ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayList.java (file contents):
Revision 1.23 by jsr166, Sun Jan 7 07:38:27 2007 UTC vs.
Revision 1.71 by jsr166, Fri Jul 24 20:57:26 2020 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28 + import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + import java.util.function.UnaryOperator;
31 + // OPENJDK import jdk.internal.access.SharedSecrets;
32 + import jdk.internal.util.ArraysSupport;
33 +
34   /**
35 < * Resizable-array implementation of the <tt>List</tt> interface.  Implements
35 > * Resizable-array implementation of the {@code List} interface.  Implements
36   * all optional list operations, and permits all elements, including
37 < * <tt>null</tt>.  In addition to implementing the <tt>List</tt> interface,
37 > * {@code null}.  In addition to implementing the {@code List} interface,
38   * this class provides methods to manipulate the size of the array that is
39   * used internally to store the list.  (This class is roughly equivalent to
40 < * <tt>Vector</tt>, except that it is unsynchronized.)<p>
40 > * {@code Vector}, except that it is unsynchronized.)
41   *
42 < * The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
43 < * <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
44 < * time.  The <tt>add</tt> operation runs in <i>amortized constant time</i>,
42 > * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
43 > * {@code iterator}, and {@code listIterator} operations run in constant
44 > * time.  The {@code add} operation runs in <i>amortized constant time</i>,
45   * that is, adding n elements requires O(n) time.  All of the other operations
46   * run in linear time (roughly speaking).  The constant factor is low compared
47 < * to that for the <tt>LinkedList</tt> implementation.<p>
47 > * to that for the {@code LinkedList} implementation.
48   *
49 < * Each <tt>ArrayList</tt> instance has a <i>capacity</i>.  The capacity is
49 > * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
50   * the size of the array used to store the elements in the list.  It is always
51   * at least as large as the list size.  As elements are added to an ArrayList,
52   * its capacity grows automatically.  The details of the growth policy are not
53   * specified beyond the fact that adding an element has constant amortized
54 < * time cost.<p>
54 > * time cost.
55   *
56 < * An application can increase the capacity of an <tt>ArrayList</tt> instance
57 < * before adding a large number of elements using the <tt>ensureCapacity</tt>
56 > * <p>An application can increase the capacity of an {@code ArrayList} instance
57 > * before adding a large number of elements using the {@code ensureCapacity}
58   * operation.  This may reduce the amount of incremental reallocation.
59   *
60   * <p><strong>Note that this implementation is not synchronized.</strong>
61 < * If multiple threads access an <tt>ArrayList</tt> instance concurrently,
61 > * If multiple threads access an {@code ArrayList} instance concurrently,
62   * and at least one of the threads modifies the list structurally, it
63   * <i>must</i> be synchronized externally.  (A structural modification is
64   * any operation that adds or deletes one or more elements, or explicitly
# Line 48 | Line 72 | package java.util;
72   * unsynchronized access to the list:<pre>
73   *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
74   *
75 < * <p>The iterators returned by this class's <tt>iterator</tt> and
76 < * <tt>listIterator</tt> methods are <i>fail-fast</i>: if the list is
77 < * structurally modified at any time after the iterator is created, in any way
78 < * except through the iterator's own <tt>remove</tt> or <tt>add</tt> methods,
79 < * the iterator will throw a {@link ConcurrentModificationException}.  Thus, in
80 < * the face of concurrent modification, the iterator fails quickly and cleanly,
81 < * rather than risking arbitrary, non-deterministic behavior at an undetermined
82 < * time in the future.<p>
75 > * <p id="fail-fast">
76 > * The iterators returned by this class's {@link #iterator() iterator} and
77 > * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
78 > * if the list is structurally modified at any time after the iterator is
79 > * created, in any way except through the iterator's own
80 > * {@link ListIterator#remove() remove} or
81 > * {@link ListIterator#add(Object) add} methods, the iterator will throw a
82 > * {@link ConcurrentModificationException}.  Thus, in the face of
83 > * concurrent modification, the iterator fails quickly and cleanly, rather
84 > * than risking arbitrary, non-deterministic behavior at an undetermined
85 > * time in the future.
86   *
87 < * Note that the fail-fast behavior of an iterator cannot be guaranteed
87 > * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
88   * as it is, generally speaking, impossible to make any hard guarantees in the
89   * presence of unsynchronized concurrent modification.  Fail-fast iterators
90 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
90 > * throw {@code ConcurrentModificationException} on a best-effort basis.
91   * Therefore, it would be wrong to write a program that depended on this
92 < * exception for its correctness: <i>the fail-fast behavior of iterators
93 < * should be used only to detect bugs.</i><p>
92 > * exception for its correctness:  <i>the fail-fast behavior of iterators
93 > * should be used only to detect bugs.</i>
94   *
95 < * This class is a member of the
96 < * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 > * <p>This class is a member of the
96 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
97   * Java Collections Framework</a>.
98   *
99 + * @param <E> the type of elements in this list
100 + *
101   * @author  Josh Bloch
102   * @author  Neal Gafter
103 < * @version %I%, %G%
104 < * @see     Collection
105 < * @see     List
106 < * @see     LinkedList
78 < * @see     Vector
103 > * @see     Collection
104 > * @see     List
105 > * @see     LinkedList
106 > * @see     Vector
107   * @since   1.2
108   */
81
109   public class ArrayList<E> extends AbstractList<E>
110          implements List<E>, RandomAccess, Cloneable, java.io.Serializable
111   {
112 +    // OPENJDK @java.io.Serial
113      private static final long serialVersionUID = 8683452581122892189L;
114  
115      /**
116 +     * Default initial capacity.
117 +     */
118 +    private static final int DEFAULT_CAPACITY = 10;
119 +
120 +    /**
121 +     * Shared empty array instance used for empty instances.
122 +     */
123 +    private static final Object[] EMPTY_ELEMENTDATA = {};
124 +
125 +    /**
126 +     * Shared empty array instance used for default sized empty instances. We
127 +     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
128 +     * first element is added.
129 +     */
130 +    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
131 +
132 +    /**
133       * The array buffer into which the elements of the ArrayList are stored.
134 <     * The capacity of the ArrayList is the length of this array buffer.
134 >     * The capacity of the ArrayList is the length of this array buffer. Any
135 >     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
136 >     * will be expanded to DEFAULT_CAPACITY when the first element is added.
137       */
138 <    private transient Object[] elementData;
138 >    transient Object[] elementData; // non-private to simplify nested class access
139  
140      /**
141       * The size of the ArrayList (the number of elements it contains).
# Line 100 | Line 147 | public class ArrayList<E> extends Abstra
147      /**
148       * Constructs an empty list with the specified initial capacity.
149       *
150 <     * @param initialCapacity the initial capacity of the list
150 >     * @param  initialCapacity  the initial capacity of the list
151       * @throws IllegalArgumentException if the specified initial capacity
152       *         is negative
153       */
154      public ArrayList(int initialCapacity) {
155 <        super();
156 <        if (initialCapacity < 0)
155 >        if (initialCapacity > 0) {
156 >            this.elementData = new Object[initialCapacity];
157 >        } else if (initialCapacity == 0) {
158 >            this.elementData = EMPTY_ELEMENTDATA;
159 >        } else {
160              throw new IllegalArgumentException("Illegal Capacity: "+
161                                                 initialCapacity);
162 <        this.elementData = new Object[initialCapacity];
162 >        }
163      }
164  
165      /**
166       * Constructs an empty list with an initial capacity of ten.
167       */
168      public ArrayList() {
169 <        this(10);
169 >        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
170      }
171  
172      /**
# Line 128 | Line 178 | public class ArrayList<E> extends Abstra
178       * @throws NullPointerException if the specified collection is null
179       */
180      public ArrayList(Collection<? extends E> c) {
181 <        elementData = c.toArray();
182 <        size = elementData.length;
183 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
184 <        if (elementData.getClass() != Object[].class)
185 <            elementData = Arrays.copyOf(elementData, size, Object[].class);
181 >        Object[] a = c.toArray();
182 >        if ((size = a.length) != 0) {
183 >            if (c.getClass() == ArrayList.class) {
184 >                elementData = a;
185 >            } else {
186 >                elementData = Arrays.copyOf(a, size, Object[].class);
187 >            }
188 >        } else {
189 >            // replace with empty array.
190 >            elementData = EMPTY_ELEMENTDATA;
191 >        }
192      }
193  
194      /**
195 <     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
195 >     * Trims the capacity of this {@code ArrayList} instance to be the
196       * list's current size.  An application can use this operation to minimize
197 <     * the storage of an <tt>ArrayList</tt> instance.
197 >     * the storage of an {@code ArrayList} instance.
198       */
199      public void trimToSize() {
200 <        modCount++;
201 <        int oldCapacity = elementData.length;
202 <        if (size < oldCapacity) {
203 <            elementData = Arrays.copyOf(elementData, size);
204 <        }
200 >        modCount++;
201 >        if (size < elementData.length) {
202 >            elementData = (size == 0)
203 >              ? EMPTY_ELEMENTDATA
204 >              : Arrays.copyOf(elementData, size);
205 >        }
206      }
207  
208      /**
209 <     * Increases the capacity of this <tt>ArrayList</tt> instance, if
209 >     * Increases the capacity of this {@code ArrayList} instance, if
210       * necessary, to ensure that it can hold at least the number of elements
211       * specified by the minimum capacity argument.
212       *
213       * @param minCapacity the desired minimum capacity
214       */
215      public void ensureCapacity(int minCapacity) {
216 <        modCount++;
217 <        if (minCapacity > elementData.length)
218 <            growArray(minCapacity);
216 >        if (minCapacity > elementData.length
217 >            && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
218 >                 && minCapacity <= DEFAULT_CAPACITY)) {
219 >            modCount++;
220 >            grow(minCapacity);
221 >        }
222      }
223  
224      /**
225 <     * Increases the capacity of the array.
225 >     * Increases the capacity to ensure that it can hold at least the
226 >     * number of elements specified by the minimum capacity argument.
227       *
228       * @param minCapacity the desired minimum capacity
229 +     * @throws OutOfMemoryError if minCapacity is less than zero
230       */
231 <    private void growArray(int minCapacity) {
232 <        if (minCapacity < 0) // overflow
233 <            throw new OutOfMemoryError();
234 <        int oldCapacity = elementData.length;
235 <        // Double size if small; else grow by 50%
236 <        int newCapacity = ((oldCapacity < 64) ?
237 <                           ((oldCapacity + 1) * 2) :
238 <                           ((oldCapacity / 2) * 3));
239 <        if (newCapacity < 0) // overflow
240 <            newCapacity = Integer.MAX_VALUE;
241 <        if (newCapacity < minCapacity)
242 <            newCapacity = minCapacity;
243 <        elementData = Arrays.copyOf(elementData, newCapacity);
231 >    private Object[] grow(int minCapacity) {
232 >        int oldCapacity = elementData.length;
233 >        if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
234 >            int newCapacity = ArraysSupport.newLength(oldCapacity,
235 >                    minCapacity - oldCapacity, /* minimum growth */
236 >                    oldCapacity >> 1           /* preferred growth */);
237 >            return elementData = Arrays.copyOf(elementData, newCapacity);
238 >        } else {
239 >            return elementData = new Object[Math.max(DEFAULT_CAPACITY, minCapacity)];
240 >        }
241 >    }
242 >
243 >    private Object[] grow() {
244 >        return grow(size + 1);
245      }
246  
247      /**
# Line 187 | Line 250 | public class ArrayList<E> extends Abstra
250       * @return the number of elements in this list
251       */
252      public int size() {
253 <        return size;
253 >        return size;
254      }
255  
256      /**
257 <     * Returns <tt>true</tt> if this list contains no elements.
257 >     * Returns {@code true} if this list contains no elements.
258       *
259 <     * @return <tt>true</tt> if this list contains no elements
259 >     * @return {@code true} if this list contains no elements
260       */
261      public boolean isEmpty() {
262 <        return size == 0;
262 >        return size == 0;
263      }
264  
265      /**
266 <     * Returns <tt>true</tt> if this list contains the specified element.
267 <     * More formally, returns <tt>true</tt> if and only if this list contains
268 <     * at least one element <tt>e</tt> such that
269 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
266 >     * Returns {@code true} if this list contains the specified element.
267 >     * More formally, returns {@code true} if and only if this list contains
268 >     * at least one element {@code e} such that
269 >     * {@code Objects.equals(o, e)}.
270       *
271       * @param o element whose presence in this list is to be tested
272 <     * @return <tt>true</tt> if this list contains the specified element
272 >     * @return {@code true} if this list contains the specified element
273       */
274      public boolean contains(Object o) {
275 <        return indexOf(o) >= 0;
275 >        return indexOf(o) >= 0;
276      }
277  
278      /**
279       * Returns the index of the first occurrence of the specified element
280       * in this list, or -1 if this list does not contain the element.
281 <     * More formally, returns the lowest index <tt>i</tt> such that
282 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
281 >     * More formally, returns the lowest index {@code i} such that
282 >     * {@code Objects.equals(o, get(i))},
283       * or -1 if there is no such index.
284       */
285      public int indexOf(Object o) {
286 <        if (o == null) {
287 <            for (int i = 0; i < size; i++)
288 <                if (elementData[i]==null)
289 <                    return i;
290 <        } else {
291 <            for (int i = 0; i < size; i++)
292 <                if (o.equals(elementData[i]))
293 <                    return i;
294 <        }
295 <        return -1;
286 >        return indexOfRange(o, 0, size);
287 >    }
288 >
289 >    int indexOfRange(Object o, int start, int end) {
290 >        Object[] es = elementData;
291 >        if (o == null) {
292 >            for (int i = start; i < end; i++) {
293 >                if (es[i] == null) {
294 >                    return i;
295 >                }
296 >            }
297 >        } else {
298 >            for (int i = start; i < end; i++) {
299 >                if (o.equals(es[i])) {
300 >                    return i;
301 >                }
302 >            }
303 >        }
304 >        return -1;
305      }
306  
307      /**
308       * Returns the index of the last occurrence of the specified element
309       * in this list, or -1 if this list does not contain the element.
310 <     * More formally, returns the highest index <tt>i</tt> such that
311 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
310 >     * More formally, returns the highest index {@code i} such that
311 >     * {@code Objects.equals(o, get(i))},
312       * or -1 if there is no such index.
313       */
314      public int lastIndexOf(Object o) {
315 <        if (o == null) {
316 <            for (int i = size-1; i >= 0; i--)
317 <                if (elementData[i]==null)
318 <                    return i;
319 <        } else {
320 <            for (int i = size-1; i >= 0; i--)
321 <                if (o.equals(elementData[i]))
322 <                    return i;
323 <        }
324 <        return -1;
315 >        return lastIndexOfRange(o, 0, size);
316 >    }
317 >
318 >    int lastIndexOfRange(Object o, int start, int end) {
319 >        Object[] es = elementData;
320 >        if (o == null) {
321 >            for (int i = end - 1; i >= start; i--) {
322 >                if (es[i] == null) {
323 >                    return i;
324 >                }
325 >            }
326 >        } else {
327 >            for (int i = end - 1; i >= start; i--) {
328 >                if (o.equals(es[i])) {
329 >                    return i;
330 >                }
331 >            }
332 >        }
333 >        return -1;
334      }
335  
336      /**
337 <     * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
337 >     * Returns a shallow copy of this {@code ArrayList} instance.  (The
338       * elements themselves are not copied.)
339       *
340 <     * @return a clone of this <tt>ArrayList</tt> instance
340 >     * @return a clone of this {@code ArrayList} instance
341       */
342      public Object clone() {
343 <        try {
344 <            ArrayList<E> v = (ArrayList<E>) super.clone();
345 <            v.elementData = Arrays.copyOf(elementData, size);
346 <            v.modCount = 0;
347 <            return v;
348 <        } catch (CloneNotSupportedException e) {
349 <            // this shouldn't happen, since we are Cloneable
350 <            throw new InternalError();
351 <        }
343 >        try {
344 >            ArrayList<?> v = (ArrayList<?>) super.clone();
345 >            v.elementData = Arrays.copyOf(elementData, size);
346 >            v.modCount = 0;
347 >            return v;
348 >        } catch (CloneNotSupportedException e) {
349 >            // this shouldn't happen, since we are Cloneable
350 >            throw new InternalError(e);
351 >        }
352      }
353  
354      /**
# Line 299 | Line 380 | public class ArrayList<E> extends Abstra
380       * <p>If the list fits in the specified array with room to spare
381       * (i.e., the array has more elements than the list), the element in
382       * the array immediately following the end of the collection is set to
383 <     * <tt>null</tt>.  (This is useful in determining the length of the
383 >     * {@code null}.  (This is useful in determining the length of the
384       * list <i>only</i> if the caller knows that the list does not contain
385       * any null elements.)
386       *
# Line 312 | Line 393 | public class ArrayList<E> extends Abstra
393       *         this list
394       * @throws NullPointerException if the specified array is null
395       */
396 +    @SuppressWarnings("unchecked")
397      public <T> T[] toArray(T[] a) {
398          if (a.length < size)
399              // Make a new array of a's runtime type, but my contents:
400              return (T[]) Arrays.copyOf(elementData, size, a.getClass());
401 <        System.arraycopy(elementData, 0, a, 0, size);
401 >        System.arraycopy(elementData, 0, a, 0, size);
402          if (a.length > size)
403              a[size] = null;
404          return a;
# Line 324 | Line 406 | public class ArrayList<E> extends Abstra
406  
407      // Positional Access Operations
408  
409 <    /**
410 <     * Throws an appropriate exception for indexing errors.
411 <     */
412 <    private static void indexOutOfBounds(int i, int s) {
413 <        throw new IndexOutOfBoundsException("Index: " + i + ", Size: " + s);
409 >    @SuppressWarnings("unchecked")
410 >    E elementData(int index) {
411 >        return (E) elementData[index];
412 >    }
413 >
414 >    @SuppressWarnings("unchecked")
415 >    static <E> E elementAt(Object[] es, int index) {
416 >        return (E) es[index];
417      }
418  
419      /**
# Line 339 | Line 424 | public class ArrayList<E> extends Abstra
424       * @throws IndexOutOfBoundsException {@inheritDoc}
425       */
426      public E get(int index) {
427 <        if (index >= size)
428 <            indexOutOfBounds(index, size);
344 <        return (E) elementData[index];
427 >        Objects.checkIndex(index, size);
428 >        return elementData(index);
429      }
430  
431      /**
# Line 354 | Line 438 | public class ArrayList<E> extends Abstra
438       * @throws IndexOutOfBoundsException {@inheritDoc}
439       */
440      public E set(int index, E element) {
441 <        if (index >= size)
442 <            indexOutOfBounds(index, size);
443 <        E oldValue = (E) elementData[index];
444 <        elementData[index] = element;
445 <        return oldValue;
441 >        Objects.checkIndex(index, size);
442 >        E oldValue = elementData(index);
443 >        elementData[index] = element;
444 >        return oldValue;
445 >    }
446 >
447 >    /**
448 >     * This helper method split out from add(E) to keep method
449 >     * bytecode size under 35 (the -XX:MaxInlineSize default value),
450 >     * which helps when add(E) is called in a C1-compiled loop.
451 >     */
452 >    private void add(E e, Object[] elementData, int s) {
453 >        if (s == elementData.length)
454 >            elementData = grow();
455 >        elementData[s] = e;
456 >        size = s + 1;
457      }
458  
459      /**
460       * Appends the specified element to the end of this list.
461       *
462       * @param e element to be appended to this list
463 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
463 >     * @return {@code true} (as specified by {@link Collection#add})
464       */
465      public boolean add(E e) {
466          modCount++;
467 <        int s = size;
468 <        if (s >= elementData.length)
374 <            growArray(s + 1);
375 <        elementData[s] = e;
376 <        size = s + 1;
377 <        return true;
467 >        add(e, elementData, size);
468 >        return true;
469      }
470  
471      /**
# Line 387 | Line 478 | public class ArrayList<E> extends Abstra
478       * @throws IndexOutOfBoundsException {@inheritDoc}
479       */
480      public void add(int index, E element) {
481 <        int s = size;
391 <        if (index > s || index < 0)
392 <            indexOutOfBounds(index, s);
481 >        rangeCheckForAdd(index);
482          modCount++;
483 <        if (s >= elementData.length)
484 <            growArray(s + 1);
485 <        System.arraycopy(elementData, index,
486 <                         elementData, index + 1, s - index);
487 <        elementData[index] = element;
483 >        final int s;
484 >        Object[] elementData;
485 >        if ((s = size) == (elementData = this.elementData).length)
486 >            elementData = grow();
487 >        System.arraycopy(elementData, index,
488 >                         elementData, index + 1,
489 >                         s - index);
490 >        elementData[index] = element;
491          size = s + 1;
492 +        // checkInvariants();
493      }
494  
495      /**
# Line 409 | Line 502 | public class ArrayList<E> extends Abstra
502       * @throws IndexOutOfBoundsException {@inheritDoc}
503       */
504      public E remove(int index) {
505 <        int s = size - 1;
506 <        if (index > s)
507 <            indexOutOfBounds(index, size);
508 <        modCount++;
509 <        E oldValue = (E) elementData[index];
510 <        int numMoved = s - index;
511 <        if (numMoved > 0)
512 <            System.arraycopy(elementData, index + 1,
513 <                             elementData, index, numMoved);
514 <        elementData[s] = null;
515 <        size = s;
516 <        return oldValue;
505 >        Objects.checkIndex(index, size);
506 >        final Object[] es = elementData;
507 >
508 >        @SuppressWarnings("unchecked") E oldValue = (E) es[index];
509 >        fastRemove(es, index);
510 >
511 >        // checkInvariants();
512 >        return oldValue;
513 >    }
514 >
515 >    /**
516 >     * {@inheritDoc}
517 >     */
518 >    public boolean equals(Object o) {
519 >        if (o == this) {
520 >            return true;
521 >        }
522 >
523 >        if (!(o instanceof List)) {
524 >            return false;
525 >        }
526 >
527 >        final int expectedModCount = modCount;
528 >        // ArrayList can be subclassed and given arbitrary behavior, but we can
529 >        // still deal with the common case where o is ArrayList precisely
530 >        boolean equal = (o.getClass() == ArrayList.class)
531 >            ? equalsArrayList((ArrayList<?>) o)
532 >            : equalsRange((List<?>) o, 0, size);
533 >
534 >        checkForComodification(expectedModCount);
535 >        return equal;
536 >    }
537 >
538 >    boolean equalsRange(List<?> other, int from, int to) {
539 >        final Object[] es = elementData;
540 >        if (to > es.length) {
541 >            throw new ConcurrentModificationException();
542 >        }
543 >        var oit = other.iterator();
544 >        for (; from < to; from++) {
545 >            if (!oit.hasNext() || !Objects.equals(es[from], oit.next())) {
546 >                return false;
547 >            }
548 >        }
549 >        return !oit.hasNext();
550 >    }
551 >
552 >    private boolean equalsArrayList(ArrayList<?> other) {
553 >        final int otherModCount = other.modCount;
554 >        final int s = size;
555 >        boolean equal;
556 >        if (equal = (s == other.size)) {
557 >            final Object[] otherEs = other.elementData;
558 >            final Object[] es = elementData;
559 >            if (s > es.length || s > otherEs.length) {
560 >                throw new ConcurrentModificationException();
561 >            }
562 >            for (int i = 0; i < s; i++) {
563 >                if (!Objects.equals(es[i], otherEs[i])) {
564 >                    equal = false;
565 >                    break;
566 >                }
567 >            }
568 >        }
569 >        other.checkForComodification(otherModCount);
570 >        return equal;
571 >    }
572 >
573 >    private void checkForComodification(final int expectedModCount) {
574 >        if (modCount != expectedModCount) {
575 >            throw new ConcurrentModificationException();
576 >        }
577 >    }
578 >
579 >    /**
580 >     * {@inheritDoc}
581 >     */
582 >    public int hashCode() {
583 >        int expectedModCount = modCount;
584 >        int hash = hashCodeRange(0, size);
585 >        checkForComodification(expectedModCount);
586 >        return hash;
587 >    }
588 >
589 >    int hashCodeRange(int from, int to) {
590 >        final Object[] es = elementData;
591 >        if (to > es.length) {
592 >            throw new ConcurrentModificationException();
593 >        }
594 >        int hashCode = 1;
595 >        for (int i = from; i < to; i++) {
596 >            Object e = es[i];
597 >            hashCode = 31 * hashCode + (e == null ? 0 : e.hashCode());
598 >        }
599 >        return hashCode;
600      }
601  
602      /**
603       * Removes the first occurrence of the specified element from this list,
604       * if it is present.  If the list does not contain the element, it is
605       * unchanged.  More formally, removes the element with the lowest index
606 <     * <tt>i</tt> such that
607 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
608 <     * (if such an element exists).  Returns <tt>true</tt> if this list
606 >     * {@code i} such that
607 >     * {@code Objects.equals(o, get(i))}
608 >     * (if such an element exists).  Returns {@code true} if this list
609       * contained the specified element (or equivalently, if this list
610       * changed as a result of the call).
611       *
612       * @param o element to be removed from this list, if present
613 <     * @return <tt>true</tt> if this list contained the specified element
613 >     * @return {@code true} if this list contained the specified element
614       */
615      public boolean remove(Object o) {
616 <        if (o == null) {
617 <            for (int index = 0; index < size; index++)
618 <                if (elementData[index] == null) {
619 <                    fastRemove(index);
620 <                    return true;
621 <                }
622 <        } else {
623 <            for (int index = 0; index < size; index++)
624 <                if (o.equals(elementData[index])) {
625 <                    fastRemove(index);
626 <                    return true;
627 <                }
616 >        final Object[] es = elementData;
617 >        final int size = this.size;
618 >        int i = 0;
619 >        found: {
620 >            if (o == null) {
621 >                for (; i < size; i++)
622 >                    if (es[i] == null)
623 >                        break found;
624 >            } else {
625 >                for (; i < size; i++)
626 >                    if (o.equals(es[i]))
627 >                        break found;
628 >            }
629 >            return false;
630          }
631 <        return false;
631 >        fastRemove(es, i);
632 >        return true;
633      }
634  
635 <    /*
635 >    /**
636       * Private remove method that skips bounds checking and does not
637       * return the value removed.
638       */
639 <    private void fastRemove(int index) {
639 >    private void fastRemove(Object[] es, int i) {
640          modCount++;
641 <        int numMoved = size - index - 1;
642 <        if (numMoved > 0)
643 <            System.arraycopy(elementData, index+1, elementData, index,
644 <                             numMoved);
466 <        elementData[--size] = null; // Let gc do its work
641 >        final int newSize;
642 >        if ((newSize = size - 1) > i)
643 >            System.arraycopy(es, i + 1, es, i, newSize - i);
644 >        es[size = newSize] = null;
645      }
646  
647      /**
# Line 471 | Line 649 | public class ArrayList<E> extends Abstra
649       * be empty after this call returns.
650       */
651      public void clear() {
652 <        modCount++;
653 <
654 <        // Let gc do its work
655 <        for (int i = 0; i < size; i++)
478 <            elementData[i] = null;
479 <
480 <        size = 0;
652 >        modCount++;
653 >        final Object[] es = elementData;
654 >        for (int to = size, i = size = 0; i < to; i++)
655 >            es[i] = null;
656      }
657  
658      /**
# Line 490 | Line 665 | public class ArrayList<E> extends Abstra
665       * list is nonempty.)
666       *
667       * @param c collection containing elements to be added to this list
668 <     * @return <tt>true</tt> if this list changed as a result of the call
668 >     * @return {@code true} if this list changed as a result of the call
669       * @throws NullPointerException if the specified collection is null
670       */
671      public boolean addAll(Collection<? extends E> c) {
672 <        Object[] a = c.toArray();
672 >        Object[] a = c.toArray();
673 >        modCount++;
674          int numNew = a.length;
675 <        ensureCapacity(size + numNew);  // Increments modCount
676 <        System.arraycopy(a, 0, elementData, size, numNew);
677 <        size += numNew;
678 <        return numNew != 0;
675 >        if (numNew == 0)
676 >            return false;
677 >        Object[] elementData;
678 >        final int s;
679 >        if (numNew > (elementData = this.elementData).length - (s = size))
680 >            elementData = grow(s + numNew);
681 >        System.arraycopy(a, 0, elementData, s, numNew);
682 >        size = s + numNew;
683 >        // checkInvariants();
684 >        return true;
685      }
686  
687      /**
# Line 513 | Line 695 | public class ArrayList<E> extends Abstra
695       * @param index index at which to insert the first element from the
696       *              specified collection
697       * @param c collection containing elements to be added to this list
698 <     * @return <tt>true</tt> if this list changed as a result of the call
698 >     * @return {@code true} if this list changed as a result of the call
699       * @throws IndexOutOfBoundsException {@inheritDoc}
700       * @throws NullPointerException if the specified collection is null
701       */
702      public boolean addAll(int index, Collection<? extends E> c) {
703 <        if (index > size || index < 0)
522 <            indexOutOfBounds(index, size);
703 >        rangeCheckForAdd(index);
704  
705 <        Object[] a = c.toArray();
706 <        int numNew = a.length;
707 <        ensureCapacity(size + numNew);  // Increments modCount
708 <
709 <        int numMoved = size - index;
710 <        if (numMoved > 0)
711 <            System.arraycopy(elementData, index, elementData, index + numNew,
712 <                             numMoved);
705 >        Object[] a = c.toArray();
706 >        modCount++;
707 >        int numNew = a.length;
708 >        if (numNew == 0)
709 >            return false;
710 >        Object[] elementData;
711 >        final int s;
712 >        if (numNew > (elementData = this.elementData).length - (s = size))
713 >            elementData = grow(s + numNew);
714  
715 +        int numMoved = s - index;
716 +        if (numMoved > 0)
717 +            System.arraycopy(elementData, index,
718 +                             elementData, index + numNew,
719 +                             numMoved);
720          System.arraycopy(a, 0, elementData, index, numNew);
721 <        size += numNew;
722 <        return numNew != 0;
721 >        size = s + numNew;
722 >        // checkInvariants();
723 >        return true;
724      }
725  
726      /**
727       * Removes from this list all of the elements whose index is between
728 <     * <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive.
728 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
729       * Shifts any succeeding elements to the left (reduces their index).
730 <     * This call shortens the list by <tt>(toIndex - fromIndex)</tt> elements.
731 <     * (If <tt>toIndex==fromIndex</tt>, this operation has no effect.)
730 >     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
731 >     * (If {@code toIndex==fromIndex}, this operation has no effect.)
732       *
733 <     * @param fromIndex index of first element to be removed
734 <     * @param toIndex index after last element to be removed
735 <     * @throws IndexOutOfBoundsException if fromIndex or toIndex out of
736 <     *              range (fromIndex &lt; 0 || fromIndex &gt;= size() || toIndex
737 <     *              &gt; size() || toIndex &lt; fromIndex)
733 >     * @throws IndexOutOfBoundsException if {@code fromIndex} or
734 >     *         {@code toIndex} is out of range
735 >     *         ({@code fromIndex < 0 ||
736 >     *          toIndex > size() ||
737 >     *          toIndex < fromIndex})
738       */
739      protected void removeRange(int fromIndex, int toIndex) {
740 <        modCount++;
741 <        int numMoved = size - toIndex;
742 <        System.arraycopy(elementData, toIndex, elementData, fromIndex,
743 <                         numMoved);
740 >        if (fromIndex > toIndex) {
741 >            throw new IndexOutOfBoundsException(
742 >                    outOfBoundsMsg(fromIndex, toIndex));
743 >        }
744 >        modCount++;
745 >        shiftTailOverGap(elementData, fromIndex, toIndex);
746 >        // checkInvariants();
747 >    }
748 >
749 >    /** Erases the gap from lo to hi, by sliding down following elements. */
750 >    private void shiftTailOverGap(Object[] es, int lo, int hi) {
751 >        System.arraycopy(es, hi, es, lo, size - hi);
752 >        for (int to = size, i = (size -= hi - lo); i < to; i++)
753 >            es[i] = null;
754 >    }
755 >
756 >    /**
757 >     * A version of rangeCheck used by add and addAll.
758 >     */
759 >    private void rangeCheckForAdd(int index) {
760 >        if (index > size || index < 0)
761 >            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
762 >    }
763 >
764 >    /**
765 >     * Constructs an IndexOutOfBoundsException detail message.
766 >     * Of the many possible refactorings of the error handling code,
767 >     * this "outlining" performs best with both server and client VMs.
768 >     */
769 >    private String outOfBoundsMsg(int index) {
770 >        return "Index: "+index+", Size: "+size;
771 >    }
772 >
773 >    /**
774 >     * A version used in checking (fromIndex > toIndex) condition
775 >     */
776 >    private static String outOfBoundsMsg(int fromIndex, int toIndex) {
777 >        return "From Index: " + fromIndex + " > To Index: " + toIndex;
778 >    }
779 >
780 >    /**
781 >     * Removes from this list all of its elements that are contained in the
782 >     * specified collection.
783 >     *
784 >     * @param c collection containing elements to be removed from this list
785 >     * @return {@code true} if this list changed as a result of the call
786 >     * @throws ClassCastException if the class of an element of this list
787 >     *         is incompatible with the specified collection
788 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
789 >     * @throws NullPointerException if this list contains a null element and the
790 >     *         specified collection does not permit null elements
791 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
792 >     *         or if the specified collection is null
793 >     * @see Collection#contains(Object)
794 >     */
795 >    public boolean removeAll(Collection<?> c) {
796 >        return batchRemove(c, false, 0, size);
797 >    }
798 >
799 >    /**
800 >     * Retains only the elements in this list that are contained in the
801 >     * specified collection.  In other words, removes from this list all
802 >     * of its elements that are not contained in the specified collection.
803 >     *
804 >     * @param c collection containing elements to be retained in this list
805 >     * @return {@code true} if this list changed as a result of the call
806 >     * @throws ClassCastException if the class of an element of this list
807 >     *         is incompatible with the specified collection
808 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
809 >     * @throws NullPointerException if this list contains a null element and the
810 >     *         specified collection does not permit null elements
811 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
812 >     *         or if the specified collection is null
813 >     * @see Collection#contains(Object)
814 >     */
815 >    public boolean retainAll(Collection<?> c) {
816 >        return batchRemove(c, true, 0, size);
817 >    }
818  
819 <        // Let gc do its work
820 <        int newSize = size - (toIndex-fromIndex);
821 <        while (size != newSize)
822 <            elementData[--size] = null;
819 >    boolean batchRemove(Collection<?> c, boolean complement,
820 >                        final int from, final int end) {
821 >        Objects.requireNonNull(c);
822 >        final Object[] es = elementData;
823 >        int r;
824 >        // Optimize for initial run of survivors
825 >        for (r = from;; r++) {
826 >            if (r == end)
827 >                return false;
828 >            if (c.contains(es[r]) != complement)
829 >                break;
830 >        }
831 >        int w = r++;
832 >        try {
833 >            for (Object e; r < end; r++)
834 >                if (c.contains(e = es[r]) == complement)
835 >                    es[w++] = e;
836 >        } catch (Throwable ex) {
837 >            // Preserve behavioral compatibility with AbstractCollection,
838 >            // even if c.contains() throws.
839 >            System.arraycopy(es, r, es, w, end - r);
840 >            w += end - r;
841 >            throw ex;
842 >        } finally {
843 >            modCount += end - w;
844 >            shiftTailOverGap(es, w, end);
845 >        }
846 >        // checkInvariants();
847 >        return true;
848      }
849  
850      /**
851 <     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
852 <     * is, serialize it).
851 >     * Saves the state of the {@code ArrayList} instance to a stream
852 >     * (that is, serializes it).
853       *
854 <     * @serialData The length of the array backing the <tt>ArrayList</tt>
854 >     * @param s the stream
855 >     * @throws java.io.IOException if an I/O error occurs
856 >     * @serialData The length of the array backing the {@code ArrayList}
857       *             instance is emitted (int), followed by all of its elements
858 <     *             (each an <tt>Object</tt>) in the proper order.
858 >     *             (each an {@code Object}) in the proper order.
859       */
860 +    // OPENJDK @java.io.Serial
861      private void writeObject(java.io.ObjectOutputStream s)
862 <        throws java.io.IOException{
863 <        // Write out element count, and any hidden stuff
864 <        int expectedModCount = modCount;
865 <        s.defaultWriteObject();
862 >        throws java.io.IOException {
863 >        // Write out element count, and any hidden stuff
864 >        int expectedModCount = modCount;
865 >        s.defaultWriteObject();
866  
867 <        // Write out array length
868 <        s.writeInt(elementData.length);
867 >        // Write out size as capacity for behavioral compatibility with clone()
868 >        s.writeInt(size);
869  
870 <        // Write out all elements in the proper order.
871 <        for (int i=0; i<size; i++)
870 >        // Write out all elements in the proper order.
871 >        for (int i=0; i<size; i++) {
872              s.writeObject(elementData[i]);
873 +        }
874  
875 <        if (expectedModCount != modCount) {
875 >        if (modCount != expectedModCount) {
876              throw new ConcurrentModificationException();
877          }
587
878      }
879  
880      /**
881 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
882 <     * deserialize it).
881 >     * Reconstitutes the {@code ArrayList} instance from a stream (that is,
882 >     * deserializes it).
883 >     * @param s the stream
884 >     * @throws ClassNotFoundException if the class of a serialized object
885 >     *         could not be found
886 >     * @throws java.io.IOException if an I/O error occurs
887       */
888 +    // OPENJDK @java.io.Serial
889      private void readObject(java.io.ObjectInputStream s)
890          throws java.io.IOException, ClassNotFoundException {
596        // Read in size, and any hidden stuff
597        s.defaultReadObject();
891  
892 <        // Read in array length and allocate array
893 <        int arrayLength = s.readInt();
894 <        Object[] a = elementData = new Object[arrayLength];
895 <
896 <        // Read in all elements in the proper order.
897 <        for (int i=0; i<size; i++)
898 <            a[i] = s.readObject();
892 >        // Read in size, and any hidden stuff
893 >        s.defaultReadObject();
894 >
895 >        // Read in capacity
896 >        s.readInt(); // ignored
897 >
898 >        if (size > 0) {
899 >            // like clone(), allocate array based upon size not capacity
900 >            jsr166.Platform.checkArray(s, Object[].class, size);
901 >            Object[] elements = new Object[size];
902 >
903 >            // Read in all elements in the proper order.
904 >            for (int i = 0; i < size; i++) {
905 >                elements[i] = s.readObject();
906 >            }
907 >
908 >            elementData = elements;
909 >        } else if (size == 0) {
910 >            elementData = EMPTY_ELEMENTDATA;
911 >        } else {
912 >            throw new java.io.InvalidObjectException("Invalid size: " + size);
913 >        }
914 >    }
915 >
916 >    /**
917 >     * Returns a list iterator over the elements in this list (in proper
918 >     * sequence), starting at the specified position in the list.
919 >     * The specified index indicates the first element that would be
920 >     * returned by an initial call to {@link ListIterator#next next}.
921 >     * An initial call to {@link ListIterator#previous previous} would
922 >     * return the element with the specified index minus one.
923 >     *
924 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
925 >     *
926 >     * @throws IndexOutOfBoundsException {@inheritDoc}
927 >     */
928 >    public ListIterator<E> listIterator(int index) {
929 >        rangeCheckForAdd(index);
930 >        return new ListItr(index);
931 >    }
932 >
933 >    /**
934 >     * Returns a list iterator over the elements in this list (in proper
935 >     * sequence).
936 >     *
937 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
938 >     *
939 >     * @see #listIterator(int)
940 >     */
941 >    public ListIterator<E> listIterator() {
942 >        return new ListItr(0);
943 >    }
944 >
945 >    /**
946 >     * Returns an iterator over the elements in this list in proper sequence.
947 >     *
948 >     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
949 >     *
950 >     * @return an iterator over the elements in this list in proper sequence
951 >     */
952 >    public Iterator<E> iterator() {
953 >        return new Itr();
954 >    }
955 >
956 >    /**
957 >     * An optimized version of AbstractList.Itr
958 >     */
959 >    private class Itr implements Iterator<E> {
960 >        int cursor;       // index of next element to return
961 >        int lastRet = -1; // index of last element returned; -1 if no such
962 >        int expectedModCount = modCount;
963 >
964 >        // prevent creating a synthetic constructor
965 >        Itr() {}
966 >
967 >        public boolean hasNext() {
968 >            return cursor != size;
969 >        }
970 >
971 >        @SuppressWarnings("unchecked")
972 >        public E next() {
973 >            checkForComodification();
974 >            int i = cursor;
975 >            if (i >= size)
976 >                throw new NoSuchElementException();
977 >            Object[] elementData = ArrayList.this.elementData;
978 >            if (i >= elementData.length)
979 >                throw new ConcurrentModificationException();
980 >            cursor = i + 1;
981 >            return (E) elementData[lastRet = i];
982 >        }
983 >
984 >        public void remove() {
985 >            if (lastRet < 0)
986 >                throw new IllegalStateException();
987 >            checkForComodification();
988 >
989 >            try {
990 >                ArrayList.this.remove(lastRet);
991 >                cursor = lastRet;
992 >                lastRet = -1;
993 >                expectedModCount = modCount;
994 >            } catch (IndexOutOfBoundsException ex) {
995 >                throw new ConcurrentModificationException();
996 >            }
997 >        }
998 >
999 >        @Override
1000 >        public void forEachRemaining(Consumer<? super E> action) {
1001 >            Objects.requireNonNull(action);
1002 >            final int size = ArrayList.this.size;
1003 >            int i = cursor;
1004 >            if (i < size) {
1005 >                final Object[] es = elementData;
1006 >                if (i >= es.length)
1007 >                    throw new ConcurrentModificationException();
1008 >                for (; i < size && modCount == expectedModCount; i++)
1009 >                    action.accept(elementAt(es, i));
1010 >                // update once at end to reduce heap write traffic
1011 >                cursor = i;
1012 >                lastRet = i - 1;
1013 >                checkForComodification();
1014 >            }
1015 >        }
1016 >
1017 >        final void checkForComodification() {
1018 >            if (modCount != expectedModCount)
1019 >                throw new ConcurrentModificationException();
1020 >        }
1021 >    }
1022 >
1023 >    /**
1024 >     * An optimized version of AbstractList.ListItr
1025 >     */
1026 >    private class ListItr extends Itr implements ListIterator<E> {
1027 >        ListItr(int index) {
1028 >            super();
1029 >            cursor = index;
1030 >        }
1031 >
1032 >        public boolean hasPrevious() {
1033 >            return cursor != 0;
1034 >        }
1035 >
1036 >        public int nextIndex() {
1037 >            return cursor;
1038 >        }
1039 >
1040 >        public int previousIndex() {
1041 >            return cursor - 1;
1042 >        }
1043 >
1044 >        @SuppressWarnings("unchecked")
1045 >        public E previous() {
1046 >            checkForComodification();
1047 >            int i = cursor - 1;
1048 >            if (i < 0)
1049 >                throw new NoSuchElementException();
1050 >            Object[] elementData = ArrayList.this.elementData;
1051 >            if (i >= elementData.length)
1052 >                throw new ConcurrentModificationException();
1053 >            cursor = i;
1054 >            return (E) elementData[lastRet = i];
1055 >        }
1056 >
1057 >        public void set(E e) {
1058 >            if (lastRet < 0)
1059 >                throw new IllegalStateException();
1060 >            checkForComodification();
1061 >
1062 >            try {
1063 >                ArrayList.this.set(lastRet, e);
1064 >            } catch (IndexOutOfBoundsException ex) {
1065 >                throw new ConcurrentModificationException();
1066 >            }
1067 >        }
1068 >
1069 >        public void add(E e) {
1070 >            checkForComodification();
1071 >
1072 >            try {
1073 >                int i = cursor;
1074 >                ArrayList.this.add(i, e);
1075 >                cursor = i + 1;
1076 >                lastRet = -1;
1077 >                expectedModCount = modCount;
1078 >            } catch (IndexOutOfBoundsException ex) {
1079 >                throw new ConcurrentModificationException();
1080 >            }
1081 >        }
1082 >    }
1083 >
1084 >    /**
1085 >     * Returns a view of the portion of this list between the specified
1086 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1087 >     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1088 >     * empty.)  The returned list is backed by this list, so non-structural
1089 >     * changes in the returned list are reflected in this list, and vice-versa.
1090 >     * The returned list supports all of the optional list operations.
1091 >     *
1092 >     * <p>This method eliminates the need for explicit range operations (of
1093 >     * the sort that commonly exist for arrays).  Any operation that expects
1094 >     * a list can be used as a range operation by passing a subList view
1095 >     * instead of a whole list.  For example, the following idiom
1096 >     * removes a range of elements from a list:
1097 >     * <pre>
1098 >     *      list.subList(from, to).clear();
1099 >     * </pre>
1100 >     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1101 >     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1102 >     * {@link Collections} class can be applied to a subList.
1103 >     *
1104 >     * <p>The semantics of the list returned by this method become undefined if
1105 >     * the backing list (i.e., this list) is <i>structurally modified</i> in
1106 >     * any way other than via the returned list.  (Structural modifications are
1107 >     * those that change the size of this list, or otherwise perturb it in such
1108 >     * a fashion that iterations in progress may yield incorrect results.)
1109 >     *
1110 >     * @throws IndexOutOfBoundsException {@inheritDoc}
1111 >     * @throws IllegalArgumentException {@inheritDoc}
1112 >     */
1113 >    public List<E> subList(int fromIndex, int toIndex) {
1114 >        subListRangeCheck(fromIndex, toIndex, size);
1115 >        return new SubList<>(this, fromIndex, toIndex);
1116 >    }
1117 >
1118 >    private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1119 >        private final ArrayList<E> root;
1120 >        private final SubList<E> parent;
1121 >        private final int offset;
1122 >        private int size;
1123 >
1124 >        /**
1125 >         * Constructs a sublist of an arbitrary ArrayList.
1126 >         */
1127 >        public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1128 >            this.root = root;
1129 >            this.parent = null;
1130 >            this.offset = fromIndex;
1131 >            this.size = toIndex - fromIndex;
1132 >            this.modCount = root.modCount;
1133 >        }
1134 >
1135 >        /**
1136 >         * Constructs a sublist of another SubList.
1137 >         */
1138 >        private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1139 >            this.root = parent.root;
1140 >            this.parent = parent;
1141 >            this.offset = parent.offset + fromIndex;
1142 >            this.size = toIndex - fromIndex;
1143 >            this.modCount = parent.modCount;
1144 >        }
1145 >
1146 >        public E set(int index, E element) {
1147 >            Objects.checkIndex(index, size);
1148 >            checkForComodification();
1149 >            E oldValue = root.elementData(offset + index);
1150 >            root.elementData[offset + index] = element;
1151 >            return oldValue;
1152 >        }
1153 >
1154 >        public E get(int index) {
1155 >            Objects.checkIndex(index, size);
1156 >            checkForComodification();
1157 >            return root.elementData(offset + index);
1158 >        }
1159 >
1160 >        public int size() {
1161 >            checkForComodification();
1162 >            return size;
1163 >        }
1164 >
1165 >        public void add(int index, E element) {
1166 >            rangeCheckForAdd(index);
1167 >            checkForComodification();
1168 >            root.add(offset + index, element);
1169 >            updateSizeAndModCount(1);
1170 >        }
1171 >
1172 >        public E remove(int index) {
1173 >            Objects.checkIndex(index, size);
1174 >            checkForComodification();
1175 >            E result = root.remove(offset + index);
1176 >            updateSizeAndModCount(-1);
1177 >            return result;
1178 >        }
1179 >
1180 >        protected void removeRange(int fromIndex, int toIndex) {
1181 >            checkForComodification();
1182 >            root.removeRange(offset + fromIndex, offset + toIndex);
1183 >            updateSizeAndModCount(fromIndex - toIndex);
1184 >        }
1185 >
1186 >        public boolean addAll(Collection<? extends E> c) {
1187 >            return addAll(this.size, c);
1188 >        }
1189 >
1190 >        public boolean addAll(int index, Collection<? extends E> c) {
1191 >            rangeCheckForAdd(index);
1192 >            int cSize = c.size();
1193 >            if (cSize==0)
1194 >                return false;
1195 >            checkForComodification();
1196 >            root.addAll(offset + index, c);
1197 >            updateSizeAndModCount(cSize);
1198 >            return true;
1199 >        }
1200 >
1201 >        public void replaceAll(UnaryOperator<E> operator) {
1202 >            root.replaceAllRange(operator, offset, offset + size);
1203 >        }
1204 >
1205 >        public boolean removeAll(Collection<?> c) {
1206 >            return batchRemove(c, false);
1207 >        }
1208 >
1209 >        public boolean retainAll(Collection<?> c) {
1210 >            return batchRemove(c, true);
1211 >        }
1212 >
1213 >        private boolean batchRemove(Collection<?> c, boolean complement) {
1214 >            checkForComodification();
1215 >            int oldSize = root.size;
1216 >            boolean modified =
1217 >                root.batchRemove(c, complement, offset, offset + size);
1218 >            if (modified)
1219 >                updateSizeAndModCount(root.size - oldSize);
1220 >            return modified;
1221 >        }
1222 >
1223 >        public boolean removeIf(Predicate<? super E> filter) {
1224 >            checkForComodification();
1225 >            int oldSize = root.size;
1226 >            boolean modified = root.removeIf(filter, offset, offset + size);
1227 >            if (modified)
1228 >                updateSizeAndModCount(root.size - oldSize);
1229 >            return modified;
1230 >        }
1231 >
1232 >        public Object[] toArray() {
1233 >            checkForComodification();
1234 >            return Arrays.copyOfRange(root.elementData, offset, offset + size);
1235 >        }
1236 >
1237 >        @SuppressWarnings("unchecked")
1238 >        public <T> T[] toArray(T[] a) {
1239 >            checkForComodification();
1240 >            if (a.length < size)
1241 >                return (T[]) Arrays.copyOfRange(
1242 >                        root.elementData, offset, offset + size, a.getClass());
1243 >            System.arraycopy(root.elementData, offset, a, 0, size);
1244 >            if (a.length > size)
1245 >                a[size] = null;
1246 >            return a;
1247 >        }
1248 >
1249 >        public boolean equals(Object o) {
1250 >            if (o == this) {
1251 >                return true;
1252 >            }
1253 >
1254 >            if (!(o instanceof List)) {
1255 >                return false;
1256 >            }
1257 >
1258 >            boolean equal = root.equalsRange((List<?>)o, offset, offset + size);
1259 >            checkForComodification();
1260 >            return equal;
1261 >        }
1262 >
1263 >        public int hashCode() {
1264 >            int hash = root.hashCodeRange(offset, offset + size);
1265 >            checkForComodification();
1266 >            return hash;
1267 >        }
1268 >
1269 >        public int indexOf(Object o) {
1270 >            int index = root.indexOfRange(o, offset, offset + size);
1271 >            checkForComodification();
1272 >            return index >= 0 ? index - offset : -1;
1273 >        }
1274 >
1275 >        public int lastIndexOf(Object o) {
1276 >            int index = root.lastIndexOfRange(o, offset, offset + size);
1277 >            checkForComodification();
1278 >            return index >= 0 ? index - offset : -1;
1279 >        }
1280 >
1281 >        public boolean contains(Object o) {
1282 >            return indexOf(o) >= 0;
1283 >        }
1284 >
1285 >        public Iterator<E> iterator() {
1286 >            return listIterator();
1287 >        }
1288 >
1289 >        public ListIterator<E> listIterator(int index) {
1290 >            checkForComodification();
1291 >            rangeCheckForAdd(index);
1292 >
1293 >            return new ListIterator<E>() {
1294 >                int cursor = index;
1295 >                int lastRet = -1;
1296 >                int expectedModCount = SubList.this.modCount;
1297 >
1298 >                public boolean hasNext() {
1299 >                    return cursor != SubList.this.size;
1300 >                }
1301 >
1302 >                @SuppressWarnings("unchecked")
1303 >                public E next() {
1304 >                    checkForComodification();
1305 >                    int i = cursor;
1306 >                    if (i >= SubList.this.size)
1307 >                        throw new NoSuchElementException();
1308 >                    Object[] elementData = root.elementData;
1309 >                    if (offset + i >= elementData.length)
1310 >                        throw new ConcurrentModificationException();
1311 >                    cursor = i + 1;
1312 >                    return (E) elementData[offset + (lastRet = i)];
1313 >                }
1314 >
1315 >                public boolean hasPrevious() {
1316 >                    return cursor != 0;
1317 >                }
1318 >
1319 >                @SuppressWarnings("unchecked")
1320 >                public E previous() {
1321 >                    checkForComodification();
1322 >                    int i = cursor - 1;
1323 >                    if (i < 0)
1324 >                        throw new NoSuchElementException();
1325 >                    Object[] elementData = root.elementData;
1326 >                    if (offset + i >= elementData.length)
1327 >                        throw new ConcurrentModificationException();
1328 >                    cursor = i;
1329 >                    return (E) elementData[offset + (lastRet = i)];
1330 >                }
1331 >
1332 >                public void forEachRemaining(Consumer<? super E> action) {
1333 >                    Objects.requireNonNull(action);
1334 >                    final int size = SubList.this.size;
1335 >                    int i = cursor;
1336 >                    if (i < size) {
1337 >                        final Object[] es = root.elementData;
1338 >                        if (offset + i >= es.length)
1339 >                            throw new ConcurrentModificationException();
1340 >                        for (; i < size && root.modCount == expectedModCount; i++)
1341 >                            action.accept(elementAt(es, offset + i));
1342 >                        // update once at end to reduce heap write traffic
1343 >                        cursor = i;
1344 >                        lastRet = i - 1;
1345 >                        checkForComodification();
1346 >                    }
1347 >                }
1348 >
1349 >                public int nextIndex() {
1350 >                    return cursor;
1351 >                }
1352 >
1353 >                public int previousIndex() {
1354 >                    return cursor - 1;
1355 >                }
1356 >
1357 >                public void remove() {
1358 >                    if (lastRet < 0)
1359 >                        throw new IllegalStateException();
1360 >                    checkForComodification();
1361 >
1362 >                    try {
1363 >                        SubList.this.remove(lastRet);
1364 >                        cursor = lastRet;
1365 >                        lastRet = -1;
1366 >                        expectedModCount = SubList.this.modCount;
1367 >                    } catch (IndexOutOfBoundsException ex) {
1368 >                        throw new ConcurrentModificationException();
1369 >                    }
1370 >                }
1371 >
1372 >                public void set(E e) {
1373 >                    if (lastRet < 0)
1374 >                        throw new IllegalStateException();
1375 >                    checkForComodification();
1376 >
1377 >                    try {
1378 >                        root.set(offset + lastRet, e);
1379 >                    } catch (IndexOutOfBoundsException ex) {
1380 >                        throw new ConcurrentModificationException();
1381 >                    }
1382 >                }
1383 >
1384 >                public void add(E e) {
1385 >                    checkForComodification();
1386 >
1387 >                    try {
1388 >                        int i = cursor;
1389 >                        SubList.this.add(i, e);
1390 >                        cursor = i + 1;
1391 >                        lastRet = -1;
1392 >                        expectedModCount = SubList.this.modCount;
1393 >                    } catch (IndexOutOfBoundsException ex) {
1394 >                        throw new ConcurrentModificationException();
1395 >                    }
1396 >                }
1397 >
1398 >                final void checkForComodification() {
1399 >                    if (root.modCount != expectedModCount)
1400 >                        throw new ConcurrentModificationException();
1401 >                }
1402 >            };
1403 >        }
1404 >
1405 >        public List<E> subList(int fromIndex, int toIndex) {
1406 >            subListRangeCheck(fromIndex, toIndex, size);
1407 >            return new SubList<>(this, fromIndex, toIndex);
1408 >        }
1409 >
1410 >        private void rangeCheckForAdd(int index) {
1411 >            if (index < 0 || index > this.size)
1412 >                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1413 >        }
1414 >
1415 >        private String outOfBoundsMsg(int index) {
1416 >            return "Index: "+index+", Size: "+this.size;
1417 >        }
1418 >
1419 >        private void checkForComodification() {
1420 >            if (root.modCount != modCount)
1421 >                throw new ConcurrentModificationException();
1422 >        }
1423 >
1424 >        private void updateSizeAndModCount(int sizeChange) {
1425 >            SubList<E> slist = this;
1426 >            do {
1427 >                slist.size += sizeChange;
1428 >                slist.modCount = root.modCount;
1429 >                slist = slist.parent;
1430 >            } while (slist != null);
1431 >        }
1432 >
1433 >        public Spliterator<E> spliterator() {
1434 >            checkForComodification();
1435 >
1436 >            // ArrayListSpliterator not used here due to late-binding
1437 >            return new Spliterator<E>() {
1438 >                private int index = offset; // current index, modified on advance/split
1439 >                private int fence = -1; // -1 until used; then one past last index
1440 >                private int expectedModCount; // initialized when fence set
1441 >
1442 >                private int getFence() { // initialize fence to size on first use
1443 >                    int hi; // (a specialized variant appears in method forEach)
1444 >                    if ((hi = fence) < 0) {
1445 >                        expectedModCount = modCount;
1446 >                        hi = fence = offset + size;
1447 >                    }
1448 >                    return hi;
1449 >                }
1450 >
1451 >                public ArrayList<E>.ArrayListSpliterator trySplit() {
1452 >                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1453 >                    // ArrayListSpliterator can be used here as the source is already bound
1454 >                    return (lo >= mid) ? null : // divide range in half unless too small
1455 >                        root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1456 >                }
1457 >
1458 >                public boolean tryAdvance(Consumer<? super E> action) {
1459 >                    Objects.requireNonNull(action);
1460 >                    int hi = getFence(), i = index;
1461 >                    if (i < hi) {
1462 >                        index = i + 1;
1463 >                        @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1464 >                        action.accept(e);
1465 >                        if (root.modCount != expectedModCount)
1466 >                            throw new ConcurrentModificationException();
1467 >                        return true;
1468 >                    }
1469 >                    return false;
1470 >                }
1471 >
1472 >                public void forEachRemaining(Consumer<? super E> action) {
1473 >                    Objects.requireNonNull(action);
1474 >                    int i, hi, mc; // hoist accesses and checks from loop
1475 >                    ArrayList<E> lst = root;
1476 >                    Object[] a;
1477 >                    if ((a = lst.elementData) != null) {
1478 >                        if ((hi = fence) < 0) {
1479 >                            mc = modCount;
1480 >                            hi = offset + size;
1481 >                        }
1482 >                        else
1483 >                            mc = expectedModCount;
1484 >                        if ((i = index) >= 0 && (index = hi) <= a.length) {
1485 >                            for (; i < hi; ++i) {
1486 >                                @SuppressWarnings("unchecked") E e = (E) a[i];
1487 >                                action.accept(e);
1488 >                            }
1489 >                            if (lst.modCount == mc)
1490 >                                return;
1491 >                        }
1492 >                    }
1493 >                    throw new ConcurrentModificationException();
1494 >                }
1495 >
1496 >                public long estimateSize() {
1497 >                    return getFence() - index;
1498 >                }
1499 >
1500 >                public int characteristics() {
1501 >                    return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1502 >                }
1503 >            };
1504 >        }
1505 >    }
1506 >
1507 >    /**
1508 >     * @throws NullPointerException {@inheritDoc}
1509 >     */
1510 >    @Override
1511 >    public void forEach(Consumer<? super E> action) {
1512 >        Objects.requireNonNull(action);
1513 >        final int expectedModCount = modCount;
1514 >        final Object[] es = elementData;
1515 >        final int size = this.size;
1516 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1517 >            action.accept(elementAt(es, i));
1518 >        if (modCount != expectedModCount)
1519 >            throw new ConcurrentModificationException();
1520 >    }
1521 >
1522 >    /**
1523 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1524 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1525 >     * list.
1526 >     *
1527 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1528 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1529 >     * Overriding implementations should document the reporting of additional
1530 >     * characteristic values.
1531 >     *
1532 >     * @return a {@code Spliterator} over the elements in this list
1533 >     * @since 1.8
1534 >     */
1535 >    @Override
1536 >    public Spliterator<E> spliterator() {
1537 >        return new ArrayListSpliterator(0, -1, 0);
1538 >    }
1539 >
1540 >    /** Index-based split-by-two, lazily initialized Spliterator */
1541 >    final class ArrayListSpliterator implements Spliterator<E> {
1542 >
1543 >        /*
1544 >         * If ArrayLists were immutable, or structurally immutable (no
1545 >         * adds, removes, etc), we could implement their spliterators
1546 >         * with Arrays.spliterator. Instead we detect as much
1547 >         * interference during traversal as practical without
1548 >         * sacrificing much performance. We rely primarily on
1549 >         * modCounts. These are not guaranteed to detect concurrency
1550 >         * violations, and are sometimes overly conservative about
1551 >         * within-thread interference, but detect enough problems to
1552 >         * be worthwhile in practice. To carry this out, we (1) lazily
1553 >         * initialize fence and expectedModCount until the latest
1554 >         * point that we need to commit to the state we are checking
1555 >         * against; thus improving precision.  (This doesn't apply to
1556 >         * SubLists, that create spliterators with current non-lazy
1557 >         * values).  (2) We perform only a single
1558 >         * ConcurrentModificationException check at the end of forEach
1559 >         * (the most performance-sensitive method). When using forEach
1560 >         * (as opposed to iterators), we can normally only detect
1561 >         * interference after actions, not before. Further
1562 >         * CME-triggering checks apply to all other possible
1563 >         * violations of assumptions for example null or too-small
1564 >         * elementData array given its size(), that could only have
1565 >         * occurred due to interference.  This allows the inner loop
1566 >         * of forEach to run without any further checks, and
1567 >         * simplifies lambda-resolution. While this does entail a
1568 >         * number of checks, note that in the common case of
1569 >         * list.stream().forEach(a), no checks or other computation
1570 >         * occur anywhere other than inside forEach itself.  The other
1571 >         * less-often-used methods cannot take advantage of most of
1572 >         * these streamlinings.
1573 >         */
1574 >
1575 >        private int index; // current index, modified on advance/split
1576 >        private int fence; // -1 until used; then one past last index
1577 >        private int expectedModCount; // initialized when fence set
1578 >
1579 >        /** Creates new spliterator covering the given range. */
1580 >        ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1581 >            this.index = origin;
1582 >            this.fence = fence;
1583 >            this.expectedModCount = expectedModCount;
1584 >        }
1585 >
1586 >        private int getFence() { // initialize fence to size on first use
1587 >            int hi; // (a specialized variant appears in method forEach)
1588 >            if ((hi = fence) < 0) {
1589 >                expectedModCount = modCount;
1590 >                hi = fence = size;
1591 >            }
1592 >            return hi;
1593 >        }
1594 >
1595 >        public ArrayListSpliterator trySplit() {
1596 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1597 >            return (lo >= mid) ? null : // divide range in half unless too small
1598 >                new ArrayListSpliterator(lo, index = mid, expectedModCount);
1599 >        }
1600 >
1601 >        public boolean tryAdvance(Consumer<? super E> action) {
1602 >            if (action == null)
1603 >                throw new NullPointerException();
1604 >            int hi = getFence(), i = index;
1605 >            if (i < hi) {
1606 >                index = i + 1;
1607 >                @SuppressWarnings("unchecked") E e = (E)elementData[i];
1608 >                action.accept(e);
1609 >                if (modCount != expectedModCount)
1610 >                    throw new ConcurrentModificationException();
1611 >                return true;
1612 >            }
1613 >            return false;
1614 >        }
1615 >
1616 >        public void forEachRemaining(Consumer<? super E> action) {
1617 >            int i, hi, mc; // hoist accesses and checks from loop
1618 >            Object[] a;
1619 >            if (action == null)
1620 >                throw new NullPointerException();
1621 >            if ((a = elementData) != null) {
1622 >                if ((hi = fence) < 0) {
1623 >                    mc = modCount;
1624 >                    hi = size;
1625 >                }
1626 >                else
1627 >                    mc = expectedModCount;
1628 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
1629 >                    for (; i < hi; ++i) {
1630 >                        @SuppressWarnings("unchecked") E e = (E) a[i];
1631 >                        action.accept(e);
1632 >                    }
1633 >                    if (modCount == mc)
1634 >                        return;
1635 >                }
1636 >            }
1637 >            throw new ConcurrentModificationException();
1638 >        }
1639 >
1640 >        public long estimateSize() {
1641 >            return getFence() - index;
1642 >        }
1643 >
1644 >        public int characteristics() {
1645 >            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1646 >        }
1647 >    }
1648 >
1649 >    // A tiny bit set implementation
1650 >
1651 >    private static long[] nBits(int n) {
1652 >        return new long[((n - 1) >> 6) + 1];
1653 >    }
1654 >    private static void setBit(long[] bits, int i) {
1655 >        bits[i >> 6] |= 1L << i;
1656 >    }
1657 >    private static boolean isClear(long[] bits, int i) {
1658 >        return (bits[i >> 6] & (1L << i)) == 0;
1659 >    }
1660 >
1661 >    /**
1662 >     * @throws NullPointerException {@inheritDoc}
1663 >     */
1664 >    @Override
1665 >    public boolean removeIf(Predicate<? super E> filter) {
1666 >        return removeIf(filter, 0, size);
1667 >    }
1668 >
1669 >    /**
1670 >     * Removes all elements satisfying the given predicate, from index
1671 >     * i (inclusive) to index end (exclusive).
1672 >     */
1673 >    boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1674 >        Objects.requireNonNull(filter);
1675 >        int expectedModCount = modCount;
1676 >        final Object[] es = elementData;
1677 >        // Optimize for initial run of survivors
1678 >        for (; i < end && !filter.test(elementAt(es, i)); i++)
1679 >            ;
1680 >        // Tolerate predicates that reentrantly access the collection for
1681 >        // read (but writers still get CME), so traverse once to find
1682 >        // elements to delete, a second pass to physically expunge.
1683 >        if (i < end) {
1684 >            final int beg = i;
1685 >            final long[] deathRow = nBits(end - beg);
1686 >            deathRow[0] = 1L;   // set bit 0
1687 >            for (i = beg + 1; i < end; i++)
1688 >                if (filter.test(elementAt(es, i)))
1689 >                    setBit(deathRow, i - beg);
1690 >            if (modCount != expectedModCount)
1691 >                throw new ConcurrentModificationException();
1692 >            modCount++;
1693 >            int w = beg;
1694 >            for (i = beg; i < end; i++)
1695 >                if (isClear(deathRow, i - beg))
1696 >                    es[w++] = es[i];
1697 >            shiftTailOverGap(es, w, end);
1698 >            // checkInvariants();
1699 >            return true;
1700 >        } else {
1701 >            if (modCount != expectedModCount)
1702 >                throw new ConcurrentModificationException();
1703 >            // checkInvariants();
1704 >            return false;
1705 >        }
1706 >    }
1707 >
1708 >    @Override
1709 >    public void replaceAll(UnaryOperator<E> operator) {
1710 >        replaceAllRange(operator, 0, size);
1711 >        // TODO(8203662): remove increment of modCount from ...
1712 >        modCount++;
1713 >    }
1714 >
1715 >    private void replaceAllRange(UnaryOperator<E> operator, int i, int end) {
1716 >        Objects.requireNonNull(operator);
1717 >        final int expectedModCount = modCount;
1718 >        final Object[] es = elementData;
1719 >        for (; modCount == expectedModCount && i < end; i++)
1720 >            es[i] = operator.apply(elementAt(es, i));
1721 >        if (modCount != expectedModCount)
1722 >            throw new ConcurrentModificationException();
1723 >        // checkInvariants();
1724 >    }
1725 >
1726 >    @Override
1727 >    @SuppressWarnings("unchecked")
1728 >    public void sort(Comparator<? super E> c) {
1729 >        final int expectedModCount = modCount;
1730 >        Arrays.sort((E[]) elementData, 0, size, c);
1731 >        if (modCount != expectedModCount)
1732 >            throw new ConcurrentModificationException();
1733 >        modCount++;
1734 >        // checkInvariants();
1735 >    }
1736 >
1737 >    void checkInvariants() {
1738 >        // assert size >= 0;
1739 >        // assert size == elementData.length || elementData[size] == null;
1740      }
1741   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines