ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayList.java (file contents):
Revision 1.28 by jsr166, Mon May 19 00:32:45 2008 UTC vs.
Revision 1.40 by jsr166, Sun Nov 13 20:03:11 2016 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright 1997-2007 Sun Microsystems, Inc.  All Rights Reserved.
2 > * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3   * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5   * This code is free software; you can redistribute it and/or modify it
6   * under the terms of the GNU General Public License version 2 only, as
7 < * published by the Free Software Foundation.  Sun designates this
7 > * published by the Free Software Foundation.  Oracle designates this
8   * particular file as subject to the "Classpath" exception as provided
9 < * by Sun in the LICENSE file that accompanied this code.
9 > * by Oracle in the LICENSE file that accompanied this code.
10   *
11   * This code is distributed in the hope that it will be useful, but WITHOUT
12   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# Line 18 | Line 18
18   * 2 along with this work; if not, write to the Free Software Foundation,
19   * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20   *
21 < * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 < * CA 95054 USA or visit www.sun.com if you need additional information or
23 < * have any questions.
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28 + import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + import java.util.function.UnaryOperator;
31 +
32   /**
33 < * Resizable-array implementation of the <tt>List</tt> interface.  Implements
33 > * Resizable-array implementation of the {@code List} interface.  Implements
34   * all optional list operations, and permits all elements, including
35 < * <tt>null</tt>.  In addition to implementing the <tt>List</tt> interface,
35 > * {@code null}.  In addition to implementing the {@code List} interface,
36   * this class provides methods to manipulate the size of the array that is
37   * used internally to store the list.  (This class is roughly equivalent to
38 < * <tt>Vector</tt>, except that it is unsynchronized.)
38 > * {@code Vector}, except that it is unsynchronized.)
39   *
40 < * <p>The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
41 < * <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
42 < * time.  The <tt>add</tt> operation runs in <i>amortized constant time</i>,
40 > * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 > * {@code iterator}, and {@code listIterator} operations run in constant
42 > * time.  The {@code add} operation runs in <i>amortized constant time</i>,
43   * that is, adding n elements requires O(n) time.  All of the other operations
44   * run in linear time (roughly speaking).  The constant factor is low compared
45 < * to that for the <tt>LinkedList</tt> implementation.
45 > * to that for the {@code LinkedList} implementation.
46   *
47 < * <p>Each <tt>ArrayList</tt> instance has a <i>capacity</i>.  The capacity is
47 > * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
48   * the size of the array used to store the elements in the list.  It is always
49   * at least as large as the list size.  As elements are added to an ArrayList,
50   * its capacity grows automatically.  The details of the growth policy are not
51   * specified beyond the fact that adding an element has constant amortized
52   * time cost.
53   *
54 < * <p>An application can increase the capacity of an <tt>ArrayList</tt> instance
55 < * before adding a large number of elements using the <tt>ensureCapacity</tt>
54 > * <p>An application can increase the capacity of an {@code ArrayList} instance
55 > * before adding a large number of elements using the {@code ensureCapacity}
56   * operation.  This may reduce the amount of incremental reallocation.
57   *
58   * <p><strong>Note that this implementation is not synchronized.</strong>
59 < * If multiple threads access an <tt>ArrayList</tt> instance concurrently,
59 > * If multiple threads access an {@code ArrayList} instance concurrently,
60   * and at least one of the threads modifies the list structurally, it
61   * <i>must</i> be synchronized externally.  (A structural modification is
62   * any operation that adds or deletes one or more elements, or explicitly
# Line 66 | Line 70 | package java.util;
70   * unsynchronized access to the list:<pre>
71   *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
72   *
73 < * <p><a name="fail-fast"/>
73 > * <p id="fail-fast">
74   * The iterators returned by this class's {@link #iterator() iterator} and
75   * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76   * if the list is structurally modified at any time after the iterator is
# Line 90 | Line 94 | package java.util;
94   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95   * Java Collections Framework</a>.
96   *
97 + * @param <E> the type of elements in this list
98 + *
99   * @author  Josh Bloch
100   * @author  Neal Gafter
101   * @see     Collection
# Line 98 | Line 104 | package java.util;
104   * @see     Vector
105   * @since   1.2
106   */
101
107   public class ArrayList<E> extends AbstractList<E>
108          implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109   {
110      private static final long serialVersionUID = 8683452581122892189L;
111  
112      /**
113 +     * Default initial capacity.
114 +     */
115 +    private static final int DEFAULT_CAPACITY = 10;
116 +
117 +    /**
118 +     * Shared empty array instance used for empty instances.
119 +     */
120 +    private static final Object[] EMPTY_ELEMENTDATA = {};
121 +
122 +    /**
123 +     * Shared empty array instance used for default sized empty instances. We
124 +     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 +     * first element is added.
126 +     */
127 +    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128 +
129 +    /**
130       * The array buffer into which the elements of the ArrayList are stored.
131 <     * The capacity of the ArrayList is the length of this array buffer.
131 >     * The capacity of the ArrayList is the length of this array buffer. Any
132 >     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 >     * will be expanded to DEFAULT_CAPACITY when the first element is added.
134       */
135 <    private transient Object[] elementData;
135 >    transient Object[] elementData; // non-private to simplify nested class access
136  
137      /**
138       * The size of the ArrayList (the number of elements it contains).
# Line 120 | Line 144 | public class ArrayList<E> extends Abstra
144      /**
145       * Constructs an empty list with the specified initial capacity.
146       *
147 <     * @param   initialCapacity   the initial capacity of the list
148 <     * @exception IllegalArgumentException if the specified initial capacity
149 <     *            is negative
147 >     * @param  initialCapacity  the initial capacity of the list
148 >     * @throws IllegalArgumentException if the specified initial capacity
149 >     *         is negative
150       */
151      public ArrayList(int initialCapacity) {
152 <        super();
153 <        if (initialCapacity < 0)
152 >        if (initialCapacity > 0) {
153 >            this.elementData = new Object[initialCapacity];
154 >        } else if (initialCapacity == 0) {
155 >            this.elementData = EMPTY_ELEMENTDATA;
156 >        } else {
157              throw new IllegalArgumentException("Illegal Capacity: "+
158                                                 initialCapacity);
159 <        this.elementData = new Object[initialCapacity];
159 >        }
160      }
161  
162      /**
163       * Constructs an empty list with an initial capacity of ten.
164       */
165      public ArrayList() {
166 <        this(10);
166 >        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167      }
168  
169      /**
# Line 149 | Line 176 | public class ArrayList<E> extends Abstra
176       */
177      public ArrayList(Collection<? extends E> c) {
178          elementData = c.toArray();
179 <        size = elementData.length;
180 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
181 <        if (elementData.getClass() != Object[].class)
182 <            elementData = Arrays.copyOf(elementData, size, Object[].class);
179 >        if ((size = elementData.length) != 0) {
180 >            // defend against c.toArray (incorrectly) not returning Object[]
181 >            // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 >            if (elementData.getClass() != Object[].class)
183 >                elementData = Arrays.copyOf(elementData, size, Object[].class);
184 >        } else {
185 >            // replace with empty array.
186 >            this.elementData = EMPTY_ELEMENTDATA;
187 >        }
188      }
189  
190      /**
191 <     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
191 >     * Trims the capacity of this {@code ArrayList} instance to be the
192       * list's current size.  An application can use this operation to minimize
193 <     * the storage of an <tt>ArrayList</tt> instance.
193 >     * the storage of an {@code ArrayList} instance.
194       */
195      public void trimToSize() {
196          modCount++;
197 <        int oldCapacity = elementData.length;
198 <        if (size < oldCapacity) {
199 <            elementData = Arrays.copyOf(elementData, size);
197 >        if (size < elementData.length) {
198 >            elementData = (size == 0)
199 >              ? EMPTY_ELEMENTDATA
200 >              : Arrays.copyOf(elementData, size);
201          }
202      }
203  
204      /**
205 <     * Increases the capacity of this <tt>ArrayList</tt> instance, if
205 >     * Increases the capacity of this {@code ArrayList} instance, if
206       * necessary, to ensure that it can hold at least the number of elements
207       * specified by the minimum capacity argument.
208       *
209 <     * @param   minCapacity   the desired minimum capacity
209 >     * @param minCapacity the desired minimum capacity
210       */
211      public void ensureCapacity(int minCapacity) {
212 <        modCount++;
213 <        int oldCapacity = elementData.length;
214 <        if (minCapacity > oldCapacity) {
215 <            Object oldData[] = elementData;
216 <            int newCapacity = (oldCapacity * 3)/2 + 1;
184 <            if (newCapacity < minCapacity)
185 <                newCapacity = minCapacity;
186 <            // minCapacity is usually close to size, so this is a win:
187 <            elementData = Arrays.copyOf(elementData, newCapacity);
212 >        if (minCapacity > elementData.length
213 >            && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 >                 && minCapacity <= DEFAULT_CAPACITY)) {
215 >            modCount++;
216 >            grow(minCapacity);
217          }
218      }
219  
220      /**
221 +     * The maximum size of array to allocate (unless necessary).
222 +     * Some VMs reserve some header words in an array.
223 +     * Attempts to allocate larger arrays may result in
224 +     * OutOfMemoryError: Requested array size exceeds VM limit
225 +     */
226 +    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227 +
228 +    /**
229 +     * Increases the capacity to ensure that it can hold at least the
230 +     * number of elements specified by the minimum capacity argument.
231 +     *
232 +     * @param minCapacity the desired minimum capacity
233 +     * @throws OutOfMemoryError if minCapacity is less than zero
234 +     */
235 +    private Object[] grow(int minCapacity) {
236 +        return elementData = Arrays.copyOf(elementData,
237 +                                           newCapacity(minCapacity));
238 +    }
239 +
240 +    private Object[] grow() {
241 +        return grow(size + 1);
242 +    }
243 +
244 +    /**
245 +     * Returns a capacity at least as large as the given minimum capacity.
246 +     * Returns the current capacity increased by 50% if that suffices.
247 +     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 +     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249 +     *
250 +     * @param minCapacity the desired minimum capacity
251 +     * @throws OutOfMemoryError if minCapacity is less than zero
252 +     */
253 +    private int newCapacity(int minCapacity) {
254 +        // overflow-conscious code
255 +        int oldCapacity = elementData.length;
256 +        int newCapacity = oldCapacity + (oldCapacity >> 1);
257 +        if (newCapacity - minCapacity <= 0) {
258 +            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 +                return Math.max(DEFAULT_CAPACITY, minCapacity);
260 +            if (minCapacity < 0) // overflow
261 +                throw new OutOfMemoryError();
262 +            return minCapacity;
263 +        }
264 +        return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 +            ? newCapacity
266 +            : hugeCapacity(minCapacity);
267 +    }
268 +
269 +    private static int hugeCapacity(int minCapacity) {
270 +        if (minCapacity < 0) // overflow
271 +            throw new OutOfMemoryError();
272 +        return (minCapacity > MAX_ARRAY_SIZE)
273 +            ? Integer.MAX_VALUE
274 +            : MAX_ARRAY_SIZE;
275 +    }
276 +
277 +    /**
278       * Returns the number of elements in this list.
279       *
280       * @return the number of elements in this list
# Line 198 | Line 284 | public class ArrayList<E> extends Abstra
284      }
285  
286      /**
287 <     * Returns <tt>true</tt> if this list contains no elements.
287 >     * Returns {@code true} if this list contains no elements.
288       *
289 <     * @return <tt>true</tt> if this list contains no elements
289 >     * @return {@code true} if this list contains no elements
290       */
291      public boolean isEmpty() {
292          return size == 0;
293      }
294  
295      /**
296 <     * Returns <tt>true</tt> if this list contains the specified element.
297 <     * More formally, returns <tt>true</tt> if and only if this list contains
298 <     * at least one element <tt>e</tt> such that
299 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
296 >     * Returns {@code true} if this list contains the specified element.
297 >     * More formally, returns {@code true} if and only if this list contains
298 >     * at least one element {@code e} such that
299 >     * {@code Objects.equals(o, e)}.
300       *
301       * @param o element whose presence in this list is to be tested
302 <     * @return <tt>true</tt> if this list contains the specified element
302 >     * @return {@code true} if this list contains the specified element
303       */
304      public boolean contains(Object o) {
305          return indexOf(o) >= 0;
# Line 222 | Line 308 | public class ArrayList<E> extends Abstra
308      /**
309       * Returns the index of the first occurrence of the specified element
310       * in this list, or -1 if this list does not contain the element.
311 <     * More formally, returns the lowest index <tt>i</tt> such that
312 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
311 >     * More formally, returns the lowest index {@code i} such that
312 >     * {@code Objects.equals(o, get(i))},
313       * or -1 if there is no such index.
314       */
315      public int indexOf(Object o) {
# Line 242 | Line 328 | public class ArrayList<E> extends Abstra
328      /**
329       * Returns the index of the last occurrence of the specified element
330       * in this list, or -1 if this list does not contain the element.
331 <     * More formally, returns the highest index <tt>i</tt> such that
332 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
331 >     * More formally, returns the highest index {@code i} such that
332 >     * {@code Objects.equals(o, get(i))},
333       * or -1 if there is no such index.
334       */
335      public int lastIndexOf(Object o) {
# Line 260 | Line 346 | public class ArrayList<E> extends Abstra
346      }
347  
348      /**
349 <     * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
349 >     * Returns a shallow copy of this {@code ArrayList} instance.  (The
350       * elements themselves are not copied.)
351       *
352 <     * @return a clone of this <tt>ArrayList</tt> instance
352 >     * @return a clone of this {@code ArrayList} instance
353       */
354      public Object clone() {
355          try {
356 <            @SuppressWarnings("unchecked")
271 <                ArrayList<E> v = (ArrayList<E>) super.clone();
356 >            ArrayList<?> v = (ArrayList<?>) super.clone();
357              v.elementData = Arrays.copyOf(elementData, size);
358              v.modCount = 0;
359              return v;
360          } catch (CloneNotSupportedException e) {
361              // this shouldn't happen, since we are Cloneable
362 <            throw new InternalError();
362 >            throw new InternalError(e);
363          }
364      }
365  
# Line 307 | Line 392 | public class ArrayList<E> extends Abstra
392       * <p>If the list fits in the specified array with room to spare
393       * (i.e., the array has more elements than the list), the element in
394       * the array immediately following the end of the collection is set to
395 <     * <tt>null</tt>.  (This is useful in determining the length of the
395 >     * {@code null}.  (This is useful in determining the length of the
396       * list <i>only</i> if the caller knows that the list does not contain
397       * any null elements.)
398       *
# Line 338 | Line 423 | public class ArrayList<E> extends Abstra
423          return (E) elementData[index];
424      }
425  
426 +    @SuppressWarnings("unchecked")
427 +    static <E> E elementAt(Object[] es, int index) {
428 +        return (E) es[index];
429 +    }
430 +
431      /**
432       * Returns the element at the specified position in this list.
433       *
# Line 346 | Line 436 | public class ArrayList<E> extends Abstra
436       * @throws IndexOutOfBoundsException {@inheritDoc}
437       */
438      public E get(int index) {
439 <        rangeCheck(index);
350 <
439 >        Objects.checkIndex(index, size);
440          return elementData(index);
441      }
442  
# Line 361 | Line 450 | public class ArrayList<E> extends Abstra
450       * @throws IndexOutOfBoundsException {@inheritDoc}
451       */
452      public E set(int index, E element) {
453 <        rangeCheck(index);
365 <
453 >        Objects.checkIndex(index, size);
454          E oldValue = elementData(index);
455          elementData[index] = element;
456          return oldValue;
457      }
458  
459      /**
460 +     * This helper method split out from add(E) to keep method
461 +     * bytecode size under 35 (the -XX:MaxInlineSize default value),
462 +     * which helps when add(E) is called in a C1-compiled loop.
463 +     */
464 +    private void add(E e, Object[] elementData, int s) {
465 +        if (s == elementData.length)
466 +            elementData = grow();
467 +        elementData[s] = e;
468 +        size = s + 1;
469 +    }
470 +
471 +    /**
472       * Appends the specified element to the end of this list.
473       *
474       * @param e element to be appended to this list
475 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
475 >     * @return {@code true} (as specified by {@link Collection#add})
476       */
477      public boolean add(E e) {
478 <        ensureCapacity(size + 1);  // Increments modCount!!
479 <        elementData[size++] = e;
478 >        modCount++;
479 >        add(e, elementData, size);
480          return true;
481      }
482  
# Line 391 | Line 491 | public class ArrayList<E> extends Abstra
491       */
492      public void add(int index, E element) {
493          rangeCheckForAdd(index);
494 <
495 <        ensureCapacity(size+1);  // Increments modCount!!
496 <        System.arraycopy(elementData, index, elementData, index + 1,
497 <                         size - index);
494 >        modCount++;
495 >        final int s;
496 >        Object[] elementData;
497 >        if ((s = size) == (elementData = this.elementData).length)
498 >            elementData = grow();
499 >        System.arraycopy(elementData, index,
500 >                         elementData, index + 1,
501 >                         s - index);
502          elementData[index] = element;
503 <        size++;
503 >        size = s + 1;
504      }
505  
506      /**
# Line 409 | Line 513 | public class ArrayList<E> extends Abstra
513       * @throws IndexOutOfBoundsException {@inheritDoc}
514       */
515      public E remove(int index) {
516 <        rangeCheck(index);
516 >        Objects.checkIndex(index, size);
517  
518          modCount++;
519          E oldValue = elementData(index);
# Line 418 | Line 522 | public class ArrayList<E> extends Abstra
522          if (numMoved > 0)
523              System.arraycopy(elementData, index+1, elementData, index,
524                               numMoved);
525 <        elementData[--size] = null; // Let gc do its work
525 >        elementData[--size] = null; // clear to let GC do its work
526  
527          return oldValue;
528      }
# Line 427 | Line 531 | public class ArrayList<E> extends Abstra
531       * Removes the first occurrence of the specified element from this list,
532       * if it is present.  If the list does not contain the element, it is
533       * unchanged.  More formally, removes the element with the lowest index
534 <     * <tt>i</tt> such that
535 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
536 <     * (if such an element exists).  Returns <tt>true</tt> if this list
534 >     * {@code i} such that
535 >     * {@code Objects.equals(o, get(i))}
536 >     * (if such an element exists).  Returns {@code true} if this list
537       * contained the specified element (or equivalently, if this list
538       * changed as a result of the call).
539       *
540       * @param o element to be removed from this list, if present
541 <     * @return <tt>true</tt> if this list contained the specified element
541 >     * @return {@code true} if this list contained the specified element
542       */
543      public boolean remove(Object o) {
544          if (o == null) {
# Line 463 | Line 567 | public class ArrayList<E> extends Abstra
567          if (numMoved > 0)
568              System.arraycopy(elementData, index+1, elementData, index,
569                               numMoved);
570 <        elementData[--size] = null; // Let gc do its work
570 >        elementData[--size] = null; // clear to let GC do its work
571      }
572  
573      /**
# Line 473 | Line 577 | public class ArrayList<E> extends Abstra
577      public void clear() {
578          modCount++;
579  
580 <        // Let gc do its work
580 >        // clear to let GC do its work
581          for (int i = 0; i < size; i++)
582              elementData[i] = null;
583  
# Line 490 | Line 594 | public class ArrayList<E> extends Abstra
594       * list is nonempty.)
595       *
596       * @param c collection containing elements to be added to this list
597 <     * @return <tt>true</tt> if this list changed as a result of the call
597 >     * @return {@code true} if this list changed as a result of the call
598       * @throws NullPointerException if the specified collection is null
599       */
600      public boolean addAll(Collection<? extends E> c) {
601          Object[] a = c.toArray();
602 +        modCount++;
603          int numNew = a.length;
604 <        ensureCapacity(size + numNew);  // Increments modCount
605 <        System.arraycopy(a, 0, elementData, size, numNew);
606 <        size += numNew;
607 <        return numNew != 0;
604 >        if (numNew == 0)
605 >            return false;
606 >        Object[] elementData;
607 >        final int s;
608 >        if (numNew > (elementData = this.elementData).length - (s = size))
609 >            elementData = grow(s + numNew);
610 >        System.arraycopy(a, 0, elementData, s, numNew);
611 >        size = s + numNew;
612 >        return true;
613      }
614  
615      /**
# Line 513 | Line 623 | public class ArrayList<E> extends Abstra
623       * @param index index at which to insert the first element from the
624       *              specified collection
625       * @param c collection containing elements to be added to this list
626 <     * @return <tt>true</tt> if this list changed as a result of the call
626 >     * @return {@code true} if this list changed as a result of the call
627       * @throws IndexOutOfBoundsException {@inheritDoc}
628       * @throws NullPointerException if the specified collection is null
629       */
# Line 521 | Line 631 | public class ArrayList<E> extends Abstra
631          rangeCheckForAdd(index);
632  
633          Object[] a = c.toArray();
634 +        modCount++;
635          int numNew = a.length;
636 <        ensureCapacity(size + numNew);  // Increments modCount
636 >        if (numNew == 0)
637 >            return false;
638 >        Object[] elementData;
639 >        final int s;
640 >        if (numNew > (elementData = this.elementData).length - (s = size))
641 >            elementData = grow(s + numNew);
642  
643 <        int numMoved = size - index;
643 >        int numMoved = s - index;
644          if (numMoved > 0)
645 <            System.arraycopy(elementData, index, elementData, index + numNew,
645 >            System.arraycopy(elementData, index,
646 >                             elementData, index + numNew,
647                               numMoved);
531
648          System.arraycopy(a, 0, elementData, index, numNew);
649 <        size += numNew;
650 <        return numNew != 0;
649 >        size = s + numNew;
650 >        return true;
651      }
652  
653      /**
# Line 544 | Line 660 | public class ArrayList<E> extends Abstra
660       * @throws IndexOutOfBoundsException if {@code fromIndex} or
661       *         {@code toIndex} is out of range
662       *         ({@code fromIndex < 0 ||
547     *          fromIndex >= size() ||
663       *          toIndex > size() ||
664       *          toIndex < fromIndex})
665       */
666      protected void removeRange(int fromIndex, int toIndex) {
667 +        if (fromIndex > toIndex) {
668 +            throw new IndexOutOfBoundsException(
669 +                    outOfBoundsMsg(fromIndex, toIndex));
670 +        }
671          modCount++;
672          int numMoved = size - toIndex;
673          System.arraycopy(elementData, toIndex, elementData, fromIndex,
674                           numMoved);
675  
676 <        // Let gc do its work
676 >        // clear to let GC do its work
677          int newSize = size - (toIndex-fromIndex);
678 <        while (size != newSize)
679 <            elementData[--size] = null;
680 <    }
681 <
563 <    /**
564 <     * Checks if the given index is in range.  If not, throws an appropriate
565 <     * runtime exception.  This method does *not* check if the index is
566 <     * negative: It is always used immediately prior to an array access,
567 <     * which throws an ArrayIndexOutOfBoundsException if index is negative.
568 <     */
569 <    private void rangeCheck(int index) {
570 <        if (index >= size)
571 <            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
678 >        for (int i = newSize; i < size; i++) {
679 >            elementData[i] = null;
680 >        }
681 >        size = newSize;
682      }
683  
684      /**
# Line 589 | Line 699 | public class ArrayList<E> extends Abstra
699      }
700  
701      /**
702 +     * A version used in checking (fromIndex > toIndex) condition
703 +     */
704 +    private static String outOfBoundsMsg(int fromIndex, int toIndex) {
705 +        return "From Index: " + fromIndex + " > To Index: " + toIndex;
706 +    }
707 +
708 +    /**
709       * Removes from this list all of its elements that are contained in the
710       * specified collection.
711       *
712       * @param c collection containing elements to be removed from this list
713       * @return {@code true} if this list changed as a result of the call
714       * @throws ClassCastException if the class of an element of this list
715 <     *         is incompatible with the specified collection (optional)
715 >     *         is incompatible with the specified collection
716 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
717       * @throws NullPointerException if this list contains a null element and the
718 <     *         specified collection does not permit null elements (optional),
718 >     *         specified collection does not permit null elements
719 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
720       *         or if the specified collection is null
721       * @see Collection#contains(Object)
722       */
723      public boolean removeAll(Collection<?> c) {
724 <        return batchRemove(c, false);
724 >        return batchRemove(c, false, 0, size);
725      }
726  
727      /**
# Line 613 | Line 732 | public class ArrayList<E> extends Abstra
732       * @param c collection containing elements to be retained in this list
733       * @return {@code true} if this list changed as a result of the call
734       * @throws ClassCastException if the class of an element of this list
735 <     *         is incompatible with the specified collection (optional)
735 >     *         is incompatible with the specified collection
736 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
737       * @throws NullPointerException if this list contains a null element and the
738 <     *         specified collection does not permit null elements (optional),
738 >     *         specified collection does not permit null elements
739 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
740       *         or if the specified collection is null
741       * @see Collection#contains(Object)
742       */
743      public boolean retainAll(Collection<?> c) {
744 <        return batchRemove(c, true);
744 >        return batchRemove(c, true, 0, size);
745      }
746  
747 <    private boolean batchRemove(Collection<?> c, boolean complement) {
748 <        final Object[] elementData = this.elementData;
749 <        int r = 0, w = 0;
750 <        boolean modified = false;
751 <        try {
752 <            for (; r < size; r++)
753 <                if (c.contains(elementData[r]) == complement)
754 <                    elementData[w++] = elementData[r];
755 <        } finally {
756 <            // Preserve behavioral compatibility with AbstractCollection,
757 <            // even if c.contains() throws.
758 <            if (r != size) {
759 <                System.arraycopy(elementData, r,
760 <                                 elementData, w,
761 <                                 size - r);
762 <                w += size - r;
763 <            }
764 <            if (w != size) {
765 <                for (int i = w; i < size; i++)
766 <                    elementData[i] = null;
767 <                modCount += size - w;
768 <                size = w;
769 <                modified = true;
747 >    boolean batchRemove(Collection<?> c, boolean complement,
748 >                        final int from, final int end) {
749 >        Objects.requireNonNull(c);
750 >        final Object[] es = elementData;
751 >        final boolean modified;
752 >        int r;
753 >        // Optimize for initial run of survivors
754 >        for (r = from; r < end && c.contains(es[r]) == complement; r++)
755 >            ;
756 >        if (modified = (r < end)) {
757 >            int w = r++;
758 >            try {
759 >                for (Object e; r < end; r++)
760 >                    if (c.contains(e = es[r]) == complement)
761 >                        es[w++] = e;
762 >            } catch (Throwable ex) {
763 >                // Preserve behavioral compatibility with AbstractCollection,
764 >                // even if c.contains() throws.
765 >                System.arraycopy(es, r, es, w, end - r);
766 >                w += end - r;
767 >                throw ex;
768 >            } finally {
769 >                final int oldSize = size, deleted = end - w;
770 >                modCount += deleted;
771 >                System.arraycopy(es, end, es, w, oldSize - end);
772 >                Arrays.fill(es, size -= deleted, oldSize, null);
773              }
774          }
775          return modified;
776      }
777  
778      /**
779 <     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
779 >     * Save the state of the {@code ArrayList} instance to a stream (that
780       * is, serialize it).
781       *
782 <     * @serialData The length of the array backing the <tt>ArrayList</tt>
782 >     * @serialData The length of the array backing the {@code ArrayList}
783       *             instance is emitted (int), followed by all of its elements
784 <     *             (each an <tt>Object</tt>) in the proper order.
784 >     *             (each an {@code Object}) in the proper order.
785       */
786      private void writeObject(java.io.ObjectOutputStream s)
787          throws java.io.IOException{
# Line 665 | Line 789 | public class ArrayList<E> extends Abstra
789          int expectedModCount = modCount;
790          s.defaultWriteObject();
791  
792 <        // Write out array length
793 <        s.writeInt(elementData.length);
792 >        // Write out size as capacity for behavioural compatibility with clone()
793 >        s.writeInt(size);
794  
795          // Write out all elements in the proper order.
796 <        for (int i=0; i<size; i++)
796 >        for (int i=0; i<size; i++) {
797              s.writeObject(elementData[i]);
798 +        }
799  
800          if (modCount != expectedModCount) {
801              throw new ConcurrentModificationException();
802          }
678
803      }
804  
805      /**
806 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
806 >     * Reconstitute the {@code ArrayList} instance from a stream (that is,
807       * deserialize it).
808       */
809      private void readObject(java.io.ObjectInputStream s)
810          throws java.io.IOException, ClassNotFoundException {
811 +
812          // Read in size, and any hidden stuff
813          s.defaultReadObject();
814  
815 <        // Read in array length and allocate array
816 <        int arrayLength = s.readInt();
817 <        Object[] a = elementData = new Object[arrayLength];
818 <
819 <        // Read in all elements in the proper order.
820 <        for (int i=0; i<size; i++)
821 <            a[i] = s.readObject();
815 >        // Read in capacity
816 >        s.readInt(); // ignored
817 >
818 >        if (size > 0) {
819 >            // like clone(), allocate array based upon size not capacity
820 >            Object[] elements = new Object[size];
821 >
822 >            // Read in all elements in the proper order.
823 >            for (int i = 0; i < size; i++) {
824 >                elements[i] = s.readObject();
825 >            }
826 >
827 >            elementData = elements;
828 >        } else if (size == 0) {
829 >            elementData = EMPTY_ELEMENTDATA;
830 >        } else {
831 >            throw new java.io.InvalidObjectException("Invalid size: " + size);
832 >        }
833      }
834  
835      /**
# Line 709 | Line 845 | public class ArrayList<E> extends Abstra
845       * @throws IndexOutOfBoundsException {@inheritDoc}
846       */
847      public ListIterator<E> listIterator(int index) {
848 <        if (index < 0 || index > size)
713 <            throw new IndexOutOfBoundsException("Index: "+index);
848 >        rangeCheckForAdd(index);
849          return new ListItr(index);
850      }
851  
# Line 745 | Line 880 | public class ArrayList<E> extends Abstra
880          int lastRet = -1; // index of last element returned; -1 if no such
881          int expectedModCount = modCount;
882  
883 +        // prevent creating a synthetic constructor
884 +        Itr() {}
885 +
886          public boolean hasNext() {
887              return cursor != size;
888          }
# Line 777 | Line 915 | public class ArrayList<E> extends Abstra
915              }
916          }
917  
918 +        @Override
919 +        @SuppressWarnings("unchecked")
920 +        public void forEachRemaining(Consumer<? super E> consumer) {
921 +            Objects.requireNonNull(consumer);
922 +            final int size = ArrayList.this.size;
923 +            int i = cursor;
924 +            if (i >= size) {
925 +                return;
926 +            }
927 +            final Object[] elementData = ArrayList.this.elementData;
928 +            if (i >= elementData.length) {
929 +                throw new ConcurrentModificationException();
930 +            }
931 +            while (i != size && modCount == expectedModCount) {
932 +                consumer.accept((E) elementData[i++]);
933 +            }
934 +            // update once at end of iteration to reduce heap write traffic
935 +            cursor = i;
936 +            lastRet = i - 1;
937 +            checkForComodification();
938 +        }
939 +
940          final void checkForComodification() {
941              if (modCount != expectedModCount)
942                  throw new ConcurrentModificationException();
# Line 875 | Line 1035 | public class ArrayList<E> extends Abstra
1035       */
1036      public List<E> subList(int fromIndex, int toIndex) {
1037          subListRangeCheck(fromIndex, toIndex, size);
1038 <        return new SubList(this, 0, fromIndex, toIndex);
1038 >        return new SubList<>(this, fromIndex, toIndex);
1039      }
1040  
1041 <    static void subListRangeCheck(int fromIndex, int toIndex, int size) {
1042 <        if (fromIndex < 0)
1043 <            throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
884 <        if (toIndex > size)
885 <            throw new IndexOutOfBoundsException("toIndex = " + toIndex);
886 <        if (fromIndex > toIndex)
887 <            throw new IllegalArgumentException("fromIndex(" + fromIndex +
888 <                                               ") > toIndex(" + toIndex + ")");
889 <    }
890 <
891 <    private class SubList extends AbstractList<E> implements RandomAccess {
892 <        private final AbstractList<E> parent;
893 <        private final int parentOffset;
1041 >    private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1042 >        private final ArrayList<E> root;
1043 >        private final SubList<E> parent;
1044          private final int offset;
1045 <        int size;
1045 >        private int size;
1046  
1047 <        SubList(AbstractList<E> parent,
1048 <                int offset, int fromIndex, int toIndex) {
1047 >        /**
1048 >         * Constructs a sublist of an arbitrary ArrayList.
1049 >         */
1050 >        public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1051 >            this.root = root;
1052 >            this.parent = null;
1053 >            this.offset = fromIndex;
1054 >            this.size = toIndex - fromIndex;
1055 >            this.modCount = root.modCount;
1056 >        }
1057 >
1058 >        /**
1059 >         * Constructs a sublist of another SubList.
1060 >         */
1061 >        private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1062 >            this.root = parent.root;
1063              this.parent = parent;
1064 <            this.parentOffset = fromIndex;
901 <            this.offset = offset + fromIndex;
1064 >            this.offset = parent.offset + fromIndex;
1065              this.size = toIndex - fromIndex;
1066 <            this.modCount = ArrayList.this.modCount;
1066 >            this.modCount = root.modCount;
1067          }
1068  
1069 <        public E set(int index, E e) {
1070 <            rangeCheck(index);
1069 >        public E set(int index, E element) {
1070 >            Objects.checkIndex(index, size);
1071              checkForComodification();
1072 <            E oldValue = ArrayList.this.elementData(offset + index);
1073 <            ArrayList.this.elementData[offset + index] = e;
1072 >            E oldValue = root.elementData(offset + index);
1073 >            root.elementData[offset + index] = element;
1074              return oldValue;
1075          }
1076  
1077          public E get(int index) {
1078 <            rangeCheck(index);
1078 >            Objects.checkIndex(index, size);
1079              checkForComodification();
1080 <            return ArrayList.this.elementData(offset + index);
1080 >            return root.elementData(offset + index);
1081          }
1082  
1083          public int size() {
1084              checkForComodification();
1085 <            return this.size;
1085 >            return size;
1086          }
1087  
1088 <        public void add(int index, E e) {
1088 >        public void add(int index, E element) {
1089              rangeCheckForAdd(index);
1090              checkForComodification();
1091 <            parent.add(parentOffset + index, e);
1092 <            this.modCount = parent.modCount;
930 <            this.size++;
1091 >            root.add(offset + index, element);
1092 >            updateSizeAndModCount(1);
1093          }
1094  
1095          public E remove(int index) {
1096 <            rangeCheck(index);
1096 >            Objects.checkIndex(index, size);
1097              checkForComodification();
1098 <            E result = parent.remove(parentOffset + index);
1099 <            this.modCount = parent.modCount;
938 <            this.size--;
1098 >            E result = root.remove(offset + index);
1099 >            updateSizeAndModCount(-1);
1100              return result;
1101          }
1102  
1103          protected void removeRange(int fromIndex, int toIndex) {
1104              checkForComodification();
1105 <            parent.removeRange(parentOffset + fromIndex,
1106 <                               parentOffset + toIndex);
946 <            this.modCount = parent.modCount;
947 <            this.size -= toIndex - fromIndex;
1105 >            root.removeRange(offset + fromIndex, offset + toIndex);
1106 >            updateSizeAndModCount(fromIndex - toIndex);
1107          }
1108  
1109          public boolean addAll(Collection<? extends E> c) {
# Line 956 | Line 1115 | public class ArrayList<E> extends Abstra
1115              int cSize = c.size();
1116              if (cSize==0)
1117                  return false;
959
1118              checkForComodification();
1119 <            parent.addAll(parentOffset + index, c);
1120 <            this.modCount = parent.modCount;
963 <            this.size += cSize;
1119 >            root.addAll(offset + index, c);
1120 >            updateSizeAndModCount(cSize);
1121              return true;
1122          }
1123  
1124 +        public boolean removeAll(Collection<?> c) {
1125 +            return batchRemove(c, false);
1126 +        }
1127 +        public boolean retainAll(Collection<?> c) {
1128 +            return batchRemove(c, true);
1129 +        }
1130 +
1131 +        private boolean batchRemove(Collection<?> c, boolean complement) {
1132 +            checkForComodification();
1133 +            int oldSize = root.size;
1134 +            boolean modified =
1135 +                root.batchRemove(c, complement, offset, offset + size);
1136 +            if (modified)
1137 +                updateSizeAndModCount(root.size - oldSize);
1138 +            return modified;
1139 +        }
1140 +
1141 +        public boolean removeIf(Predicate<? super E> filter) {
1142 +            checkForComodification();
1143 +            int oldSize = root.size;
1144 +            boolean modified = root.removeIf(filter, offset, offset + size);
1145 +            if (modified)
1146 +                updateSizeAndModCount(root.size - oldSize);
1147 +            return modified;
1148 +        }
1149 +
1150          public Iterator<E> iterator() {
1151              return listIterator();
1152          }
1153  
1154 <        public ListIterator<E> listIterator(final int index) {
1154 >        public ListIterator<E> listIterator(int index) {
1155              checkForComodification();
1156              rangeCheckForAdd(index);
974            final int offset = this.offset;
1157  
1158              return new ListIterator<E>() {
1159                  int cursor = index;
1160                  int lastRet = -1;
1161 <                int expectedModCount = ArrayList.this.modCount;
1161 >                int expectedModCount = root.modCount;
1162  
1163                  public boolean hasNext() {
1164                      return cursor != SubList.this.size;
# Line 988 | Line 1170 | public class ArrayList<E> extends Abstra
1170                      int i = cursor;
1171                      if (i >= SubList.this.size)
1172                          throw new NoSuchElementException();
1173 <                    Object[] elementData = ArrayList.this.elementData;
1173 >                    Object[] elementData = root.elementData;
1174                      if (offset + i >= elementData.length)
1175                          throw new ConcurrentModificationException();
1176                      cursor = i + 1;
# Line 1005 | Line 1187 | public class ArrayList<E> extends Abstra
1187                      int i = cursor - 1;
1188                      if (i < 0)
1189                          throw new NoSuchElementException();
1190 <                    Object[] elementData = ArrayList.this.elementData;
1190 >                    Object[] elementData = root.elementData;
1191                      if (offset + i >= elementData.length)
1192                          throw new ConcurrentModificationException();
1193                      cursor = i;
1194                      return (E) elementData[offset + (lastRet = i)];
1195                  }
1196  
1197 +                @SuppressWarnings("unchecked")
1198 +                public void forEachRemaining(Consumer<? super E> consumer) {
1199 +                    Objects.requireNonNull(consumer);
1200 +                    final int size = SubList.this.size;
1201 +                    int i = cursor;
1202 +                    if (i >= size) {
1203 +                        return;
1204 +                    }
1205 +                    final Object[] elementData = root.elementData;
1206 +                    if (offset + i >= elementData.length) {
1207 +                        throw new ConcurrentModificationException();
1208 +                    }
1209 +                    while (i != size && modCount == expectedModCount) {
1210 +                        consumer.accept((E) elementData[offset + (i++)]);
1211 +                    }
1212 +                    // update once at end of iteration to reduce heap write traffic
1213 +                    lastRet = cursor = i;
1214 +                    checkForComodification();
1215 +                }
1216 +
1217                  public int nextIndex() {
1218                      return cursor;
1219                  }
# Line 1029 | Line 1231 | public class ArrayList<E> extends Abstra
1231                          SubList.this.remove(lastRet);
1232                          cursor = lastRet;
1233                          lastRet = -1;
1234 <                        expectedModCount = ArrayList.this.modCount;
1234 >                        expectedModCount = root.modCount;
1235                      } catch (IndexOutOfBoundsException ex) {
1236                          throw new ConcurrentModificationException();
1237                      }
# Line 1041 | Line 1243 | public class ArrayList<E> extends Abstra
1243                      checkForComodification();
1244  
1245                      try {
1246 <                        ArrayList.this.set(offset + lastRet, e);
1246 >                        root.set(offset + lastRet, e);
1247                      } catch (IndexOutOfBoundsException ex) {
1248                          throw new ConcurrentModificationException();
1249                      }
# Line 1055 | Line 1257 | public class ArrayList<E> extends Abstra
1257                          SubList.this.add(i, e);
1258                          cursor = i + 1;
1259                          lastRet = -1;
1260 <                        expectedModCount = ArrayList.this.modCount;
1260 >                        expectedModCount = root.modCount;
1261                      } catch (IndexOutOfBoundsException ex) {
1262                          throw new ConcurrentModificationException();
1263                      }
1264                  }
1265  
1266                  final void checkForComodification() {
1267 <                    if (expectedModCount != ArrayList.this.modCount)
1267 >                    if (root.modCount != expectedModCount)
1268                          throw new ConcurrentModificationException();
1269                  }
1270              };
# Line 1070 | Line 1272 | public class ArrayList<E> extends Abstra
1272  
1273          public List<E> subList(int fromIndex, int toIndex) {
1274              subListRangeCheck(fromIndex, toIndex, size);
1275 <            return new SubList(this, offset, fromIndex, toIndex);
1074 <        }
1075 <
1076 <        private void rangeCheck(int index) {
1077 <            if (index < 0 || index >= this.size)
1078 <                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1275 >            return new SubList<>(this, fromIndex, toIndex);
1276          }
1277  
1278          private void rangeCheckForAdd(int index) {
# Line 1088 | Line 1285 | public class ArrayList<E> extends Abstra
1285          }
1286  
1287          private void checkForComodification() {
1288 <            if (ArrayList.this.modCount != this.modCount)
1288 >            if (root.modCount != modCount)
1289 >                throw new ConcurrentModificationException();
1290 >        }
1291 >
1292 >        private void updateSizeAndModCount(int sizeChange) {
1293 >            SubList<E> slist = this;
1294 >            do {
1295 >                slist.size += sizeChange;
1296 >                slist.modCount = root.modCount;
1297 >                slist = slist.parent;
1298 >            } while (slist != null);
1299 >        }
1300 >
1301 >        public Spliterator<E> spliterator() {
1302 >            checkForComodification();
1303 >
1304 >            // ArrayListSpliterator is not used because late-binding logic
1305 >            // is different here
1306 >            return new Spliterator<>() {
1307 >                private int index = offset; // current index, modified on advance/split
1308 >                private int fence = -1; // -1 until used; then one past last index
1309 >                private int expectedModCount; // initialized when fence set
1310 >
1311 >                private int getFence() { // initialize fence to size on first use
1312 >                    int hi; // (a specialized variant appears in method forEach)
1313 >                    if ((hi = fence) < 0) {
1314 >                        expectedModCount = modCount;
1315 >                        hi = fence = offset + size;
1316 >                    }
1317 >                    return hi;
1318 >                }
1319 >
1320 >                public ArrayListSpliterator<E> trySplit() {
1321 >                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1322 >                    // ArrayListSpliterator could be used here as the source is already bound
1323 >                    return (lo >= mid) ? null : // divide range in half unless too small
1324 >                        new ArrayListSpliterator<>(root, lo, index = mid,
1325 >                                                   expectedModCount);
1326 >                }
1327 >
1328 >                public boolean tryAdvance(Consumer<? super E> action) {
1329 >                    Objects.requireNonNull(action);
1330 >                    int hi = getFence(), i = index;
1331 >                    if (i < hi) {
1332 >                        index = i + 1;
1333 >                        @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1334 >                        action.accept(e);
1335 >                        if (root.modCount != expectedModCount)
1336 >                            throw new ConcurrentModificationException();
1337 >                        return true;
1338 >                    }
1339 >                    return false;
1340 >                }
1341 >
1342 >                public void forEachRemaining(Consumer<? super E> action) {
1343 >                    Objects.requireNonNull(action);
1344 >                    int i, hi, mc; // hoist accesses and checks from loop
1345 >                    ArrayList<E> lst = root;
1346 >                    Object[] a;
1347 >                    if ((a = lst.elementData) != null) {
1348 >                        if ((hi = fence) < 0) {
1349 >                            mc = modCount;
1350 >                            hi = offset + size;
1351 >                        }
1352 >                        else
1353 >                            mc = expectedModCount;
1354 >                        if ((i = index) >= 0 && (index = hi) <= a.length) {
1355 >                            for (; i < hi; ++i) {
1356 >                                @SuppressWarnings("unchecked") E e = (E) a[i];
1357 >                                action.accept(e);
1358 >                            }
1359 >                            if (lst.modCount == mc)
1360 >                                return;
1361 >                        }
1362 >                    }
1363 >                    throw new ConcurrentModificationException();
1364 >                }
1365 >
1366 >                public long estimateSize() {
1367 >                    return (long) (getFence() - index);
1368 >                }
1369 >
1370 >                public int characteristics() {
1371 >                    return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1372 >                }
1373 >            };
1374 >        }
1375 >    }
1376 >
1377 >    @Override
1378 >    public void forEach(Consumer<? super E> action) {
1379 >        Objects.requireNonNull(action);
1380 >        final int expectedModCount = modCount;
1381 >        final Object[] es = elementData;
1382 >        final int size = this.size;
1383 >        for (int i = 0; modCount == expectedModCount && i < size; i++) {
1384 >            action.accept(elementAt(es, i));
1385 >        }
1386 >        if (modCount != expectedModCount) {
1387 >            throw new ConcurrentModificationException();
1388 >        }
1389 >    }
1390 >
1391 >    /**
1392 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1393 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1394 >     * list.
1395 >     *
1396 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1397 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1398 >     * Overriding implementations should document the reporting of additional
1399 >     * characteristic values.
1400 >     *
1401 >     * @return a {@code Spliterator} over the elements in this list
1402 >     * @since 1.8
1403 >     */
1404 >    @Override
1405 >    public Spliterator<E> spliterator() {
1406 >        return new ArrayListSpliterator<>(this, 0, -1, 0);
1407 >    }
1408 >
1409 >    /** Index-based split-by-two, lazily initialized Spliterator */
1410 >    static final class ArrayListSpliterator<E> implements Spliterator<E> {
1411 >
1412 >        /*
1413 >         * If ArrayLists were immutable, or structurally immutable (no
1414 >         * adds, removes, etc), we could implement their spliterators
1415 >         * with Arrays.spliterator. Instead we detect as much
1416 >         * interference during traversal as practical without
1417 >         * sacrificing much performance. We rely primarily on
1418 >         * modCounts. These are not guaranteed to detect concurrency
1419 >         * violations, and are sometimes overly conservative about
1420 >         * within-thread interference, but detect enough problems to
1421 >         * be worthwhile in practice. To carry this out, we (1) lazily
1422 >         * initialize fence and expectedModCount until the latest
1423 >         * point that we need to commit to the state we are checking
1424 >         * against; thus improving precision.  (This doesn't apply to
1425 >         * SubLists, that create spliterators with current non-lazy
1426 >         * values).  (2) We perform only a single
1427 >         * ConcurrentModificationException check at the end of forEach
1428 >         * (the most performance-sensitive method). When using forEach
1429 >         * (as opposed to iterators), we can normally only detect
1430 >         * interference after actions, not before. Further
1431 >         * CME-triggering checks apply to all other possible
1432 >         * violations of assumptions for example null or too-small
1433 >         * elementData array given its size(), that could only have
1434 >         * occurred due to interference.  This allows the inner loop
1435 >         * of forEach to run without any further checks, and
1436 >         * simplifies lambda-resolution. While this does entail a
1437 >         * number of checks, note that in the common case of
1438 >         * list.stream().forEach(a), no checks or other computation
1439 >         * occur anywhere other than inside forEach itself.  The other
1440 >         * less-often-used methods cannot take advantage of most of
1441 >         * these streamlinings.
1442 >         */
1443 >
1444 >        private final ArrayList<E> list;
1445 >        private int index; // current index, modified on advance/split
1446 >        private int fence; // -1 until used; then one past last index
1447 >        private int expectedModCount; // initialized when fence set
1448 >
1449 >        /** Create new spliterator covering the given range */
1450 >        ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1451 >                             int expectedModCount) {
1452 >            this.list = list; // OK if null unless traversed
1453 >            this.index = origin;
1454 >            this.fence = fence;
1455 >            this.expectedModCount = expectedModCount;
1456 >        }
1457 >
1458 >        private int getFence() { // initialize fence to size on first use
1459 >            int hi; // (a specialized variant appears in method forEach)
1460 >            ArrayList<E> lst;
1461 >            if ((hi = fence) < 0) {
1462 >                if ((lst = list) == null)
1463 >                    hi = fence = 0;
1464 >                else {
1465 >                    expectedModCount = lst.modCount;
1466 >                    hi = fence = lst.size;
1467 >                }
1468 >            }
1469 >            return hi;
1470 >        }
1471 >
1472 >        public ArrayListSpliterator<E> trySplit() {
1473 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1474 >            return (lo >= mid) ? null : // divide range in half unless too small
1475 >                new ArrayListSpliterator<>(list, lo, index = mid,
1476 >                                           expectedModCount);
1477 >        }
1478 >
1479 >        public boolean tryAdvance(Consumer<? super E> action) {
1480 >            if (action == null)
1481 >                throw new NullPointerException();
1482 >            int hi = getFence(), i = index;
1483 >            if (i < hi) {
1484 >                index = i + 1;
1485 >                @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1486 >                action.accept(e);
1487 >                if (list.modCount != expectedModCount)
1488 >                    throw new ConcurrentModificationException();
1489 >                return true;
1490 >            }
1491 >            return false;
1492 >        }
1493 >
1494 >        public void forEachRemaining(Consumer<? super E> action) {
1495 >            int i, hi, mc; // hoist accesses and checks from loop
1496 >            ArrayList<E> lst; Object[] a;
1497 >            if (action == null)
1498 >                throw new NullPointerException();
1499 >            if ((lst = list) != null && (a = lst.elementData) != null) {
1500 >                if ((hi = fence) < 0) {
1501 >                    mc = lst.modCount;
1502 >                    hi = lst.size;
1503 >                }
1504 >                else
1505 >                    mc = expectedModCount;
1506 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
1507 >                    for (; i < hi; ++i) {
1508 >                        @SuppressWarnings("unchecked") E e = (E) a[i];
1509 >                        action.accept(e);
1510 >                    }
1511 >                    if (lst.modCount == mc)
1512 >                        return;
1513 >                }
1514 >            }
1515 >            throw new ConcurrentModificationException();
1516 >        }
1517 >
1518 >        public long estimateSize() {
1519 >            return (long) (getFence() - index);
1520 >        }
1521 >
1522 >        public int characteristics() {
1523 >            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1524 >        }
1525 >    }
1526 >
1527 >    // A tiny bit set implementation
1528 >
1529 >    private static long[] nBits(int n) {
1530 >        return new long[((n - 1) >> 6) + 1];
1531 >    }
1532 >    private static void setBit(long[] bits, int i) {
1533 >        bits[i >> 6] |= 1L << i;
1534 >    }
1535 >    private static boolean isClear(long[] bits, int i) {
1536 >        return (bits[i >> 6] & (1L << i)) == 0;
1537 >    }
1538 >
1539 >    @Override
1540 >    public boolean removeIf(Predicate<? super E> filter) {
1541 >        return removeIf(filter, 0, size);
1542 >    }
1543 >
1544 >    boolean removeIf(Predicate<? super E> filter,
1545 >                     final int from, final int end) {
1546 >        Objects.requireNonNull(filter);
1547 >        int expectedModCount = modCount;
1548 >        final Object[] es = elementData;
1549 >        final boolean modified;
1550 >        int i;
1551 >        // Optimize for initial run of survivors
1552 >        for (i = from; i < end && !filter.test(elementAt(es, i)); i++)
1553 >            ;
1554 >        // Tolerate predicates that reentrantly access the collection for
1555 >        // read (but writers still get CME), so traverse once to find
1556 >        // elements to delete, a second pass to physically expunge.
1557 >        if (modified = (i < end)) {
1558 >            expectedModCount++;
1559 >            modCount++;
1560 >            final int beg = i;
1561 >            final long[] deathRow = nBits(end - beg);
1562 >            deathRow[0] = 1L;   // set bit 0
1563 >            for (i = beg + 1; i < end; i++)
1564 >                if (filter.test(elementAt(es, i)))
1565 >                    setBit(deathRow, i - beg);
1566 >            if (modCount != expectedModCount)
1567                  throw new ConcurrentModificationException();
1568 +            int w = beg;
1569 +            for (i = beg; i < end; i++)
1570 +                if (isClear(deathRow, i - beg))
1571 +                    es[w++] = es[i];
1572 +            final int oldSize = size;
1573 +            System.arraycopy(es, end, es, w, oldSize - end);
1574 +            Arrays.fill(es, size -= (end - w), oldSize, null);
1575 +        }
1576 +        if (modCount != expectedModCount)
1577 +            throw new ConcurrentModificationException();
1578 +        return modified;
1579 +    }
1580 +
1581 +    @Override
1582 +    public void replaceAll(UnaryOperator<E> operator) {
1583 +        Objects.requireNonNull(operator);
1584 +        final int expectedModCount = modCount;
1585 +        final Object[] es = elementData;
1586 +        final int size = this.size;
1587 +        for (int i=0; modCount == expectedModCount && i < size; i++) {
1588 +            es[i] = operator.apply(elementAt(es, i));
1589          }
1590 +        if (modCount != expectedModCount) {
1591 +            throw new ConcurrentModificationException();
1592 +        }
1593 +        modCount++;
1594 +    }
1595 +
1596 +    @Override
1597 +    @SuppressWarnings("unchecked")
1598 +    public void sort(Comparator<? super E> c) {
1599 +        final int expectedModCount = modCount;
1600 +        Arrays.sort((E[]) elementData, 0, size, c);
1601 +        if (modCount != expectedModCount) {
1602 +            throw new ConcurrentModificationException();
1603 +        }
1604 +        modCount++;
1605      }
1606   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines