ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayList.java (file contents):
Revision 1.3 by jsr166, Sat Nov 26 03:03:49 2005 UTC vs.
Revision 1.40 by jsr166, Sun Nov 13 20:03:11 2016 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > import java.util.function.UnaryOperator;
31  
32   /**
33 < * Resizable-array implementation of the <tt>List</tt> interface.  Implements
33 > * Resizable-array implementation of the {@code List} interface.  Implements
34   * all optional list operations, and permits all elements, including
35 < * <tt>null</tt>.  In addition to implementing the <tt>List</tt> interface,
35 > * {@code null}.  In addition to implementing the {@code List} interface,
36   * this class provides methods to manipulate the size of the array that is
37   * used internally to store the list.  (This class is roughly equivalent to
38 < * <tt>Vector</tt>, except that it is unsynchronized.)<p>
38 > * {@code Vector}, except that it is unsynchronized.)
39   *
40 < * The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
41 < * <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
42 < * time.  The <tt>add</tt> operation runs in <i>amortized constant time</i>,
40 > * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 > * {@code iterator}, and {@code listIterator} operations run in constant
42 > * time.  The {@code add} operation runs in <i>amortized constant time</i>,
43   * that is, adding n elements requires O(n) time.  All of the other operations
44   * run in linear time (roughly speaking).  The constant factor is low compared
45 < * to that for the <tt>LinkedList</tt> implementation.<p>
45 > * to that for the {@code LinkedList} implementation.
46   *
47 < * Each <tt>ArrayList</tt> instance has a <i>capacity</i>.  The capacity is
47 > * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
48   * the size of the array used to store the elements in the list.  It is always
49   * at least as large as the list size.  As elements are added to an ArrayList,
50   * its capacity grows automatically.  The details of the growth policy are not
51   * specified beyond the fact that adding an element has constant amortized
52 < * time cost.<p>
52 > * time cost.
53   *
54 < * An application can increase the capacity of an <tt>ArrayList</tt> instance
55 < * before adding a large number of elements using the <tt>ensureCapacity</tt>
54 > * <p>An application can increase the capacity of an {@code ArrayList} instance
55 > * before adding a large number of elements using the {@code ensureCapacity}
56   * operation.  This may reduce the amount of incremental reallocation.
57   *
58   * <p><strong>Note that this implementation is not synchronized.</strong>
59 < * If multiple threads access an <tt>ArrayList</tt> instance concurrently,
59 > * If multiple threads access an {@code ArrayList} instance concurrently,
60   * and at least one of the threads modifies the list structurally, it
61   * <i>must</i> be synchronized externally.  (A structural modification is
62   * any operation that adds or deletes one or more elements, or explicitly
# Line 49 | Line 70 | import java.util.*; // for javadoc (till
70   * unsynchronized access to the list:<pre>
71   *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
72   *
73 < * <p>The iterators returned by this class's <tt>iterator</tt> and
74 < * <tt>listIterator</tt> methods are <i>fail-fast</i>: if the list is
75 < * structurally modified at any time after the iterator is created, in any way
76 < * except through the iterator's own <tt>remove</tt> or <tt>add</tt> methods,
77 < * the iterator will throw a {@link ConcurrentModificationException}.  Thus, in
78 < * the face of concurrent modification, the iterator fails quickly and cleanly,
79 < * rather than risking arbitrary, non-deterministic behavior at an undetermined
80 < * time in the future.<p>
73 > * <p id="fail-fast">
74 > * The iterators returned by this class's {@link #iterator() iterator} and
75 > * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 > * if the list is structurally modified at any time after the iterator is
77 > * created, in any way except through the iterator's own
78 > * {@link ListIterator#remove() remove} or
79 > * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 > * {@link ConcurrentModificationException}.  Thus, in the face of
81 > * concurrent modification, the iterator fails quickly and cleanly, rather
82 > * than risking arbitrary, non-deterministic behavior at an undetermined
83 > * time in the future.
84   *
85 < * Note that the fail-fast behavior of an iterator cannot be guaranteed
85 > * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86   * as it is, generally speaking, impossible to make any hard guarantees in the
87   * presence of unsynchronized concurrent modification.  Fail-fast iterators
88 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
88 > * throw {@code ConcurrentModificationException} on a best-effort basis.
89   * Therefore, it would be wrong to write a program that depended on this
90 < * exception for its correctness: <i>the fail-fast behavior of iterators
91 < * should be used only to detect bugs.</i><p>
90 > * exception for its correctness:  <i>the fail-fast behavior of iterators
91 > * should be used only to detect bugs.</i>
92   *
93 < * This class is a member of the
94 < * <a href="{@docRoot}/../guide/collections/index.html">
93 > * <p>This class is a member of the
94 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95   * Java Collections Framework</a>.
96   *
97 + * @param <E> the type of elements in this list
98 + *
99   * @author  Josh Bloch
100   * @author  Neal Gafter
101 < * @version %I%, %G%
102 < * @see     Collection
103 < * @see     List
104 < * @see     LinkedList
79 < * @see     Vector
101 > * @see     Collection
102 > * @see     List
103 > * @see     LinkedList
104 > * @see     Vector
105   * @since   1.2
106   */
82
107   public class ArrayList<E> extends AbstractList<E>
108          implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109   {
110      private static final long serialVersionUID = 8683452581122892189L;
111  
112      /**
113 +     * Default initial capacity.
114 +     */
115 +    private static final int DEFAULT_CAPACITY = 10;
116 +
117 +    /**
118 +     * Shared empty array instance used for empty instances.
119 +     */
120 +    private static final Object[] EMPTY_ELEMENTDATA = {};
121 +
122 +    /**
123 +     * Shared empty array instance used for default sized empty instances. We
124 +     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 +     * first element is added.
126 +     */
127 +    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128 +
129 +    /**
130       * The array buffer into which the elements of the ArrayList are stored.
131 <     * The capacity of the ArrayList is the length of this array buffer.
131 >     * The capacity of the ArrayList is the length of this array buffer. Any
132 >     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 >     * will be expanded to DEFAULT_CAPACITY when the first element is added.
134       */
135 <    private transient Object[] elementData;
135 >    transient Object[] elementData; // non-private to simplify nested class access
136  
137      /**
138       * The size of the ArrayList (the number of elements it contains).
# Line 101 | Line 144 | public class ArrayList<E> extends Abstra
144      /**
145       * Constructs an empty list with the specified initial capacity.
146       *
147 <     * @param   initialCapacity   the initial capacity of the list
148 <     * @exception IllegalArgumentException if the specified initial capacity
149 <     *            is negative
147 >     * @param  initialCapacity  the initial capacity of the list
148 >     * @throws IllegalArgumentException if the specified initial capacity
149 >     *         is negative
150       */
151      public ArrayList(int initialCapacity) {
152 <        super();
153 <        if (initialCapacity < 0)
152 >        if (initialCapacity > 0) {
153 >            this.elementData = new Object[initialCapacity];
154 >        } else if (initialCapacity == 0) {
155 >            this.elementData = EMPTY_ELEMENTDATA;
156 >        } else {
157              throw new IllegalArgumentException("Illegal Capacity: "+
158                                                 initialCapacity);
159 <        this.elementData = new Object[initialCapacity];
159 >        }
160      }
161  
162      /**
163       * Constructs an empty list with an initial capacity of ten.
164       */
165      public ArrayList() {
166 <        this(10);
166 >        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167      }
168  
169      /**
170       * Constructs a list containing the elements of the specified
171       * collection, in the order they are returned by the collection's
172 <     * iterator.  The <tt>ArrayList</tt> instance has an initial capacity of
127 <     * 110% the size of the specified collection.
172 >     * iterator.
173       *
174       * @param c the collection whose elements are to be placed into this list
175       * @throws NullPointerException if the specified collection is null
176       */
177      public ArrayList(Collection<? extends E> c) {
178 <        int size = c.size();
179 <        // 10% for growth
180 <        int cap = ((size/10)+1)*11;
181 <        if (cap > 0) {
182 <            Object[] a = new Object[cap];
183 <            a[size] = a[size+1] = UNALLOCATED;
184 <            Object[] b = c.toArray(a);
185 <            if (b[size] == null && b[size+1] == UNALLOCATED) {
186 <                b[size+1] = null;
187 <                elementData = b;
188 <                this.size = size;
189 <                return;
145 <            }
146 <        }
147 <        initFromConcurrentlyMutating(c);
148 <    }
149 <    
150 <    private void initFromConcurrentlyMutating(Collection<? extends E> c) {
151 <        elementData = c.toArray();
152 <        size = elementData.length;
153 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
154 <        if (elementData.getClass() != Object[].class)
155 <            elementData = Arrays.copyOf(elementData, size, Object[].class);
156 <    }
157 <    
158 <    private final static Object UNALLOCATED = new Object();
159 <    
178 >        elementData = c.toArray();
179 >        if ((size = elementData.length) != 0) {
180 >            // defend against c.toArray (incorrectly) not returning Object[]
181 >            // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 >            if (elementData.getClass() != Object[].class)
183 >                elementData = Arrays.copyOf(elementData, size, Object[].class);
184 >        } else {
185 >            // replace with empty array.
186 >            this.elementData = EMPTY_ELEMENTDATA;
187 >        }
188 >    }
189 >
190      /**
191 <     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
191 >     * Trims the capacity of this {@code ArrayList} instance to be the
192       * list's current size.  An application can use this operation to minimize
193 <     * the storage of an <tt>ArrayList</tt> instance.
193 >     * the storage of an {@code ArrayList} instance.
194       */
195      public void trimToSize() {
196 <        modCount++;
197 <        int oldCapacity = elementData.length;
198 <        if (size < oldCapacity) {
199 <            elementData = Arrays.copyOf(elementData, size);
200 <        }
196 >        modCount++;
197 >        if (size < elementData.length) {
198 >            elementData = (size == 0)
199 >              ? EMPTY_ELEMENTDATA
200 >              : Arrays.copyOf(elementData, size);
201 >        }
202      }
203  
204      /**
205 <     * Increases the capacity of this <tt>ArrayList</tt> instance, if
205 >     * Increases the capacity of this {@code ArrayList} instance, if
206       * necessary, to ensure that it can hold at least the number of elements
207       * specified by the minimum capacity argument.
208       *
209 <     * @param   minCapacity   the desired minimum capacity
209 >     * @param minCapacity the desired minimum capacity
210       */
211      public void ensureCapacity(int minCapacity) {
212 <        modCount++;
213 <        if (minCapacity > elementData.length)
214 <            growArray(minCapacity);
212 >        if (minCapacity > elementData.length
213 >            && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 >                 && minCapacity <= DEFAULT_CAPACITY)) {
215 >            modCount++;
216 >            grow(minCapacity);
217 >        }
218 >    }
219 >
220 >    /**
221 >     * The maximum size of array to allocate (unless necessary).
222 >     * Some VMs reserve some header words in an array.
223 >     * Attempts to allocate larger arrays may result in
224 >     * OutOfMemoryError: Requested array size exceeds VM limit
225 >     */
226 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227 >
228 >    /**
229 >     * Increases the capacity to ensure that it can hold at least the
230 >     * number of elements specified by the minimum capacity argument.
231 >     *
232 >     * @param minCapacity the desired minimum capacity
233 >     * @throws OutOfMemoryError if minCapacity is less than zero
234 >     */
235 >    private Object[] grow(int minCapacity) {
236 >        return elementData = Arrays.copyOf(elementData,
237 >                                           newCapacity(minCapacity));
238 >    }
239 >
240 >    private Object[] grow() {
241 >        return grow(size + 1);
242      }
243  
244      /**
245 <     * Increase the capacity of the array.
246 <     * @param   minCapacity   the desired minimum capacity
247 <     */
248 <    private void growArray(int minCapacity) {
249 <        int oldCapacity = elementData.length;
250 <        // Double size if small; else grow by 50%
251 <        int newCapacity = ((oldCapacity < 64)?
252 <                           (oldCapacity * 2):
253 <                           ((oldCapacity * 3)/2 + 1));
254 <        if (newCapacity < minCapacity)
255 <            newCapacity = minCapacity;
256 <        elementData = Arrays.copyOf(elementData, newCapacity);
245 >     * Returns a capacity at least as large as the given minimum capacity.
246 >     * Returns the current capacity increased by 50% if that suffices.
247 >     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 >     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249 >     *
250 >     * @param minCapacity the desired minimum capacity
251 >     * @throws OutOfMemoryError if minCapacity is less than zero
252 >     */
253 >    private int newCapacity(int minCapacity) {
254 >        // overflow-conscious code
255 >        int oldCapacity = elementData.length;
256 >        int newCapacity = oldCapacity + (oldCapacity >> 1);
257 >        if (newCapacity - minCapacity <= 0) {
258 >            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 >                return Math.max(DEFAULT_CAPACITY, minCapacity);
260 >            if (minCapacity < 0) // overflow
261 >                throw new OutOfMemoryError();
262 >            return minCapacity;
263 >        }
264 >        return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 >            ? newCapacity
266 >            : hugeCapacity(minCapacity);
267 >    }
268 >
269 >    private static int hugeCapacity(int minCapacity) {
270 >        if (minCapacity < 0) // overflow
271 >            throw new OutOfMemoryError();
272 >        return (minCapacity > MAX_ARRAY_SIZE)
273 >            ? Integer.MAX_VALUE
274 >            : MAX_ARRAY_SIZE;
275      }
276  
277      /**
# Line 204 | Line 280 | public class ArrayList<E> extends Abstra
280       * @return the number of elements in this list
281       */
282      public int size() {
283 <        return size;
283 >        return size;
284      }
285  
286      /**
287 <     * Returns <tt>true</tt> if this list contains no elements.
287 >     * Returns {@code true} if this list contains no elements.
288       *
289 <     * @return <tt>true</tt> if this list contains no elements
289 >     * @return {@code true} if this list contains no elements
290       */
291      public boolean isEmpty() {
292 <        return size == 0;
292 >        return size == 0;
293      }
294  
295      /**
296 <     * Returns <tt>true</tt> if this list contains the specified element.
297 <     * More formally, returns <tt>true</tt> if and only if this list contains
298 <     * at least one element <tt>e</tt> such that
299 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
296 >     * Returns {@code true} if this list contains the specified element.
297 >     * More formally, returns {@code true} if and only if this list contains
298 >     * at least one element {@code e} such that
299 >     * {@code Objects.equals(o, e)}.
300       *
301       * @param o element whose presence in this list is to be tested
302 <     * @return <tt>true</tt> if this list contains the specified element
302 >     * @return {@code true} if this list contains the specified element
303       */
304      public boolean contains(Object o) {
305 <        return indexOf(o) >= 0;
305 >        return indexOf(o) >= 0;
306      }
307  
308      /**
309       * Returns the index of the first occurrence of the specified element
310       * in this list, or -1 if this list does not contain the element.
311 <     * More formally, returns the lowest index <tt>i</tt> such that
312 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
311 >     * More formally, returns the lowest index {@code i} such that
312 >     * {@code Objects.equals(o, get(i))},
313       * or -1 if there is no such index.
314       */
315      public int indexOf(Object o) {
316 <        if (o == null) {
317 <            for (int i = 0; i < size; i++)
318 <                if (elementData[i]==null)
319 <                    return i;
320 <        } else {
321 <            for (int i = 0; i < size; i++)
322 <                if (o.equals(elementData[i]))
323 <                    return i;
324 <        }
325 <        return -1;
316 >        if (o == null) {
317 >            for (int i = 0; i < size; i++)
318 >                if (elementData[i]==null)
319 >                    return i;
320 >        } else {
321 >            for (int i = 0; i < size; i++)
322 >                if (o.equals(elementData[i]))
323 >                    return i;
324 >        }
325 >        return -1;
326      }
327  
328      /**
329       * Returns the index of the last occurrence of the specified element
330       * in this list, or -1 if this list does not contain the element.
331 <     * More formally, returns the highest index <tt>i</tt> such that
332 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
331 >     * More formally, returns the highest index {@code i} such that
332 >     * {@code Objects.equals(o, get(i))},
333       * or -1 if there is no such index.
334       */
335      public int lastIndexOf(Object o) {
336 <        if (o == null) {
337 <            for (int i = size-1; i >= 0; i--)
338 <                if (elementData[i]==null)
339 <                    return i;
340 <        } else {
341 <            for (int i = size-1; i >= 0; i--)
342 <                if (o.equals(elementData[i]))
343 <                    return i;
344 <        }
345 <        return -1;
336 >        if (o == null) {
337 >            for (int i = size-1; i >= 0; i--)
338 >                if (elementData[i]==null)
339 >                    return i;
340 >        } else {
341 >            for (int i = size-1; i >= 0; i--)
342 >                if (o.equals(elementData[i]))
343 >                    return i;
344 >        }
345 >        return -1;
346      }
347  
348      /**
349 <     * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
349 >     * Returns a shallow copy of this {@code ArrayList} instance.  (The
350       * elements themselves are not copied.)
351       *
352 <     * @return a clone of this <tt>ArrayList</tt> instance
352 >     * @return a clone of this {@code ArrayList} instance
353       */
354      public Object clone() {
355 <        try {
356 <            ArrayList<E> v = (ArrayList<E>) super.clone();
357 <            v.elementData = Arrays.copyOf(elementData, size);
358 <            v.modCount = 0;
359 <            return v;
360 <        } catch (CloneNotSupportedException e) {
361 <            // this shouldn't happen, since we are Cloneable
362 <            throw new InternalError();
363 <        }
355 >        try {
356 >            ArrayList<?> v = (ArrayList<?>) super.clone();
357 >            v.elementData = Arrays.copyOf(elementData, size);
358 >            v.modCount = 0;
359 >            return v;
360 >        } catch (CloneNotSupportedException e) {
361 >            // this shouldn't happen, since we are Cloneable
362 >            throw new InternalError(e);
363 >        }
364      }
365  
366      /**
# Line 316 | Line 392 | public class ArrayList<E> extends Abstra
392       * <p>If the list fits in the specified array with room to spare
393       * (i.e., the array has more elements than the list), the element in
394       * the array immediately following the end of the collection is set to
395 <     * <tt>null</tt>.  (This is useful in determining the length of the
395 >     * {@code null}.  (This is useful in determining the length of the
396       * list <i>only</i> if the caller knows that the list does not contain
397       * any null elements.)
398       *
# Line 329 | Line 405 | public class ArrayList<E> extends Abstra
405       *         this list
406       * @throws NullPointerException if the specified array is null
407       */
408 +    @SuppressWarnings("unchecked")
409      public <T> T[] toArray(T[] a) {
410          if (a.length < size)
411              // Make a new array of a's runtime type, but my contents:
412              return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 <        System.arraycopy(elementData, 0, a, 0, size);
413 >        System.arraycopy(elementData, 0, a, 0, size);
414          if (a.length > size)
415              a[size] = null;
416          return a;
# Line 341 | Line 418 | public class ArrayList<E> extends Abstra
418  
419      // Positional Access Operations
420  
421 <    /**
422 <     * Create and return an appropriate exception for indexing errors
423 <     */
347 <    private static IndexOutOfBoundsException rangeException(int i, int s) {
348 <        return new IndexOutOfBoundsException("Index: " + i + ", Size: " + s);
421 >    @SuppressWarnings("unchecked")
422 >    E elementData(int index) {
423 >        return (E) elementData[index];
424      }
425  
426 <    // Positional Access Operations
426 >    @SuppressWarnings("unchecked")
427 >    static <E> E elementAt(Object[] es, int index) {
428 >        return (E) es[index];
429 >    }
430  
431      /**
432       * Returns the element at the specified position in this list.
# Line 358 | Line 436 | public class ArrayList<E> extends Abstra
436       * @throws IndexOutOfBoundsException {@inheritDoc}
437       */
438      public E get(int index) {
439 <        if (index >= size)
440 <            throw rangeException(index, size);
363 <        return (E)elementData[index];
439 >        Objects.checkIndex(index, size);
440 >        return elementData(index);
441      }
442  
443      /**
# Line 373 | Line 450 | public class ArrayList<E> extends Abstra
450       * @throws IndexOutOfBoundsException {@inheritDoc}
451       */
452      public E set(int index, E element) {
453 <        if (index >= size)
454 <             throw rangeException(index, size);
453 >        Objects.checkIndex(index, size);
454 >        E oldValue = elementData(index);
455 >        elementData[index] = element;
456 >        return oldValue;
457 >    }
458  
459 <        E oldValue = (E) elementData[index];
460 <        elementData[index] = element;
461 <        return oldValue;
459 >    /**
460 >     * This helper method split out from add(E) to keep method
461 >     * bytecode size under 35 (the -XX:MaxInlineSize default value),
462 >     * which helps when add(E) is called in a C1-compiled loop.
463 >     */
464 >    private void add(E e, Object[] elementData, int s) {
465 >        if (s == elementData.length)
466 >            elementData = grow();
467 >        elementData[s] = e;
468 >        size = s + 1;
469      }
470  
471      /**
472       * Appends the specified element to the end of this list.
473       *
474       * @param e element to be appended to this list
475 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
475 >     * @return {@code true} (as specified by {@link Collection#add})
476       */
477      public boolean add(E e) {
478 <        ++modCount;
479 <        int s = size++;
480 <        if (s >= elementData.length)
394 <            growArray(s + 1);
395 <        elementData[s] = e;
396 <        return true;
478 >        modCount++;
479 >        add(e, elementData, size);
480 >        return true;
481      }
482  
483      /**
# Line 406 | Line 490 | public class ArrayList<E> extends Abstra
490       * @throws IndexOutOfBoundsException {@inheritDoc}
491       */
492      public void add(int index, E element) {
493 <        int s = size;
494 <        if (index > s || index < 0)
495 <            throw rangeException(index, s);
496 <        ++modCount;
493 >        rangeCheckForAdd(index);
494 >        modCount++;
495 >        final int s;
496 >        Object[] elementData;
497 >        if ((s = size) == (elementData = this.elementData).length)
498 >            elementData = grow();
499 >        System.arraycopy(elementData, index,
500 >                         elementData, index + 1,
501 >                         s - index);
502 >        elementData[index] = element;
503          size = s + 1;
414        if (s >= elementData.length)
415            growArray(s + 1);
416        System.arraycopy(elementData, index, elementData, index + 1,
417                         s - index);
418        elementData[index] = element;
504      }
505  
506      /**
# Line 428 | Line 513 | public class ArrayList<E> extends Abstra
513       * @throws IndexOutOfBoundsException {@inheritDoc}
514       */
515      public E remove(int index) {
516 <        int s = size - 1;
517 <        if (index > s)
518 <            throw rangeException(index, size);
519 <        size = s;
520 <        modCount++;
521 <        Object oldValue = elementData[index];
522 <        int numMoved = s - index;
523 <        if (numMoved > 0)
439 <            System.arraycopy(elementData, index+1, elementData, index,
516 >        Objects.checkIndex(index, size);
517 >
518 >        modCount++;
519 >        E oldValue = elementData(index);
520 >
521 >        int numMoved = size - index - 1;
522 >        if (numMoved > 0)
523 >            System.arraycopy(elementData, index+1, elementData, index,
524                               numMoved);
525 <        elementData[s] = null; // forget removed element
526 <        return (E)oldValue;
525 >        elementData[--size] = null; // clear to let GC do its work
526 >
527 >        return oldValue;
528      }
529  
530      /**
531       * Removes the first occurrence of the specified element from this list,
532       * if it is present.  If the list does not contain the element, it is
533       * unchanged.  More formally, removes the element with the lowest index
534 <     * <tt>i</tt> such that
535 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
536 <     * (if such an element exists).  Returns <tt>true</tt> if this list
534 >     * {@code i} such that
535 >     * {@code Objects.equals(o, get(i))}
536 >     * (if such an element exists).  Returns {@code true} if this list
537       * contained the specified element (or equivalently, if this list
538       * changed as a result of the call).
539       *
540       * @param o element to be removed from this list, if present
541 <     * @return <tt>true</tt> if this list contained the specified element
541 >     * @return {@code true} if this list contained the specified element
542       */
543      public boolean remove(Object o) {
544 <        if (o == null) {
544 >        if (o == null) {
545 >            for (int index = 0; index < size; index++)
546 >                if (elementData[index] == null) {
547 >                    fastRemove(index);
548 >                    return true;
549 >                }
550 >        } else {
551              for (int index = 0; index < size; index++)
552 <                if (elementData[index] == null) {
553 <                    fastRemove(index);
554 <                    return true;
555 <                }
465 <        } else {
466 <            for (int index = 0; index < size; index++)
467 <                if (o.equals(elementData[index])) {
468 <                    fastRemove(index);
469 <                    return true;
470 <                }
552 >                if (o.equals(elementData[index])) {
553 >                    fastRemove(index);
554 >                    return true;
555 >                }
556          }
557 <        return false;
557 >        return false;
558      }
559  
560      /*
# Line 482 | Line 567 | public class ArrayList<E> extends Abstra
567          if (numMoved > 0)
568              System.arraycopy(elementData, index+1, elementData, index,
569                               numMoved);
570 <        elementData[--size] = null; // Let gc do its work
570 >        elementData[--size] = null; // clear to let GC do its work
571      }
572  
573      /**
# Line 490 | Line 575 | public class ArrayList<E> extends Abstra
575       * be empty after this call returns.
576       */
577      public void clear() {
578 <        modCount++;
578 >        modCount++;
579  
580 <        // Let gc do its work
581 <        for (int i = 0; i < size; i++)
582 <            elementData[i] = null;
580 >        // clear to let GC do its work
581 >        for (int i = 0; i < size; i++)
582 >            elementData[i] = null;
583  
584 <        size = 0;
584 >        size = 0;
585      }
586  
587      /**
# Line 509 | Line 594 | public class ArrayList<E> extends Abstra
594       * list is nonempty.)
595       *
596       * @param c collection containing elements to be added to this list
597 <     * @return <tt>true</tt> if this list changed as a result of the call
597 >     * @return {@code true} if this list changed as a result of the call
598       * @throws NullPointerException if the specified collection is null
599       */
600      public boolean addAll(Collection<? extends E> c) {
601 <        Object[] a = c.toArray();
601 >        Object[] a = c.toArray();
602 >        modCount++;
603          int numNew = a.length;
604 <        ensureCapacity(size + numNew);  // Increments modCount
605 <        System.arraycopy(a, 0, elementData, size, numNew);
606 <        size += numNew;
607 <        return numNew != 0;
604 >        if (numNew == 0)
605 >            return false;
606 >        Object[] elementData;
607 >        final int s;
608 >        if (numNew > (elementData = this.elementData).length - (s = size))
609 >            elementData = grow(s + numNew);
610 >        System.arraycopy(a, 0, elementData, s, numNew);
611 >        size = s + numNew;
612 >        return true;
613      }
614  
615      /**
# Line 532 | Line 623 | public class ArrayList<E> extends Abstra
623       * @param index index at which to insert the first element from the
624       *              specified collection
625       * @param c collection containing elements to be added to this list
626 <     * @return <tt>true</tt> if this list changed as a result of the call
626 >     * @return {@code true} if this list changed as a result of the call
627       * @throws IndexOutOfBoundsException {@inheritDoc}
628       * @throws NullPointerException if the specified collection is null
629       */
630      public boolean addAll(int index, Collection<? extends E> c) {
631 <        if (index > size || index < 0)
632 <            throw new IndexOutOfBoundsException(
633 <                "Index: " + index + ", Size: " + size);
634 <
635 <        Object[] a = c.toArray();
636 <        int numNew = a.length;
637 <        ensureCapacity(size + numNew);  // Increments modCount
638 <
639 <        int numMoved = size - index;
640 <        if (numMoved > 0)
641 <            System.arraycopy(elementData, index, elementData, index + numNew,
551 <                             numMoved);
631 >        rangeCheckForAdd(index);
632 >
633 >        Object[] a = c.toArray();
634 >        modCount++;
635 >        int numNew = a.length;
636 >        if (numNew == 0)
637 >            return false;
638 >        Object[] elementData;
639 >        final int s;
640 >        if (numNew > (elementData = this.elementData).length - (s = size))
641 >            elementData = grow(s + numNew);
642  
643 +        int numMoved = s - index;
644 +        if (numMoved > 0)
645 +            System.arraycopy(elementData, index,
646 +                             elementData, index + numNew,
647 +                             numMoved);
648          System.arraycopy(a, 0, elementData, index, numNew);
649 <        size += numNew;
650 <        return numNew != 0;
649 >        size = s + numNew;
650 >        return true;
651      }
652  
653      /**
654       * Removes from this list all of the elements whose index is between
655 <     * <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive.
655 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
656       * Shifts any succeeding elements to the left (reduces their index).
657 <     * This call shortens the list by <tt>(toIndex - fromIndex)</tt> elements.
658 <     * (If <tt>toIndex==fromIndex</tt>, this operation has no effect.)
657 >     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
658 >     * (If {@code toIndex==fromIndex}, this operation has no effect.)
659       *
660 <     * @param fromIndex index of first element to be removed
661 <     * @param toIndex index after last element to be removed
662 <     * @throws IndexOutOfBoundsException if fromIndex or toIndex out of
663 <     *              range (fromIndex &lt; 0 || fromIndex &gt;= size() || toIndex
664 <     *              &gt; size() || toIndex &lt; fromIndex)
660 >     * @throws IndexOutOfBoundsException if {@code fromIndex} or
661 >     *         {@code toIndex} is out of range
662 >     *         ({@code fromIndex < 0 ||
663 >     *          toIndex > size() ||
664 >     *          toIndex < fromIndex})
665       */
666      protected void removeRange(int fromIndex, int toIndex) {
667 <        modCount++;
668 <        int numMoved = size - toIndex;
667 >        if (fromIndex > toIndex) {
668 >            throw new IndexOutOfBoundsException(
669 >                    outOfBoundsMsg(fromIndex, toIndex));
670 >        }
671 >        modCount++;
672 >        int numMoved = size - toIndex;
673          System.arraycopy(elementData, toIndex, elementData, fromIndex,
674                           numMoved);
675  
676 <        // Let gc do its work
677 <        int newSize = size - (toIndex-fromIndex);
678 <        while (size != newSize)
679 <            elementData[--size] = null;
676 >        // clear to let GC do its work
677 >        int newSize = size - (toIndex-fromIndex);
678 >        for (int i = newSize; i < size; i++) {
679 >            elementData[i] = null;
680 >        }
681 >        size = newSize;
682 >    }
683 >
684 >    /**
685 >     * A version of rangeCheck used by add and addAll.
686 >     */
687 >    private void rangeCheckForAdd(int index) {
688 >        if (index > size || index < 0)
689 >            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
690      }
691  
692      /**
693 <     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
693 >     * Constructs an IndexOutOfBoundsException detail message.
694 >     * Of the many possible refactorings of the error handling code,
695 >     * this "outlining" performs best with both server and client VMs.
696 >     */
697 >    private String outOfBoundsMsg(int index) {
698 >        return "Index: "+index+", Size: "+size;
699 >    }
700 >
701 >    /**
702 >     * A version used in checking (fromIndex > toIndex) condition
703 >     */
704 >    private static String outOfBoundsMsg(int fromIndex, int toIndex) {
705 >        return "From Index: " + fromIndex + " > To Index: " + toIndex;
706 >    }
707 >
708 >    /**
709 >     * Removes from this list all of its elements that are contained in the
710 >     * specified collection.
711 >     *
712 >     * @param c collection containing elements to be removed from this list
713 >     * @return {@code true} if this list changed as a result of the call
714 >     * @throws ClassCastException if the class of an element of this list
715 >     *         is incompatible with the specified collection
716 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
717 >     * @throws NullPointerException if this list contains a null element and the
718 >     *         specified collection does not permit null elements
719 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
720 >     *         or if the specified collection is null
721 >     * @see Collection#contains(Object)
722 >     */
723 >    public boolean removeAll(Collection<?> c) {
724 >        return batchRemove(c, false, 0, size);
725 >    }
726 >
727 >    /**
728 >     * Retains only the elements in this list that are contained in the
729 >     * specified collection.  In other words, removes from this list all
730 >     * of its elements that are not contained in the specified collection.
731 >     *
732 >     * @param c collection containing elements to be retained in this list
733 >     * @return {@code true} if this list changed as a result of the call
734 >     * @throws ClassCastException if the class of an element of this list
735 >     *         is incompatible with the specified collection
736 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
737 >     * @throws NullPointerException if this list contains a null element and the
738 >     *         specified collection does not permit null elements
739 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
740 >     *         or if the specified collection is null
741 >     * @see Collection#contains(Object)
742 >     */
743 >    public boolean retainAll(Collection<?> c) {
744 >        return batchRemove(c, true, 0, size);
745 >    }
746 >
747 >    boolean batchRemove(Collection<?> c, boolean complement,
748 >                        final int from, final int end) {
749 >        Objects.requireNonNull(c);
750 >        final Object[] es = elementData;
751 >        final boolean modified;
752 >        int r;
753 >        // Optimize for initial run of survivors
754 >        for (r = from; r < end && c.contains(es[r]) == complement; r++)
755 >            ;
756 >        if (modified = (r < end)) {
757 >            int w = r++;
758 >            try {
759 >                for (Object e; r < end; r++)
760 >                    if (c.contains(e = es[r]) == complement)
761 >                        es[w++] = e;
762 >            } catch (Throwable ex) {
763 >                // Preserve behavioral compatibility with AbstractCollection,
764 >                // even if c.contains() throws.
765 >                System.arraycopy(es, r, es, w, end - r);
766 >                w += end - r;
767 >                throw ex;
768 >            } finally {
769 >                final int oldSize = size, deleted = end - w;
770 >                modCount += deleted;
771 >                System.arraycopy(es, end, es, w, oldSize - end);
772 >                Arrays.fill(es, size -= deleted, oldSize, null);
773 >            }
774 >        }
775 >        return modified;
776 >    }
777 >
778 >    /**
779 >     * Save the state of the {@code ArrayList} instance to a stream (that
780       * is, serialize it).
781       *
782 <     * @serialData The length of the array backing the <tt>ArrayList</tt>
782 >     * @serialData The length of the array backing the {@code ArrayList}
783       *             instance is emitted (int), followed by all of its elements
784 <     *             (each an <tt>Object</tt>) in the proper order.
784 >     *             (each an {@code Object}) in the proper order.
785       */
786      private void writeObject(java.io.ObjectOutputStream s)
787          throws java.io.IOException{
788 <        // Write out element count, and any hidden stuff
789 <        int expectedModCount = modCount;
790 <        s.defaultWriteObject();
788 >        // Write out element count, and any hidden stuff
789 >        int expectedModCount = modCount;
790 >        s.defaultWriteObject();
791  
792 <        // Write out array length
793 <        s.writeInt(elementData.length);
792 >        // Write out size as capacity for behavioural compatibility with clone()
793 >        s.writeInt(size);
794  
795 <        // Write out all elements in the proper order.
796 <        for (int i=0; i<size; i++)
795 >        // Write out all elements in the proper order.
796 >        for (int i=0; i<size; i++) {
797              s.writeObject(elementData[i]);
798 +        }
799  
800 <        if (modCount != expectedModCount) {
800 >        if (modCount != expectedModCount) {
801              throw new ConcurrentModificationException();
802          }
607
803      }
804  
805      /**
806 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
806 >     * Reconstitute the {@code ArrayList} instance from a stream (that is,
807       * deserialize it).
808       */
809      private void readObject(java.io.ObjectInputStream s)
810          throws java.io.IOException, ClassNotFoundException {
616        // Read in size, and any hidden stuff
617        s.defaultReadObject();
811  
812 <        // Read in array length and allocate array
813 <        int arrayLength = s.readInt();
621 <        Object[] a = elementData = new Object[arrayLength];
812 >        // Read in size, and any hidden stuff
813 >        s.defaultReadObject();
814  
815 <        // Read in all elements in the proper order.
816 <        for (int i=0; i<size; i++)
817 <            a[i] = s.readObject();
818 <    }
815 >        // Read in capacity
816 >        s.readInt(); // ignored
817 >
818 >        if (size > 0) {
819 >            // like clone(), allocate array based upon size not capacity
820 >            Object[] elements = new Object[size];
821 >
822 >            // Read in all elements in the proper order.
823 >            for (int i = 0; i < size; i++) {
824 >                elements[i] = s.readObject();
825 >            }
826  
827 +            elementData = elements;
828 +        } else if (size == 0) {
829 +            elementData = EMPTY_ELEMENTDATA;
830 +        } else {
831 +            throw new java.io.InvalidObjectException("Invalid size: " + size);
832 +        }
833 +    }
834  
835      /**
836 <     * Returns a list-iterator of the elements in this list (in proper
836 >     * Returns a list iterator over the elements in this list (in proper
837       * sequence), starting at the specified position in the list.
838 <     * Obeys the general contract of <tt>List.listIterator(int)</tt>.<p>
838 >     * The specified index indicates the first element that would be
839 >     * returned by an initial call to {@link ListIterator#next next}.
840 >     * An initial call to {@link ListIterator#previous previous} would
841 >     * return the element with the specified index minus one.
842 >     *
843 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
844       *
634     * The list-iterator is <i>fail-fast</i>: if the list is structurally
635     * modified at any time after the Iterator is created, in any way except
636     * through the list-iterator's own <tt>remove</tt> or <tt>add</tt>
637     * methods, the list-iterator will throw a
638     * <tt>ConcurrentModificationException</tt>.  Thus, in the face of
639     * concurrent modification, the iterator fails quickly and cleanly, rather
640     * than risking arbitrary, non-deterministic behavior at an undetermined
641     * time in the future.
642     *
643     * @param index index of the first element to be returned from the
644     *              list-iterator (by a call to <tt>next</tt>)
645     * @return a ListIterator of the elements in this list (in proper
646     *         sequence), starting at the specified position in the list
845       * @throws IndexOutOfBoundsException {@inheritDoc}
648     * @see List#listIterator(int)
846       */
847      public ListIterator<E> listIterator(int index) {
848 <        if (index < 0 || index > size)
849 <            throw new IndexOutOfBoundsException("Index: "+index);
850 <        return new ArrayListIterator(index);
848 >        rangeCheckForAdd(index);
849 >        return new ListItr(index);
850 >    }
851 >
852 >    /**
853 >     * Returns a list iterator over the elements in this list (in proper
854 >     * sequence).
855 >     *
856 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
857 >     *
858 >     * @see #listIterator(int)
859 >     */
860 >    public ListIterator<E> listIterator() {
861 >        return new ListItr(0);
862      }
863 <
863 >
864      /**
865       * Returns an iterator over the elements in this list in proper sequence.
866       *
867 +     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
868 +     *
869       * @return an iterator over the elements in this list in proper sequence
870       */
871      public Iterator<E> iterator() {
872 <        return new ArrayListIterator(0);
872 >        return new Itr();
873      }
874  
875      /**
876 <     * A streamlined version of AbstractList.Itr
876 >     * An optimized version of AbstractList.Itr
877       */
878 <    final class ArrayListIterator implements ListIterator<E> {
879 <        int cursor;           // index of next element to return;
880 <        int lastRet;          // index of last element, or -1 if no such
881 <        int expectedModCount; // to check for CME
878 >    private class Itr implements Iterator<E> {
879 >        int cursor;       // index of next element to return
880 >        int lastRet = -1; // index of last element returned; -1 if no such
881 >        int expectedModCount = modCount;
882 >
883 >        // prevent creating a synthetic constructor
884 >        Itr() {}
885 >
886 >        public boolean hasNext() {
887 >            return cursor != size;
888 >        }
889 >
890 >        @SuppressWarnings("unchecked")
891 >        public E next() {
892 >            checkForComodification();
893 >            int i = cursor;
894 >            if (i >= size)
895 >                throw new NoSuchElementException();
896 >            Object[] elementData = ArrayList.this.elementData;
897 >            if (i >= elementData.length)
898 >                throw new ConcurrentModificationException();
899 >            cursor = i + 1;
900 >            return (E) elementData[lastRet = i];
901 >        }
902 >
903 >        public void remove() {
904 >            if (lastRet < 0)
905 >                throw new IllegalStateException();
906 >            checkForComodification();
907 >
908 >            try {
909 >                ArrayList.this.remove(lastRet);
910 >                cursor = lastRet;
911 >                lastRet = -1;
912 >                expectedModCount = modCount;
913 >            } catch (IndexOutOfBoundsException ex) {
914 >                throw new ConcurrentModificationException();
915 >            }
916 >        }
917 >
918 >        @Override
919 >        @SuppressWarnings("unchecked")
920 >        public void forEachRemaining(Consumer<? super E> consumer) {
921 >            Objects.requireNonNull(consumer);
922 >            final int size = ArrayList.this.size;
923 >            int i = cursor;
924 >            if (i >= size) {
925 >                return;
926 >            }
927 >            final Object[] elementData = ArrayList.this.elementData;
928 >            if (i >= elementData.length) {
929 >                throw new ConcurrentModificationException();
930 >            }
931 >            while (i != size && modCount == expectedModCount) {
932 >                consumer.accept((E) elementData[i++]);
933 >            }
934 >            // update once at end of iteration to reduce heap write traffic
935 >            cursor = i;
936 >            lastRet = i - 1;
937 >            checkForComodification();
938 >        }
939  
940 <        ArrayListIterator(int index) {
941 <            cursor = index;
942 <            lastRet = -1;
943 <            expectedModCount = modCount;
944 <        }
940 >        final void checkForComodification() {
941 >            if (modCount != expectedModCount)
942 >                throw new ConcurrentModificationException();
943 >        }
944 >    }
945  
946 <        public boolean hasNext() {
947 <            return cursor < size;
948 <        }
946 >    /**
947 >     * An optimized version of AbstractList.ListItr
948 >     */
949 >    private class ListItr extends Itr implements ListIterator<E> {
950 >        ListItr(int index) {
951 >            super();
952 >            cursor = index;
953 >        }
954 >
955 >        public boolean hasPrevious() {
956 >            return cursor != 0;
957 >        }
958  
959 <        public boolean hasPrevious() {
960 <            return cursor > 0;
961 <        }
959 >        public int nextIndex() {
960 >            return cursor;
961 >        }
962  
963 <        public int nextIndex() {
964 <            return cursor;
965 <        }
963 >        public int previousIndex() {
964 >            return cursor - 1;
965 >        }
966  
967 <        public int previousIndex() {
968 <            return cursor - 1;
969 <        }
967 >        @SuppressWarnings("unchecked")
968 >        public E previous() {
969 >            checkForComodification();
970 >            int i = cursor - 1;
971 >            if (i < 0)
972 >                throw new NoSuchElementException();
973 >            Object[] elementData = ArrayList.this.elementData;
974 >            if (i >= elementData.length)
975 >                throw new ConcurrentModificationException();
976 >            cursor = i;
977 >            return (E) elementData[lastRet = i];
978 >        }
979  
980 <        public E next() {
981 <            if (expectedModCount == modCount) {
980 >        public void set(E e) {
981 >            if (lastRet < 0)
982 >                throw new IllegalStateException();
983 >            checkForComodification();
984 >
985 >            try {
986 >                ArrayList.this.set(lastRet, e);
987 >            } catch (IndexOutOfBoundsException ex) {
988 >                throw new ConcurrentModificationException();
989 >            }
990 >        }
991 >
992 >        public void add(E e) {
993 >            checkForComodification();
994 >
995 >            try {
996                  int i = cursor;
997 <                if (i < size) {
997 >                ArrayList.this.add(i, e);
998 >                cursor = i + 1;
999 >                lastRet = -1;
1000 >                expectedModCount = modCount;
1001 >            } catch (IndexOutOfBoundsException ex) {
1002 >                throw new ConcurrentModificationException();
1003 >            }
1004 >        }
1005 >    }
1006 >
1007 >    /**
1008 >     * Returns a view of the portion of this list between the specified
1009 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1010 >     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1011 >     * empty.)  The returned list is backed by this list, so non-structural
1012 >     * changes in the returned list are reflected in this list, and vice-versa.
1013 >     * The returned list supports all of the optional list operations.
1014 >     *
1015 >     * <p>This method eliminates the need for explicit range operations (of
1016 >     * the sort that commonly exist for arrays).  Any operation that expects
1017 >     * a list can be used as a range operation by passing a subList view
1018 >     * instead of a whole list.  For example, the following idiom
1019 >     * removes a range of elements from a list:
1020 >     * <pre>
1021 >     *      list.subList(from, to).clear();
1022 >     * </pre>
1023 >     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1024 >     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1025 >     * {@link Collections} class can be applied to a subList.
1026 >     *
1027 >     * <p>The semantics of the list returned by this method become undefined if
1028 >     * the backing list (i.e., this list) is <i>structurally modified</i> in
1029 >     * any way other than via the returned list.  (Structural modifications are
1030 >     * those that change the size of this list, or otherwise perturb it in such
1031 >     * a fashion that iterations in progress may yield incorrect results.)
1032 >     *
1033 >     * @throws IndexOutOfBoundsException {@inheritDoc}
1034 >     * @throws IllegalArgumentException {@inheritDoc}
1035 >     */
1036 >    public List<E> subList(int fromIndex, int toIndex) {
1037 >        subListRangeCheck(fromIndex, toIndex, size);
1038 >        return new SubList<>(this, fromIndex, toIndex);
1039 >    }
1040 >
1041 >    private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1042 >        private final ArrayList<E> root;
1043 >        private final SubList<E> parent;
1044 >        private final int offset;
1045 >        private int size;
1046 >
1047 >        /**
1048 >         * Constructs a sublist of an arbitrary ArrayList.
1049 >         */
1050 >        public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1051 >            this.root = root;
1052 >            this.parent = null;
1053 >            this.offset = fromIndex;
1054 >            this.size = toIndex - fromIndex;
1055 >            this.modCount = root.modCount;
1056 >        }
1057 >
1058 >        /**
1059 >         * Constructs a sublist of another SubList.
1060 >         */
1061 >        private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1062 >            this.root = parent.root;
1063 >            this.parent = parent;
1064 >            this.offset = parent.offset + fromIndex;
1065 >            this.size = toIndex - fromIndex;
1066 >            this.modCount = root.modCount;
1067 >        }
1068 >
1069 >        public E set(int index, E element) {
1070 >            Objects.checkIndex(index, size);
1071 >            checkForComodification();
1072 >            E oldValue = root.elementData(offset + index);
1073 >            root.elementData[offset + index] = element;
1074 >            return oldValue;
1075 >        }
1076 >
1077 >        public E get(int index) {
1078 >            Objects.checkIndex(index, size);
1079 >            checkForComodification();
1080 >            return root.elementData(offset + index);
1081 >        }
1082 >
1083 >        public int size() {
1084 >            checkForComodification();
1085 >            return size;
1086 >        }
1087 >
1088 >        public void add(int index, E element) {
1089 >            rangeCheckForAdd(index);
1090 >            checkForComodification();
1091 >            root.add(offset + index, element);
1092 >            updateSizeAndModCount(1);
1093 >        }
1094 >
1095 >        public E remove(int index) {
1096 >            Objects.checkIndex(index, size);
1097 >            checkForComodification();
1098 >            E result = root.remove(offset + index);
1099 >            updateSizeAndModCount(-1);
1100 >            return result;
1101 >        }
1102 >
1103 >        protected void removeRange(int fromIndex, int toIndex) {
1104 >            checkForComodification();
1105 >            root.removeRange(offset + fromIndex, offset + toIndex);
1106 >            updateSizeAndModCount(fromIndex - toIndex);
1107 >        }
1108 >
1109 >        public boolean addAll(Collection<? extends E> c) {
1110 >            return addAll(this.size, c);
1111 >        }
1112 >
1113 >        public boolean addAll(int index, Collection<? extends E> c) {
1114 >            rangeCheckForAdd(index);
1115 >            int cSize = c.size();
1116 >            if (cSize==0)
1117 >                return false;
1118 >            checkForComodification();
1119 >            root.addAll(offset + index, c);
1120 >            updateSizeAndModCount(cSize);
1121 >            return true;
1122 >        }
1123 >
1124 >        public boolean removeAll(Collection<?> c) {
1125 >            return batchRemove(c, false);
1126 >        }
1127 >        public boolean retainAll(Collection<?> c) {
1128 >            return batchRemove(c, true);
1129 >        }
1130 >
1131 >        private boolean batchRemove(Collection<?> c, boolean complement) {
1132 >            checkForComodification();
1133 >            int oldSize = root.size;
1134 >            boolean modified =
1135 >                root.batchRemove(c, complement, offset, offset + size);
1136 >            if (modified)
1137 >                updateSizeAndModCount(root.size - oldSize);
1138 >            return modified;
1139 >        }
1140 >
1141 >        public boolean removeIf(Predicate<? super E> filter) {
1142 >            checkForComodification();
1143 >            int oldSize = root.size;
1144 >            boolean modified = root.removeIf(filter, offset, offset + size);
1145 >            if (modified)
1146 >                updateSizeAndModCount(root.size - oldSize);
1147 >            return modified;
1148 >        }
1149 >
1150 >        public Iterator<E> iterator() {
1151 >            return listIterator();
1152 >        }
1153 >
1154 >        public ListIterator<E> listIterator(int index) {
1155 >            checkForComodification();
1156 >            rangeCheckForAdd(index);
1157 >
1158 >            return new ListIterator<E>() {
1159 >                int cursor = index;
1160 >                int lastRet = -1;
1161 >                int expectedModCount = root.modCount;
1162 >
1163 >                public boolean hasNext() {
1164 >                    return cursor != SubList.this.size;
1165 >                }
1166 >
1167 >                @SuppressWarnings("unchecked")
1168 >                public E next() {
1169 >                    checkForComodification();
1170 >                    int i = cursor;
1171 >                    if (i >= SubList.this.size)
1172 >                        throw new NoSuchElementException();
1173 >                    Object[] elementData = root.elementData;
1174 >                    if (offset + i >= elementData.length)
1175 >                        throw new ConcurrentModificationException();
1176 >                    cursor = i + 1;
1177 >                    return (E) elementData[offset + (lastRet = i)];
1178 >                }
1179 >
1180 >                public boolean hasPrevious() {
1181 >                    return cursor != 0;
1182 >                }
1183 >
1184 >                @SuppressWarnings("unchecked")
1185 >                public E previous() {
1186 >                    checkForComodification();
1187 >                    int i = cursor - 1;
1188 >                    if (i < 0)
1189 >                        throw new NoSuchElementException();
1190 >                    Object[] elementData = root.elementData;
1191 >                    if (offset + i >= elementData.length)
1192 >                        throw new ConcurrentModificationException();
1193 >                    cursor = i;
1194 >                    return (E) elementData[offset + (lastRet = i)];
1195 >                }
1196 >
1197 >                @SuppressWarnings("unchecked")
1198 >                public void forEachRemaining(Consumer<? super E> consumer) {
1199 >                    Objects.requireNonNull(consumer);
1200 >                    final int size = SubList.this.size;
1201 >                    int i = cursor;
1202 >                    if (i >= size) {
1203 >                        return;
1204 >                    }
1205 >                    final Object[] elementData = root.elementData;
1206 >                    if (offset + i >= elementData.length) {
1207 >                        throw new ConcurrentModificationException();
1208 >                    }
1209 >                    while (i != size && modCount == expectedModCount) {
1210 >                        consumer.accept((E) elementData[offset + (i++)]);
1211 >                    }
1212 >                    // update once at end of iteration to reduce heap write traffic
1213 >                    lastRet = cursor = i;
1214 >                    checkForComodification();
1215 >                }
1216 >
1217 >                public int nextIndex() {
1218 >                    return cursor;
1219 >                }
1220 >
1221 >                public int previousIndex() {
1222 >                    return cursor - 1;
1223 >                }
1224 >
1225 >                public void remove() {
1226 >                    if (lastRet < 0)
1227 >                        throw new IllegalStateException();
1228 >                    checkForComodification();
1229 >
1230 >                    try {
1231 >                        SubList.this.remove(lastRet);
1232 >                        cursor = lastRet;
1233 >                        lastRet = -1;
1234 >                        expectedModCount = root.modCount;
1235 >                    } catch (IndexOutOfBoundsException ex) {
1236 >                        throw new ConcurrentModificationException();
1237 >                    }
1238 >                }
1239 >
1240 >                public void set(E e) {
1241 >                    if (lastRet < 0)
1242 >                        throw new IllegalStateException();
1243 >                    checkForComodification();
1244 >
1245                      try {
1246 <                        E e = (E)elementData[i];
1247 <                        lastRet = i;
1246 >                        root.set(offset + lastRet, e);
1247 >                    } catch (IndexOutOfBoundsException ex) {
1248 >                        throw new ConcurrentModificationException();
1249 >                    }
1250 >                }
1251 >
1252 >                public void add(E e) {
1253 >                    checkForComodification();
1254 >
1255 >                    try {
1256 >                        int i = cursor;
1257 >                        SubList.this.add(i, e);
1258                          cursor = i + 1;
1259 <                        return e;
1260 <                    } catch (IndexOutOfBoundsException fallthrough) {
1259 >                        lastRet = -1;
1260 >                        expectedModCount = root.modCount;
1261 >                    } catch (IndexOutOfBoundsException ex) {
1262 >                        throw new ConcurrentModificationException();
1263                      }
1264                  }
1265 <            }
1266 <            // Prefer reporting CME if applicable on failures
1267 <            if (expectedModCount == modCount)
1268 <                throw new NoSuchElementException();
1265 >
1266 >                final void checkForComodification() {
1267 >                    if (root.modCount != expectedModCount)
1268 >                        throw new ConcurrentModificationException();
1269 >                }
1270 >            };
1271 >        }
1272 >
1273 >        public List<E> subList(int fromIndex, int toIndex) {
1274 >            subListRangeCheck(fromIndex, toIndex, size);
1275 >            return new SubList<>(this, fromIndex, toIndex);
1276 >        }
1277 >
1278 >        private void rangeCheckForAdd(int index) {
1279 >            if (index < 0 || index > this.size)
1280 >                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1281 >        }
1282 >
1283 >        private String outOfBoundsMsg(int index) {
1284 >            return "Index: "+index+", Size: "+this.size;
1285 >        }
1286 >
1287 >        private void checkForComodification() {
1288 >            if (root.modCount != modCount)
1289 >                throw new ConcurrentModificationException();
1290 >        }
1291 >
1292 >        private void updateSizeAndModCount(int sizeChange) {
1293 >            SubList<E> slist = this;
1294 >            do {
1295 >                slist.size += sizeChange;
1296 >                slist.modCount = root.modCount;
1297 >                slist = slist.parent;
1298 >            } while (slist != null);
1299 >        }
1300 >
1301 >        public Spliterator<E> spliterator() {
1302 >            checkForComodification();
1303 >
1304 >            // ArrayListSpliterator is not used because late-binding logic
1305 >            // is different here
1306 >            return new Spliterator<>() {
1307 >                private int index = offset; // current index, modified on advance/split
1308 >                private int fence = -1; // -1 until used; then one past last index
1309 >                private int expectedModCount; // initialized when fence set
1310 >
1311 >                private int getFence() { // initialize fence to size on first use
1312 >                    int hi; // (a specialized variant appears in method forEach)
1313 >                    if ((hi = fence) < 0) {
1314 >                        expectedModCount = modCount;
1315 >                        hi = fence = offset + size;
1316 >                    }
1317 >                    return hi;
1318 >                }
1319 >
1320 >                public ArrayListSpliterator<E> trySplit() {
1321 >                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1322 >                    // ArrayListSpliterator could be used here as the source is already bound
1323 >                    return (lo >= mid) ? null : // divide range in half unless too small
1324 >                        new ArrayListSpliterator<>(root, lo, index = mid,
1325 >                                                   expectedModCount);
1326 >                }
1327 >
1328 >                public boolean tryAdvance(Consumer<? super E> action) {
1329 >                    Objects.requireNonNull(action);
1330 >                    int hi = getFence(), i = index;
1331 >                    if (i < hi) {
1332 >                        index = i + 1;
1333 >                        @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1334 >                        action.accept(e);
1335 >                        if (root.modCount != expectedModCount)
1336 >                            throw new ConcurrentModificationException();
1337 >                        return true;
1338 >                    }
1339 >                    return false;
1340 >                }
1341 >
1342 >                public void forEachRemaining(Consumer<? super E> action) {
1343 >                    Objects.requireNonNull(action);
1344 >                    int i, hi, mc; // hoist accesses and checks from loop
1345 >                    ArrayList<E> lst = root;
1346 >                    Object[] a;
1347 >                    if ((a = lst.elementData) != null) {
1348 >                        if ((hi = fence) < 0) {
1349 >                            mc = modCount;
1350 >                            hi = offset + size;
1351 >                        }
1352 >                        else
1353 >                            mc = expectedModCount;
1354 >                        if ((i = index) >= 0 && (index = hi) <= a.length) {
1355 >                            for (; i < hi; ++i) {
1356 >                                @SuppressWarnings("unchecked") E e = (E) a[i];
1357 >                                action.accept(e);
1358 >                            }
1359 >                            if (lst.modCount == mc)
1360 >                                return;
1361 >                        }
1362 >                    }
1363 >                    throw new ConcurrentModificationException();
1364 >                }
1365 >
1366 >                public long estimateSize() {
1367 >                    return (long) (getFence() - index);
1368 >                }
1369 >
1370 >                public int characteristics() {
1371 >                    return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1372 >                }
1373 >            };
1374 >        }
1375 >    }
1376 >
1377 >    @Override
1378 >    public void forEach(Consumer<? super E> action) {
1379 >        Objects.requireNonNull(action);
1380 >        final int expectedModCount = modCount;
1381 >        final Object[] es = elementData;
1382 >        final int size = this.size;
1383 >        for (int i = 0; modCount == expectedModCount && i < size; i++) {
1384 >            action.accept(elementAt(es, i));
1385 >        }
1386 >        if (modCount != expectedModCount) {
1387              throw new ConcurrentModificationException();
1388 <        }
1388 >        }
1389 >    }
1390  
1391 <        public E previous() {
1392 <            if (expectedModCount == modCount) {
1393 <                int i = cursor - 1;
1394 <                if (i < size) {
1395 <                    try {
1396 <                        E e = (E)elementData[i];
1397 <                        lastRet = i;
1398 <                        cursor = i;
1399 <                        return e;
1400 <                    } catch (IndexOutOfBoundsException fallthrough) {
1391 >    /**
1392 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1393 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1394 >     * list.
1395 >     *
1396 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1397 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1398 >     * Overriding implementations should document the reporting of additional
1399 >     * characteristic values.
1400 >     *
1401 >     * @return a {@code Spliterator} over the elements in this list
1402 >     * @since 1.8
1403 >     */
1404 >    @Override
1405 >    public Spliterator<E> spliterator() {
1406 >        return new ArrayListSpliterator<>(this, 0, -1, 0);
1407 >    }
1408 >
1409 >    /** Index-based split-by-two, lazily initialized Spliterator */
1410 >    static final class ArrayListSpliterator<E> implements Spliterator<E> {
1411 >
1412 >        /*
1413 >         * If ArrayLists were immutable, or structurally immutable (no
1414 >         * adds, removes, etc), we could implement their spliterators
1415 >         * with Arrays.spliterator. Instead we detect as much
1416 >         * interference during traversal as practical without
1417 >         * sacrificing much performance. We rely primarily on
1418 >         * modCounts. These are not guaranteed to detect concurrency
1419 >         * violations, and are sometimes overly conservative about
1420 >         * within-thread interference, but detect enough problems to
1421 >         * be worthwhile in practice. To carry this out, we (1) lazily
1422 >         * initialize fence and expectedModCount until the latest
1423 >         * point that we need to commit to the state we are checking
1424 >         * against; thus improving precision.  (This doesn't apply to
1425 >         * SubLists, that create spliterators with current non-lazy
1426 >         * values).  (2) We perform only a single
1427 >         * ConcurrentModificationException check at the end of forEach
1428 >         * (the most performance-sensitive method). When using forEach
1429 >         * (as opposed to iterators), we can normally only detect
1430 >         * interference after actions, not before. Further
1431 >         * CME-triggering checks apply to all other possible
1432 >         * violations of assumptions for example null or too-small
1433 >         * elementData array given its size(), that could only have
1434 >         * occurred due to interference.  This allows the inner loop
1435 >         * of forEach to run without any further checks, and
1436 >         * simplifies lambda-resolution. While this does entail a
1437 >         * number of checks, note that in the common case of
1438 >         * list.stream().forEach(a), no checks or other computation
1439 >         * occur anywhere other than inside forEach itself.  The other
1440 >         * less-often-used methods cannot take advantage of most of
1441 >         * these streamlinings.
1442 >         */
1443 >
1444 >        private final ArrayList<E> list;
1445 >        private int index; // current index, modified on advance/split
1446 >        private int fence; // -1 until used; then one past last index
1447 >        private int expectedModCount; // initialized when fence set
1448 >
1449 >        /** Create new spliterator covering the given range */
1450 >        ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1451 >                             int expectedModCount) {
1452 >            this.list = list; // OK if null unless traversed
1453 >            this.index = origin;
1454 >            this.fence = fence;
1455 >            this.expectedModCount = expectedModCount;
1456 >        }
1457 >
1458 >        private int getFence() { // initialize fence to size on first use
1459 >            int hi; // (a specialized variant appears in method forEach)
1460 >            ArrayList<E> lst;
1461 >            if ((hi = fence) < 0) {
1462 >                if ((lst = list) == null)
1463 >                    hi = fence = 0;
1464 >                else {
1465 >                    expectedModCount = lst.modCount;
1466 >                    hi = fence = lst.size;
1467 >                }
1468 >            }
1469 >            return hi;
1470 >        }
1471 >
1472 >        public ArrayListSpliterator<E> trySplit() {
1473 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1474 >            return (lo >= mid) ? null : // divide range in half unless too small
1475 >                new ArrayListSpliterator<>(list, lo, index = mid,
1476 >                                           expectedModCount);
1477 >        }
1478 >
1479 >        public boolean tryAdvance(Consumer<? super E> action) {
1480 >            if (action == null)
1481 >                throw new NullPointerException();
1482 >            int hi = getFence(), i = index;
1483 >            if (i < hi) {
1484 >                index = i + 1;
1485 >                @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1486 >                action.accept(e);
1487 >                if (list.modCount != expectedModCount)
1488 >                    throw new ConcurrentModificationException();
1489 >                return true;
1490 >            }
1491 >            return false;
1492 >        }
1493 >
1494 >        public void forEachRemaining(Consumer<? super E> action) {
1495 >            int i, hi, mc; // hoist accesses and checks from loop
1496 >            ArrayList<E> lst; Object[] a;
1497 >            if (action == null)
1498 >                throw new NullPointerException();
1499 >            if ((lst = list) != null && (a = lst.elementData) != null) {
1500 >                if ((hi = fence) < 0) {
1501 >                    mc = lst.modCount;
1502 >                    hi = lst.size;
1503 >                }
1504 >                else
1505 >                    mc = expectedModCount;
1506 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
1507 >                    for (; i < hi; ++i) {
1508 >                        @SuppressWarnings("unchecked") E e = (E) a[i];
1509 >                        action.accept(e);
1510                      }
1511 +                    if (lst.modCount == mc)
1512 +                        return;
1513                  }
1514              }
727            if (expectedModCount == modCount)
728                throw new NoSuchElementException();
1515              throw new ConcurrentModificationException();
1516          }
1517  
1518 <        public void remove() {
1519 <            if (lastRet < 0)
1520 <                throw new IllegalStateException();
735 <            if (modCount != expectedModCount)
736 <                throw new ConcurrentModificationException();
737 <            ArrayList.this.remove(lastRet);
738 <            if (lastRet < cursor)
739 <                cursor--;
740 <            lastRet = -1;
741 <            expectedModCount = modCount;
742 <        }
743 <
744 <        public void set(E e) {
745 <            if (lastRet < 0)
746 <                throw new IllegalStateException();
747 <            if (modCount != expectedModCount)
748 <                throw new ConcurrentModificationException();
749 <            ArrayList.this.set(lastRet, e);
750 <            expectedModCount = modCount;
751 <        }
1518 >        public long estimateSize() {
1519 >            return (long) (getFence() - index);
1520 >        }
1521  
1522 <        public void add(E e) {
1523 <            if (modCount != expectedModCount)
1522 >        public int characteristics() {
1523 >            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1524 >        }
1525 >    }
1526 >
1527 >    // A tiny bit set implementation
1528 >
1529 >    private static long[] nBits(int n) {
1530 >        return new long[((n - 1) >> 6) + 1];
1531 >    }
1532 >    private static void setBit(long[] bits, int i) {
1533 >        bits[i >> 6] |= 1L << i;
1534 >    }
1535 >    private static boolean isClear(long[] bits, int i) {
1536 >        return (bits[i >> 6] & (1L << i)) == 0;
1537 >    }
1538 >
1539 >    @Override
1540 >    public boolean removeIf(Predicate<? super E> filter) {
1541 >        return removeIf(filter, 0, size);
1542 >    }
1543 >
1544 >    boolean removeIf(Predicate<? super E> filter,
1545 >                     final int from, final int end) {
1546 >        Objects.requireNonNull(filter);
1547 >        int expectedModCount = modCount;
1548 >        final Object[] es = elementData;
1549 >        final boolean modified;
1550 >        int i;
1551 >        // Optimize for initial run of survivors
1552 >        for (i = from; i < end && !filter.test(elementAt(es, i)); i++)
1553 >            ;
1554 >        // Tolerate predicates that reentrantly access the collection for
1555 >        // read (but writers still get CME), so traverse once to find
1556 >        // elements to delete, a second pass to physically expunge.
1557 >        if (modified = (i < end)) {
1558 >            expectedModCount++;
1559 >            modCount++;
1560 >            final int beg = i;
1561 >            final long[] deathRow = nBits(end - beg);
1562 >            deathRow[0] = 1L;   // set bit 0
1563 >            for (i = beg + 1; i < end; i++)
1564 >                if (filter.test(elementAt(es, i)))
1565 >                    setBit(deathRow, i - beg);
1566 >            if (modCount != expectedModCount)
1567                  throw new ConcurrentModificationException();
1568 <            ArrayList.this.add(cursor++, e);
1569 <            lastRet = -1;
1570 <            expectedModCount = modCount;
1571 <        }
1568 >            int w = beg;
1569 >            for (i = beg; i < end; i++)
1570 >                if (isClear(deathRow, i - beg))
1571 >                    es[w++] = es[i];
1572 >            final int oldSize = size;
1573 >            System.arraycopy(es, end, es, w, oldSize - end);
1574 >            Arrays.fill(es, size -= (end - w), oldSize, null);
1575 >        }
1576 >        if (modCount != expectedModCount)
1577 >            throw new ConcurrentModificationException();
1578 >        return modified;
1579 >    }
1580 >
1581 >    @Override
1582 >    public void replaceAll(UnaryOperator<E> operator) {
1583 >        Objects.requireNonNull(operator);
1584 >        final int expectedModCount = modCount;
1585 >        final Object[] es = elementData;
1586 >        final int size = this.size;
1587 >        for (int i=0; modCount == expectedModCount && i < size; i++) {
1588 >            es[i] = operator.apply(elementAt(es, i));
1589 >        }
1590 >        if (modCount != expectedModCount) {
1591 >            throw new ConcurrentModificationException();
1592 >        }
1593 >        modCount++;
1594      }
1595  
1596 +    @Override
1597 +    @SuppressWarnings("unchecked")
1598 +    public void sort(Comparator<? super E> c) {
1599 +        final int expectedModCount = modCount;
1600 +        Arrays.sort((E[]) elementData, 0, size, c);
1601 +        if (modCount != expectedModCount) {
1602 +            throw new ConcurrentModificationException();
1603 +        }
1604 +        modCount++;
1605 +    }
1606   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines