementData.length)
1194 >                        throw new ConcurrentModificationException();
1195 >                    cursor = i;
1196 >                    return (E) elementData[offset + (lastRet = i)];
1197 >                }
1198 >
1199 >                public void forEachRemaining(Consumer<? super E> action) {
1200 >                    Objects.requireNonNull(action);
1201 >                    final int size = SubList.this.size;
1202 >                    int i = cursor;
1203 >                    if (i < size) {
1204 >                        final Object[] es = root.elementData;
1205 >                        if (offset + i >= es.length)
1206 >                            throw new ConcurrentModificationException();
1207 >                        for (; i < size && modCount == expectedModCount; i++)
1208 >                            action.accept(elementAt(es, offset + i));
1209 >                        // update once at end to reduce heap write traffic
1210 >                        cursor = i;
1211 >                        lastRet = i - 1;
1212 >                        checkForComodification();
1213 >                    }
1214 >                }
1215 >
1216 >                public int nextIndex() {
1217 >                    return cursor;
1218 >                }
1219 >
1220 >                public int previousIndex() {
1221 >                    return cursor - 1;
1222 >                }
1223 >
1224 >                public void remove() {
1225 >                    if (lastRet < 0)
1226 >                        throw new IllegalStateException();
1227 >                    checkForComodification();
1228 >
1229                      try {
1230 <                        E e = (E)elementData[i];
1231 <                        lastRet = i;
1230 >                        SubList.this.remove(lastRet);
1231 >                        cursor = lastRet;
1232 >                        lastRet = -1;
1233 >                        expectedModCount = root.modCount;
1234 >                    } catch (IndexOutOfBoundsException ex) {
1235 >                        throw new ConcurrentModificationException();
1236 >                    }
1237 >                }
1238 >
1239 >                public void set(E e) {
1240 >                    if (lastRet < 0)
1241 >                        throw new IllegalStateException();
1242 >                    checkForComodification();
1243 >
1244 >                    try {
1245 >                        root.set(offset + lastRet, e);
1246 >                    } catch (IndexOutOfBoundsException ex) {
1247 >                        throw new ConcurrentModificationException();
1248 >                    }
1249 >                }
1250 >
1251 >                public void add(E e) {
1252 >                    checkForComodification();
1253 >
1254 >                    try {
1255 >                        int i = cursor;
1256 >                        SubList.this.add(i, e);
1257                          cursor = i + 1;
1258 <                        return e;
1259 <                    } catch (IndexOutOfBoundsException fallthrough) {
1258 >                        lastRet = -1;
1259 >                        expectedModCount = root.modCount;
1260 >                    } catch (IndexOutOfBoundsException ex) {
1261 >                        throw new ConcurrentModificationException();
1262                      }
1263                  }
1264 <            }
1265 <            // Prefer reporting CME if applicable on failures
1266 <            if (expectedModCount == modCount)
1267 <                throw new NoSuchElementException();
1264 >
1265 >                final void checkForComodification() {
1266 >                    if (root.modCount != expectedModCount)
1267 >                        throw new ConcurrentModificationException();
1268 >                }
1269 >            };
1270 >        }
1271 >
1272 >        public List<E> subList(int fromIndex, int toIndex) {
1273 >            subListRangeCheck(fromIndex, toIndex, size);
1274 >            return new SubList<>(this, fromIndex, toIndex);
1275 >        }
1276 >
1277 >        private void rangeCheckForAdd(int index) {
1278 >            if (index < 0 || index > this.size)
1279 >                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1280 >        }
1281 >
1282 >        private String outOfBoundsMsg(int index) {
1283 >            return "Index: "+index+", Size: "+this.size;
1284 >        }
1285 >
1286 >        private void checkForComodification() {
1287 >            if (root.modCount != modCount)
1288 >                throw new ConcurrentModificationException();
1289 >        }
1290 >
1291 >        private void updateSizeAndModCount(int sizeChange) {
1292 >            SubList<E> slist = this;
1293 >            do {
1294 >                slist.size += sizeChange;
1295 >                slist.modCount = root.modCount;
1296 >                slist = slist.parent;
1297 >            } while (slist != null);
1298 >        }
1299 >
1300 >        public Spliterator<E> spliterator() {
1301 >            checkForComodification();
1302 >
1303 >            // ArrayListSpliterator not used here due to late-binding
1304 >            return new Spliterator<E>() {
1305 >                private int index = offset; // current index, modified on advance/split
1306 >                private int fence = -1; // -1 until used; then one past last index
1307 >                private int expectedModCount; // initialized when fence set
1308 >
1309 >                private int getFence() { // initialize fence to size on first use
1310 >                    int hi; // (a specialized variant appears in method forEach)
1311 >                    if ((hi = fence) < 0) {
1312 >                        expectedModCount = modCount;
1313 >                        hi = fence = offset + size;
1314 >                    }
1315 >                    return hi;
1316 >                }
1317 >
1318 >                public ArrayList<E>.ArrayListSpliterator trySplit() {
1319 >                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1320 >                    // ArrayListSpliterator can be used here as the source is already bound
1321 >                    return (lo >= mid) ? null : // divide range in half unless too small
1322 >                        root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1323 >                }
1324 >
1325 >                public boolean tryAdvance(Consumer<? super E> action) {
1326 >                    Objects.requireNonNull(action);
1327 >                    int hi = getFence(), i = index;
1328 >                    if (i < hi) {
1329 >                        index = i + 1;
1330 >                        @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1331 >                        action.accept(e);
1332 >                        if (root.modCount != expectedModCount)
1333 >                            throw new ConcurrentModificationException();
1334 >                        return true;
1335 >                    }
1336 >                    return false;
1337 >                }
1338 >
1339 >                public void forEachRemaining(Consumer<? super E> action) {
1340 >                    Objects.requireNonNull(action);
1341 >                    int i, hi, mc; // hoist accesses and checks from loop
1342 >                    ArrayList<E> lst = root;
1343 >                    Object[] a;
1344 >                    if ((a = lst.elementData) != null) {
1345 >                        if ((hi = fence) < 0) {
1346 >                            mc = modCount;
1347 >                            hi = offset + size;
1348 >                        }
1349 >                        else
1350 >                            mc = expectedModCount;
1351 >                        if ((i = index) >= 0 && (index = hi) <= a.length) {
1352 >                            for (; i < hi; ++i) {
1353 >                                @SuppressWarnings("unchecked") E e = (E) a[i];
1354 >                                action.accept(e);
1355 >                            }
1356 >                            if (lst.modCount == mc)
1357 >                                return;
1358 >                        }
1359 >                    }
1360 >                    throw new ConcurrentModificationException();
1361 >                }
1362 >
1363 >                public long estimateSize() {
1364 >                    return getFence() - index;
1365 >                }
1366 >
1367 >                public int characteristics() {
1368 >                    return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1369 >                }
1370 >            };
1371 >        }
1372 >    }
1373 >
1374 >    /**
1375 >     * @throws NullPointerException {@inheritDoc}
1376 >     */
1377 >    @Override
1378 >    public void forEach(Consumer<? super E> action) {
1379 >        Objects.requireNonNull(action);
1380 >        final int expectedModCount = modCount;
1381 >        final Object[] es = elementData;
1382 >        final int size = this.size;
1383 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1384 >            action.accept(elementAt(es, i));
1385 >        if (modCount != expectedModCount)
1386              throw new ConcurrentModificationException();
1387 <        }
1387 >    }
1388  
1389 <        public E previous() {
1390 <            if (expectedModCount == modCount) {
1391 <                int i = cursor - 1;
1392 <                if (i < size) {
1393 <                    try {
1394 <                        E e = (E)elementData[i];
1395 <                        lastRet = i;
1396 <                        cursor = i;
1397 <                        return e;
1398 <                    } catch (IndexOutOfBoundsException fallthrough) {
1389 >    /**
1390 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1391 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1392 >     * list.
1393 >     *
1394 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1395 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1396 >     * Overriding implementations should document the reporting of additional
1397 >     * characteristic values.
1398 >     *
1399 >     * @return a {@code Spliterator} over the elements in this list
1400 >     * @since 1.8
1401 >     */
1402 >    @Override
1403 >    public Spliterator<E> spliterator() {
1404 >        return new ArrayListSpliterator(0, -1, 0);
1405 >    }
1406 >
1407 >    /** Index-based split-by-two, lazily initialized Spliterator */
1408 >    final class ArrayListSpliterator implements Spliterator<E> {
1409 >
1410 >        /*
1411 >         * If ArrayLists were immutable, or structurally immutable (no
1412 >         * adds, removes, etc), we could implement their spliterators
1413 >         * with Arrays.spliterator. Instead we detect as much
1414 >         * interference during traversal as practical without
1415 >         * sacrificing much performance. We rely primarily on
1416 >         * modCounts. These are not guaranteed to detect concurrency
1417 >         * violations, and are sometimes overly conservative about
1418 >         * within-thread interference, but detect enough problems to
1419 >         * be worthwhile in practice. To carry this out, we (1) lazily
1420 >         * initialize fence and expectedModCount until the latest
1421 >         * point that we need to commit to the state we are checking
1422 >         * against; thus improving precision.  (This doesn't apply to
1423 >         * SubLists, that create spliterators with current non-lazy
1424 >         * values).  (2) We perform only a single
1425 >         * ConcurrentModificationException check at the end of forEach
1426 >         * (the most performance-sensitive method). When using forEach
1427 >         * (as opposed to iterators), we can normally only detect
1428 >         * interference after actions, not before. Further
1429 >         * CME-triggering checks apply to all other possible
1430 >         * violations of assumptions for example null or too-small
1431 >         * elementData array given its size(), that could only have
1432 >         * occurred due to interference.  This allows the inner loop
1433 >         * of forEach to run without any further checks, and
1434 >         * simplifies lambda-resolution. While this does entail a
1435 >         * number of checks, note that in the common case of
1436 >         * list.stream().forEach(a), no checks or other computation
1437 >         * occur anywhere other than inside forEach itself.  The other
1438 >         * less-often-used methods cannot take advantage of most of
1439 >         * these streamlinings.
1440 >         */
1441 >
1442 >        private int index; // current index, modified on advance/split
1443 >        private int fence; // -1 until used; then one past last index
1444 >        private int expectedModCount; // initialized when fence set
1445 >
1446 >        /** Creates new spliterator covering the given range. */
1447 >        ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1448 >            this.index = origin;
1449 >            this.fence = fence;
1450 >            this.expectedModCount = expectedModCount;
1451 >        }
1452 >
1453 >        private int getFence() { // initialize fence to size on first use
1454 >            int hi; // (a specialized variant appears in method forEach)
1455 >            if ((hi = fence) < 0) {
1456 >                expectedModCount = modCount;
1457 >                hi = fence = size;
1458 >            }
1459 >            return hi;
1460 >        }
1461 >
1462 >        public ArrayListSpliterator trySplit() {
1463 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1464 >            return (lo >= mid) ? null : // divide range in half unless too small
1465 >                new ArrayListSpliterator(lo, index = mid, expectedModCount);
1466 >        }
1467 >
1468 >        public boolean tryAdvance(Consumer<? super E> action) {
1469 >            if (action == null)
1470 >                throw new NullPointerException();
1471 >            int hi = getFence(), i = index;
1472 >            if (i < hi) {
1473 >                index = i + 1;
1474 >                @SuppressWarnings("unchecked") E e = (E)elementData[i];
1475 >                action.accept(e);
1476 >                if (modCount != expectedModCount)
1477 >                    throw new ConcurrentModificationException();
1478 >                return true;
1479 >            }
1480 >            return false;
1481 >        }
1482 >
1483 >        public void forEachRemaining(Consumer<? super E> action) {
1484 >            int i, hi, mc; // hoist accesses and checks from loop
1485 >            Object[] a;
1486 >            if (action == null)
1487 >                throw new NullPointerException();
1488 >            if ((a = elementData) != null) {
1489 >                if ((hi = fence) < 0) {
1490 >                    mc = modCount;
1491 >                    hi = size;
1492 >                }
1493 >                else
1494 >                    mc = expectedModCount;
1495 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
1496 >                    for (; i < hi; ++i) {
1497 >                        @SuppressWarnings("unchecked") E e = (E) a[i];
1498 >                        action.accept(e);
1499                      }
1500 +                    if (modCount == mc)
1501 +                        return;
1502                  }
1503              }
734            if (expectedModCount == modCount)
735                throw new NoSuchElementException();
1504              throw new ConcurrentModificationException();
1505          }
1506  
1507 <        public void remove() {
1508 <            if (lastRet < 0)
1509 <                throw new IllegalStateException();
1510 <            if (modCount != expectedModCount)
1507 >        public long estimateSize() {
1508 >            return getFence() - index;
1509 >        }
1510 >
1511 >        public int characteristics() {
1512 >            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1513 >        }
1514 >    }
1515 >
1516 >    // A tiny bit set implementation
1517 >
1518 >    private static long[] nBits(int n) {
1519 >        return new long[((n - 1) >> 6) + 1];
1520 >    }
1521 >    private static void setBit(long[] bits, int i) {
1522 >        bits[i >> 6] |= 1L << i;
1523 >    }
1524 >    private static boolean isClear(long[] bits, int i) {
1525 >        return (bits[i >> 6] & (1L << i)) == 0;
1526 >    }
1527 >
1528 >    /**
1529 >     * @throws NullPointerException {@inheritDoc}
1530 >     */
1531 >    @Override
1532 >    public boolean removeIf(Predicate<? super E> filter) {
1533 >        return removeIf(filter, 0, size);
1534 >    }
1535 >
1536 >    /**
1537 >     * Removes all elements satisfying the given predicate, from index
1538 >     * i (inclusive) to index end (exclusive).
1539 >     */
1540 >    boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1541 >        Objects.requireNonNull(filter);
1542 >        int expectedModCount = modCount;
1543 >        final Object[] es = elementData;
1544 >        // Optimize for initial run of survivors
1545 >        for (; i < end && !filter.test(elementAt(es, i)); i++)
1546 >            ;
1547 >        // Tolerate predicates that reentrantly access the collection for
1548 >        // read (but writers still get CME), so traverse once to find
1549 >        // elements to delete, a second pass to physically expunge.
1550 >        if (i < end) {
1551 >            final int beg = i;
1552 >            final long[] deathRow = nBits(end - beg);
1553 >            deathRow[0] = 1L;   // set bit 0
1554 >            for (i = beg + 1; i < end; i++)
1555 >                if (filter.test(elementAt(es, i)))
1556 >                    setBit(deathRow, i - beg);
1557 >            if (modCount != expectedModCount)
1558                  throw new ConcurrentModificationException();
1559 <            ArrayList.this.remove(lastRet);
1560 <            if (lastRet < cursor)
1561 <                cursor--;
1562 <            lastRet = -1;
1563 <            expectedModCount = modCount;
1564 <        }
1565 <
1566 <        public void set(E e) {
1567 <            if (lastRet < 0)
1568 <                throw new IllegalStateException();
754 <            if (modCount != expectedModCount)
1559 >            modCount++;
1560 >            int w = beg;
1561 >            for (i = beg; i < end; i++)
1562 >                if (isClear(deathRow, i - beg))
1563 >                    es[w++] = es[i];
1564 >            shiftTailOverGap(es, w, end);
1565 >            // checkInvariants();
1566 >            return true;
1567 >        } else {
1568 >            if (modCount != expectedModCount)
1569                  throw new ConcurrentModificationException();
1570 <            ArrayList.this.set(lastRet, e);
1571 <            expectedModCount = modCount;
1572 <        }
1570 >            // checkInvariants();
1571 >            return false;
1572 >        }
1573 >    }
1574  
1575 <        public void add(E e) {
1576 <            if (modCount != expectedModCount)
1577 <                throw new ConcurrentModificationException();
1578 <            ArrayList.this.add(cursor++, e);
1579 <            lastRet = -1;
1580 <            expectedModCount = modCount;
1581 <        }
1575 >    @Override
1576 >    public void replaceAll(UnaryOperator<E> operator) {
1577 >        Objects.requireNonNull(operator);
1578 >        final int expectedModCount = modCount;
1579 >        final Object[] es = elementData;
1580 >        final int size = this.size;
1581 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1582 >            es[i] = operator.apply(elementAt(es, i));
1583 >        if (modCount != expectedModCount)
1584 >            throw new ConcurrentModificationException();
1585 >        modCount++;
1586 >        // checkInvariants();
1587      }
1588  
1589 +    @Override
1590 +    @SuppressWarnings("unchecked")
1591 +    public void sort(Comparator<? super E> c) {
1592 +        final int expectedModCount = modCount;
1593 +        Arrays.sort((E[]) elementData, 0, size, c);
1594 +        if (modCount != expectedModCount)
1595 +            throw new ConcurrentModificationException();
1596 +        modCount++;
1597 +        // checkInvariants();
1598 +    }
1599 +
1600 +    void checkInvariants() {
1601 +        // assert size >= 0;
1602 +        // assert size == elementData.length || elementData[size] == null;
1603 +    }
1604   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines