ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayList.java (file contents):
Revision 1.16 by jsr166, Tue Feb 7 20:54:24 2006 UTC vs.
Revision 1.46 by jsr166, Fri Dec 2 06:41:08 2016 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28 + import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + import java.util.function.UnaryOperator;
31 +
32   /**
33 < * Resizable-array implementation of the <tt>List</tt> interface.  Implements
33 > * Resizable-array implementation of the {@code List} interface.  Implements
34   * all optional list operations, and permits all elements, including
35 < * <tt>null</tt>.  In addition to implementing the <tt>List</tt> interface,
35 > * {@code null}.  In addition to implementing the {@code List} interface,
36   * this class provides methods to manipulate the size of the array that is
37   * used internally to store the list.  (This class is roughly equivalent to
38 < * <tt>Vector</tt>, except that it is unsynchronized.)<p>
38 > * {@code Vector}, except that it is unsynchronized.)
39   *
40 < * The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
41 < * <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
42 < * time.  The <tt>add</tt> operation runs in <i>amortized constant time</i>,
40 > * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 > * {@code iterator}, and {@code listIterator} operations run in constant
42 > * time.  The {@code add} operation runs in <i>amortized constant time</i>,
43   * that is, adding n elements requires O(n) time.  All of the other operations
44   * run in linear time (roughly speaking).  The constant factor is low compared
45 < * to that for the <tt>LinkedList</tt> implementation.<p>
45 > * to that for the {@code LinkedList} implementation.
46   *
47 < * Each <tt>ArrayList</tt> instance has a <i>capacity</i>.  The capacity is
47 > * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
48   * the size of the array used to store the elements in the list.  It is always
49   * at least as large as the list size.  As elements are added to an ArrayList,
50   * its capacity grows automatically.  The details of the growth policy are not
51   * specified beyond the fact that adding an element has constant amortized
52 < * time cost.<p>
52 > * time cost.
53   *
54 < * An application can increase the capacity of an <tt>ArrayList</tt> instance
55 < * before adding a large number of elements using the <tt>ensureCapacity</tt>
54 > * <p>An application can increase the capacity of an {@code ArrayList} instance
55 > * before adding a large number of elements using the {@code ensureCapacity}
56   * operation.  This may reduce the amount of incremental reallocation.
57   *
58   * <p><strong>Note that this implementation is not synchronized.</strong>
59 < * If multiple threads access an <tt>ArrayList</tt> instance concurrently,
59 > * If multiple threads access an {@code ArrayList} instance concurrently,
60   * and at least one of the threads modifies the list structurally, it
61   * <i>must</i> be synchronized externally.  (A structural modification is
62   * any operation that adds or deletes one or more elements, or explicitly
# Line 48 | Line 70 | package java.util;
70   * unsynchronized access to the list:<pre>
71   *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
72   *
73 < * <p>The iterators returned by this class's <tt>iterator</tt> and
74 < * <tt>listIterator</tt> methods are <i>fail-fast</i>: if the list is
75 < * structurally modified at any time after the iterator is created, in any way
76 < * except through the iterator's own <tt>remove</tt> or <tt>add</tt> methods,
77 < * the iterator will throw a {@link ConcurrentModificationException}.  Thus, in
78 < * the face of concurrent modification, the iterator fails quickly and cleanly,
79 < * rather than risking arbitrary, non-deterministic behavior at an undetermined
80 < * time in the future.<p>
73 > * <p id="fail-fast">
74 > * The iterators returned by this class's {@link #iterator() iterator} and
75 > * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 > * if the list is structurally modified at any time after the iterator is
77 > * created, in any way except through the iterator's own
78 > * {@link ListIterator#remove() remove} or
79 > * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 > * {@link ConcurrentModificationException}.  Thus, in the face of
81 > * concurrent modification, the iterator fails quickly and cleanly, rather
82 > * than risking arbitrary, non-deterministic behavior at an undetermined
83 > * time in the future.
84   *
85 < * Note that the fail-fast behavior of an iterator cannot be guaranteed
85 > * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86   * as it is, generally speaking, impossible to make any hard guarantees in the
87   * presence of unsynchronized concurrent modification.  Fail-fast iterators
88 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
88 > * throw {@code ConcurrentModificationException} on a best-effort basis.
89   * Therefore, it would be wrong to write a program that depended on this
90 < * exception for its correctness: <i>the fail-fast behavior of iterators
91 < * should be used only to detect bugs.</i><p>
90 > * exception for its correctness:  <i>the fail-fast behavior of iterators
91 > * should be used only to detect bugs.</i>
92   *
93 < * This class is a member of the
94 < * <a href="{@docRoot}/../guide/collections/index.html">
93 > * <p>This class is a member of the
94 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95   * Java Collections Framework</a>.
96   *
97 + * @param <E> the type of elements in this list
98 + *
99   * @author  Josh Bloch
100   * @author  Neal Gafter
101 < * @version %I%, %G%
102 < * @see     Collection
103 < * @see     List
104 < * @see     LinkedList
78 < * @see     Vector
101 > * @see     Collection
102 > * @see     List
103 > * @see     LinkedList
104 > * @see     Vector
105   * @since   1.2
106   */
81
107   public class ArrayList<E> extends AbstractList<E>
108          implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109   {
110      private static final long serialVersionUID = 8683452581122892189L;
111  
112      /**
113 +     * Default initial capacity.
114 +     */
115 +    private static final int DEFAULT_CAPACITY = 10;
116 +
117 +    /**
118 +     * Shared empty array instance used for empty instances.
119 +     */
120 +    private static final Object[] EMPTY_ELEMENTDATA = {};
121 +
122 +    /**
123 +     * Shared empty array instance used for default sized empty instances. We
124 +     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 +     * first element is added.
126 +     */
127 +    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128 +
129 +    /**
130       * The array buffer into which the elements of the ArrayList are stored.
131 <     * The capacity of the ArrayList is the length of this array buffer.
131 >     * The capacity of the ArrayList is the length of this array buffer. Any
132 >     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 >     * will be expanded to DEFAULT_CAPACITY when the first element is added.
134       */
135 <    private transient Object[] elementData;
135 >    transient Object[] elementData; // non-private to simplify nested class access
136  
137      /**
138       * The size of the ArrayList (the number of elements it contains).
# Line 100 | Line 144 | public class ArrayList<E> extends Abstra
144      /**
145       * Constructs an empty list with the specified initial capacity.
146       *
147 <     * @param initialCapacity the initial capacity of the list
147 >     * @param  initialCapacity  the initial capacity of the list
148       * @throws IllegalArgumentException if the specified initial capacity
149       *         is negative
150       */
151      public ArrayList(int initialCapacity) {
152 <        super();
153 <        if (initialCapacity < 0)
152 >        if (initialCapacity > 0) {
153 >            this.elementData = new Object[initialCapacity];
154 >        } else if (initialCapacity == 0) {
155 >            this.elementData = EMPTY_ELEMENTDATA;
156 >        } else {
157              throw new IllegalArgumentException("Illegal Capacity: "+
158                                                 initialCapacity);
159 <        this.elementData = new Object[initialCapacity];
159 >        }
160      }
161  
162      /**
163       * Constructs an empty list with an initial capacity of ten.
164       */
165      public ArrayList() {
166 <        this(10);
166 >        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167      }
168  
169      /**
170       * Constructs a list containing the elements of the specified
171       * collection, in the order they are returned by the collection's
172 <     * iterator.  The <tt>ArrayList</tt> instance has an initial capacity of
126 <     * 110% the size of the specified collection.
172 >     * iterator.
173       *
174       * @param c the collection whose elements are to be placed into this list
175       * @throws NullPointerException if the specified collection is null
176       */
177      public ArrayList(Collection<? extends E> c) {
178 <        int size = c.size();
179 <        // 10% for growth
180 <        int cap = ((size/10)+1)*11;
181 <        if (cap > 0) {
182 <            Object[] a = new Object[cap];
183 <            a[size] = a[size+1] = UNALLOCATED;
184 <            Object[] b = c.toArray(a);
185 <            if (b[size] == null && b[size+1] == UNALLOCATED) {
186 <                b[size+1] = null;
187 <                elementData = b;
142 <                this.size = size;
143 <                return;
144 <            }
145 <        }
146 <        initFromConcurrentlyMutating(c);
147 <    }
148 <
149 <    private void initFromConcurrentlyMutating(Collection<? extends E> c) {
150 <        elementData = c.toArray();
151 <        size = elementData.length;
152 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
153 <        if (elementData.getClass() != Object[].class)
154 <            elementData = Arrays.copyOf(elementData, size, Object[].class);
178 >        elementData = c.toArray();
179 >        if ((size = elementData.length) != 0) {
180 >            // defend against c.toArray (incorrectly) not returning Object[]
181 >            // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 >            if (elementData.getClass() != Object[].class)
183 >                elementData = Arrays.copyOf(elementData, size, Object[].class);
184 >        } else {
185 >            // replace with empty array.
186 >            this.elementData = EMPTY_ELEMENTDATA;
187 >        }
188      }
189  
157    private final static Object UNALLOCATED = new Object();
158
190      /**
191 <     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
191 >     * Trims the capacity of this {@code ArrayList} instance to be the
192       * list's current size.  An application can use this operation to minimize
193 <     * the storage of an <tt>ArrayList</tt> instance.
193 >     * the storage of an {@code ArrayList} instance.
194       */
195      public void trimToSize() {
196 <        modCount++;
197 <        int oldCapacity = elementData.length;
198 <        if (size < oldCapacity) {
199 <            elementData = Arrays.copyOf(elementData, size);
200 <        }
196 >        modCount++;
197 >        if (size < elementData.length) {
198 >            elementData = (size == 0)
199 >              ? EMPTY_ELEMENTDATA
200 >              : Arrays.copyOf(elementData, size);
201 >        }
202      }
203  
204      /**
205 <     * Increases the capacity of this <tt>ArrayList</tt> instance, if
205 >     * Increases the capacity of this {@code ArrayList} instance, if
206       * necessary, to ensure that it can hold at least the number of elements
207       * specified by the minimum capacity argument.
208       *
209       * @param minCapacity the desired minimum capacity
210       */
211      public void ensureCapacity(int minCapacity) {
212 <        modCount++;
213 <        if (minCapacity > elementData.length)
214 <            growArray(minCapacity);
212 >        if (minCapacity > elementData.length
213 >            && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 >                 && minCapacity <= DEFAULT_CAPACITY)) {
215 >            modCount++;
216 >            grow(minCapacity);
217 >        }
218 >    }
219 >
220 >    /**
221 >     * The maximum size of array to allocate (unless necessary).
222 >     * Some VMs reserve some header words in an array.
223 >     * Attempts to allocate larger arrays may result in
224 >     * OutOfMemoryError: Requested array size exceeds VM limit
225 >     */
226 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227 >
228 >    /**
229 >     * Increases the capacity to ensure that it can hold at least the
230 >     * number of elements specified by the minimum capacity argument.
231 >     *
232 >     * @param minCapacity the desired minimum capacity
233 >     * @throws OutOfMemoryError if minCapacity is less than zero
234 >     */
235 >    private Object[] grow(int minCapacity) {
236 >        return elementData = Arrays.copyOf(elementData,
237 >                                           newCapacity(minCapacity));
238 >    }
239 >
240 >    private Object[] grow() {
241 >        return grow(size + 1);
242      }
243  
244      /**
245 <     * Increases the capacity of the array.
245 >     * Returns a capacity at least as large as the given minimum capacity.
246 >     * Returns the current capacity increased by 50% if that suffices.
247 >     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 >     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249       *
250       * @param minCapacity the desired minimum capacity
251 +     * @throws OutOfMemoryError if minCapacity is less than zero
252       */
253 <    private void growArray(int minCapacity) {
253 >    private int newCapacity(int minCapacity) {
254 >        // overflow-conscious code
255 >        int oldCapacity = elementData.length;
256 >        int newCapacity = oldCapacity + (oldCapacity >> 1);
257 >        if (newCapacity - minCapacity <= 0) {
258 >            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 >                return Math.max(DEFAULT_CAPACITY, minCapacity);
260 >            if (minCapacity < 0) // overflow
261 >                throw new OutOfMemoryError();
262 >            return minCapacity;
263 >        }
264 >        return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 >            ? newCapacity
266 >            : hugeCapacity(minCapacity);
267 >    }
268 >
269 >    private static int hugeCapacity(int minCapacity) {
270          if (minCapacity < 0) // overflow
271              throw new OutOfMemoryError();
272 <        int oldCapacity = elementData.length;
273 <        // Double size if small; else grow by 50%
274 <        int newCapacity = ((oldCapacity < 64)?
196 <                           ((oldCapacity + 1) * 2):
197 <                           ((oldCapacity / 2) * 3));
198 <        if (newCapacity < 0) // overflow
199 <            newCapacity = Integer.MAX_VALUE;
200 <        if (newCapacity < minCapacity)
201 <            newCapacity = minCapacity;
202 <        elementData = Arrays.copyOf(elementData, newCapacity);
272 >        return (minCapacity > MAX_ARRAY_SIZE)
273 >            ? Integer.MAX_VALUE
274 >            : MAX_ARRAY_SIZE;
275      }
276  
277      /**
# Line 208 | Line 280 | public class ArrayList<E> extends Abstra
280       * @return the number of elements in this list
281       */
282      public int size() {
283 <        return size;
283 >        return size;
284      }
285  
286      /**
287 <     * Returns <tt>true</tt> if this list contains no elements.
287 >     * Returns {@code true} if this list contains no elements.
288       *
289 <     * @return <tt>true</tt> if this list contains no elements
289 >     * @return {@code true} if this list contains no elements
290       */
291      public boolean isEmpty() {
292 <        return size == 0;
292 >        return size == 0;
293      }
294  
295      /**
296 <     * Returns <tt>true</tt> if this list contains the specified element.
297 <     * More formally, returns <tt>true</tt> if and only if this list contains
298 <     * at least one element <tt>e</tt> such that
299 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
296 >     * Returns {@code true} if this list contains the specified element.
297 >     * More formally, returns {@code true} if and only if this list contains
298 >     * at least one element {@code e} such that
299 >     * {@code Objects.equals(o, e)}.
300       *
301       * @param o element whose presence in this list is to be tested
302 <     * @return <tt>true</tt> if this list contains the specified element
302 >     * @return {@code true} if this list contains the specified element
303       */
304      public boolean contains(Object o) {
305 <        return indexOf(o) >= 0;
305 >        return indexOf(o) >= 0;
306      }
307  
308      /**
309       * Returns the index of the first occurrence of the specified element
310       * in this list, or -1 if this list does not contain the element.
311 <     * More formally, returns the lowest index <tt>i</tt> such that
312 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
311 >     * More formally, returns the lowest index {@code i} such that
312 >     * {@code Objects.equals(o, get(i))},
313       * or -1 if there is no such index.
314       */
315      public int indexOf(Object o) {
316 <        if (o == null) {
317 <            for (int i = 0; i < size; i++)
318 <                if (elementData[i]==null)
319 <                    return i;
320 <        } else {
321 <            for (int i = 0; i < size; i++)
322 <                if (o.equals(elementData[i]))
323 <                    return i;
324 <        }
325 <        return -1;
316 >        if (o == null) {
317 >            for (int i = 0; i < size; i++)
318 >                if (elementData[i]==null)
319 >                    return i;
320 >        } else {
321 >            for (int i = 0; i < size; i++)
322 >                if (o.equals(elementData[i]))
323 >                    return i;
324 >        }
325 >        return -1;
326      }
327  
328      /**
329       * Returns the index of the last occurrence of the specified element
330       * in this list, or -1 if this list does not contain the element.
331 <     * More formally, returns the highest index <tt>i</tt> such that
332 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
331 >     * More formally, returns the highest index {@code i} such that
332 >     * {@code Objects.equals(o, get(i))},
333       * or -1 if there is no such index.
334       */
335      public int lastIndexOf(Object o) {
336 <        if (o == null) {
337 <            for (int i = size-1; i >= 0; i--)
338 <                if (elementData[i]==null)
339 <                    return i;
340 <        } else {
341 <            for (int i = size-1; i >= 0; i--)
342 <                if (o.equals(elementData[i]))
343 <                    return i;
344 <        }
345 <        return -1;
336 >        if (o == null) {
337 >            for (int i = size-1; i >= 0; i--)
338 >                if (elementData[i]==null)
339 >                    return i;
340 >        } else {
341 >            for (int i = size-1; i >= 0; i--)
342 >                if (o.equals(elementData[i]))
343 >                    return i;
344 >        }
345 >        return -1;
346      }
347  
348      /**
349 <     * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
349 >     * Returns a shallow copy of this {@code ArrayList} instance.  (The
350       * elements themselves are not copied.)
351       *
352 <     * @return a clone of this <tt>ArrayList</tt> instance
352 >     * @return a clone of this {@code ArrayList} instance
353       */
354      public Object clone() {
355 <        try {
356 <            ArrayList<E> v = (ArrayList<E>) super.clone();
357 <            v.elementData = Arrays.copyOf(elementData, size);
358 <            v.modCount = 0;
359 <            return v;
360 <        } catch (CloneNotSupportedException e) {
361 <            // this shouldn't happen, since we are Cloneable
362 <            throw new InternalError();
363 <        }
355 >        try {
356 >            ArrayList<?> v = (ArrayList<?>) super.clone();
357 >            v.elementData = Arrays.copyOf(elementData, size);
358 >            v.modCount = 0;
359 >            return v;
360 >        } catch (CloneNotSupportedException e) {
361 >            // this shouldn't happen, since we are Cloneable
362 >            throw new InternalError(e);
363 >        }
364      }
365  
366      /**
# Line 320 | Line 392 | public class ArrayList<E> extends Abstra
392       * <p>If the list fits in the specified array with room to spare
393       * (i.e., the array has more elements than the list), the element in
394       * the array immediately following the end of the collection is set to
395 <     * <tt>null</tt>.  (This is useful in determining the length of the
395 >     * {@code null}.  (This is useful in determining the length of the
396       * list <i>only</i> if the caller knows that the list does not contain
397       * any null elements.)
398       *
# Line 333 | Line 405 | public class ArrayList<E> extends Abstra
405       *         this list
406       * @throws NullPointerException if the specified array is null
407       */
408 +    @SuppressWarnings("unchecked")
409      public <T> T[] toArray(T[] a) {
410          if (a.length < size)
411              // Make a new array of a's runtime type, but my contents:
412              return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 <        System.arraycopy(elementData, 0, a, 0, size);
413 >        System.arraycopy(elementData, 0, a, 0, size);
414          if (a.length > size)
415              a[size] = null;
416          return a;
# Line 345 | Line 418 | public class ArrayList<E> extends Abstra
418  
419      // Positional Access Operations
420  
421 <    /**
422 <     * Returns error message string for IndexOutOfBoundsExceptions
423 <     */
424 <    private String ioobe(int index) {
425 <        return "Index: " + index + ", Size: " + size;
421 >    @SuppressWarnings("unchecked")
422 >    E elementData(int index) {
423 >        return (E) elementData[index];
424 >    }
425 >
426 >    @SuppressWarnings("unchecked")
427 >    static <E> E elementAt(Object[] es, int index) {
428 >        return (E) es[index];
429      }
430  
431      /**
# Line 360 | Line 436 | public class ArrayList<E> extends Abstra
436       * @throws IndexOutOfBoundsException {@inheritDoc}
437       */
438      public E get(int index) {
439 <        if (index >= size)
440 <            throw new IndexOutOfBoundsException(ioobe(index));
365 <        return (E)elementData[index];
439 >        Objects.checkIndex(index, size);
440 >        return elementData(index);
441      }
442  
443      /**
# Line 375 | Line 450 | public class ArrayList<E> extends Abstra
450       * @throws IndexOutOfBoundsException {@inheritDoc}
451       */
452      public E set(int index, E element) {
453 <        if (index >= size)
454 <            throw new IndexOutOfBoundsException(ioobe(index));
453 >        Objects.checkIndex(index, size);
454 >        E oldValue = elementData(index);
455 >        elementData[index] = element;
456 >        return oldValue;
457 >    }
458  
459 <        E oldValue = (E) elementData[index];
460 <        elementData[index] = element;
461 <        return oldValue;
459 >    /**
460 >     * This helper method split out from add(E) to keep method
461 >     * bytecode size under 35 (the -XX:MaxInlineSize default value),
462 >     * which helps when add(E) is called in a C1-compiled loop.
463 >     */
464 >    private void add(E e, Object[] elementData, int s) {
465 >        if (s == elementData.length)
466 >            elementData = grow();
467 >        elementData[s] = e;
468 >        size = s + 1;
469      }
470  
471      /**
472       * Appends the specified element to the end of this list.
473       *
474       * @param e element to be appended to this list
475 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
475 >     * @return {@code true} (as specified by {@link Collection#add})
476       */
477      public boolean add(E e) {
478          modCount++;
479 <        int s = size;
480 <        if (s >= elementData.length)
396 <            growArray(s + 1);
397 <        elementData[s] = e;
398 <        size = s + 1;
399 <        return true;
479 >        add(e, elementData, size);
480 >        return true;
481      }
482  
483      /**
# Line 409 | Line 490 | public class ArrayList<E> extends Abstra
490       * @throws IndexOutOfBoundsException {@inheritDoc}
491       */
492      public void add(int index, E element) {
493 <        int s = size;
494 <        if (index > s || index < 0)
495 <            throw new IndexOutOfBoundsException(ioobe(index));
496 <        modCount++;
497 <        if (s >= elementData.length)
498 <            growArray(s + 1);
499 <        System.arraycopy(elementData, index,
500 <                         elementData, index + 1, s - index);
501 <        elementData[index] = element;
493 >        rangeCheckForAdd(index);
494 >        modCount++;
495 >        final int s;
496 >        Object[] elementData;
497 >        if ((s = size) == (elementData = this.elementData).length)
498 >            elementData = grow();
499 >        System.arraycopy(elementData, index,
500 >                         elementData, index + 1,
501 >                         s - index);
502 >        elementData[index] = element;
503          size = s + 1;
504 +        // checkInvariants();
505      }
506  
507      /**
# Line 431 | Line 514 | public class ArrayList<E> extends Abstra
514       * @throws IndexOutOfBoundsException {@inheritDoc}
515       */
516      public E remove(int index) {
517 <        int s = size - 1;
518 <        if (index > s)
519 <            throw new IndexOutOfBoundsException(ioobe(index));
520 <        modCount++;
521 <        E oldValue = (E)elementData[index];
522 <        int numMoved = s - index;
523 <        if (numMoved > 0)
524 <            System.arraycopy(elementData, index + 1,
525 <                             elementData, index, numMoved);
526 <        elementData[s] = null;
527 <        size = s;
528 <        return oldValue;
517 >        Objects.checkIndex(index, size);
518 >
519 >        modCount++;
520 >        E oldValue = elementData(index);
521 >
522 >        int numMoved = size - index - 1;
523 >        if (numMoved > 0)
524 >            System.arraycopy(elementData, index+1, elementData, index,
525 >                             numMoved);
526 >        elementData[--size] = null; // clear to let GC do its work
527 >
528 >        // checkInvariants();
529 >        return oldValue;
530      }
531  
532      /**
533       * Removes the first occurrence of the specified element from this list,
534       * if it is present.  If the list does not contain the element, it is
535       * unchanged.  More formally, removes the element with the lowest index
536 <     * <tt>i</tt> such that
537 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
538 <     * (if such an element exists).  Returns <tt>true</tt> if this list
536 >     * {@code i} such that
537 >     * {@code Objects.equals(o, get(i))}
538 >     * (if such an element exists).  Returns {@code true} if this list
539       * contained the specified element (or equivalently, if this list
540       * changed as a result of the call).
541       *
542       * @param o element to be removed from this list, if present
543 <     * @return <tt>true</tt> if this list contained the specified element
543 >     * @return {@code true} if this list contained the specified element
544       */
545      public boolean remove(Object o) {
546 <        if (o == null) {
546 >        if (o == null) {
547              for (int index = 0; index < size; index++)
548 <                if (elementData[index] == null) {
549 <                    fastRemove(index);
550 <                    return true;
551 <                }
552 <        } else {
553 <            for (int index = 0; index < size; index++)
554 <                if (o.equals(elementData[index])) {
555 <                    fastRemove(index);
556 <                    return true;
557 <                }
548 >                if (elementData[index] == null) {
549 >                    fastRemove(index);
550 >                    return true;
551 >                }
552 >        } else {
553 >            for (int index = 0; index < size; index++)
554 >                if (o.equals(elementData[index])) {
555 >                    fastRemove(index);
556 >                    return true;
557 >                }
558          }
559 <        return false;
559 >        return false;
560      }
561  
562 <    /*
562 >    /**
563       * Private remove method that skips bounds checking and does not
564       * return the value removed.
565       */
# Line 485 | Line 569 | public class ArrayList<E> extends Abstra
569          if (numMoved > 0)
570              System.arraycopy(elementData, index+1, elementData, index,
571                               numMoved);
572 <        elementData[--size] = null; // Let gc do its work
572 >        elementData[--size] = null; // clear to let GC do its work
573      }
574  
575      /**
# Line 493 | Line 577 | public class ArrayList<E> extends Abstra
577       * be empty after this call returns.
578       */
579      public void clear() {
580 <        modCount++;
581 <
582 <        // Let gc do its work
499 <        for (int i = 0; i < size; i++)
500 <            elementData[i] = null;
501 <
502 <        size = 0;
580 >        modCount++;
581 >        Arrays.fill(elementData, 0, size, null);
582 >        size = 0;
583      }
584  
585      /**
# Line 512 | Line 592 | public class ArrayList<E> extends Abstra
592       * list is nonempty.)
593       *
594       * @param c collection containing elements to be added to this list
595 <     * @return <tt>true</tt> if this list changed as a result of the call
595 >     * @return {@code true} if this list changed as a result of the call
596       * @throws NullPointerException if the specified collection is null
597       */
598      public boolean addAll(Collection<? extends E> c) {
599 <        Object[] a = c.toArray();
599 >        Object[] a = c.toArray();
600 >        modCount++;
601          int numNew = a.length;
602 <        ensureCapacity(size + numNew);  // Increments modCount
603 <        System.arraycopy(a, 0, elementData, size, numNew);
604 <        size += numNew;
605 <        return numNew != 0;
602 >        if (numNew == 0)
603 >            return false;
604 >        Object[] elementData;
605 >        final int s;
606 >        if (numNew > (elementData = this.elementData).length - (s = size))
607 >            elementData = grow(s + numNew);
608 >        System.arraycopy(a, 0, elementData, s, numNew);
609 >        size = s + numNew;
610 >        // checkInvariants();
611 >        return true;
612      }
613  
614      /**
# Line 535 | Line 622 | public class ArrayList<E> extends Abstra
622       * @param index index at which to insert the first element from the
623       *              specified collection
624       * @param c collection containing elements to be added to this list
625 <     * @return <tt>true</tt> if this list changed as a result of the call
625 >     * @return {@code true} if this list changed as a result of the call
626       * @throws IndexOutOfBoundsException {@inheritDoc}
627       * @throws NullPointerException if the specified collection is null
628       */
629      public boolean addAll(int index, Collection<? extends E> c) {
630 <        if (index > size || index < 0)
544 <            throw new IndexOutOfBoundsException(ioobe(index));
630 >        rangeCheckForAdd(index);
631  
632 <        Object[] a = c.toArray();
633 <        int numNew = a.length;
634 <        ensureCapacity(size + numNew);  // Increments modCount
635 <
636 <        int numMoved = size - index;
637 <        if (numMoved > 0)
638 <            System.arraycopy(elementData, index, elementData, index + numNew,
639 <                             numMoved);
632 >        Object[] a = c.toArray();
633 >        modCount++;
634 >        int numNew = a.length;
635 >        if (numNew == 0)
636 >            return false;
637 >        Object[] elementData;
638 >        final int s;
639 >        if (numNew > (elementData = this.elementData).length - (s = size))
640 >            elementData = grow(s + numNew);
641  
642 +        int numMoved = s - index;
643 +        if (numMoved > 0)
644 +            System.arraycopy(elementData, index,
645 +                             elementData, index + numNew,
646 +                             numMoved);
647          System.arraycopy(a, 0, elementData, index, numNew);
648 <        size += numNew;
649 <        return numNew != 0;
648 >        size = s + numNew;
649 >        // checkInvariants();
650 >        return true;
651      }
652  
653      /**
654       * Removes from this list all of the elements whose index is between
655 <     * <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive.
655 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
656       * Shifts any succeeding elements to the left (reduces their index).
657 <     * This call shortens the list by <tt>(toIndex - fromIndex)</tt> elements.
658 <     * (If <tt>toIndex==fromIndex</tt>, this operation has no effect.)
657 >     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
658 >     * (If {@code toIndex==fromIndex}, this operation has no effect.)
659       *
660 <     * @param fromIndex index of first element to be removed
661 <     * @param toIndex index after last element to be removed
662 <     * @throws IndexOutOfBoundsException if fromIndex or toIndex out of
663 <     *              range (fromIndex &lt; 0 || fromIndex &gt;= size() || toIndex
664 <     *              &gt; size() || toIndex &lt; fromIndex)
660 >     * @throws IndexOutOfBoundsException if {@code fromIndex} or
661 >     *         {@code toIndex} is out of range
662 >     *         ({@code fromIndex < 0 ||
663 >     *          toIndex > size() ||
664 >     *          toIndex < fromIndex})
665       */
666      protected void removeRange(int fromIndex, int toIndex) {
667 <        modCount++;
668 <        int numMoved = size - toIndex;
669 <        System.arraycopy(elementData, toIndex, elementData, fromIndex,
670 <                         numMoved);
667 >        if (fromIndex > toIndex) {
668 >            throw new IndexOutOfBoundsException(
669 >                    outOfBoundsMsg(fromIndex, toIndex));
670 >        }
671 >        modCount++;
672 >        final Object[] es = elementData;
673 >        final int oldSize = size;
674 >        System.arraycopy(es, toIndex, es, fromIndex, oldSize - toIndex);
675 >        Arrays.fill(es, size -= (toIndex - fromIndex), oldSize, null);
676 >        // checkInvariants();
677 >    }
678 >
679 >    /**
680 >     * A version of rangeCheck used by add and addAll.
681 >     */
682 >    private void rangeCheckForAdd(int index) {
683 >        if (index > size || index < 0)
684 >            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
685 >    }
686 >
687 >    /**
688 >     * Constructs an IndexOutOfBoundsException detail message.
689 >     * Of the many possible refactorings of the error handling code,
690 >     * this "outlining" performs best with both server and client VMs.
691 >     */
692 >    private String outOfBoundsMsg(int index) {
693 >        return "Index: "+index+", Size: "+size;
694 >    }
695 >
696 >    /**
697 >     * A version used in checking (fromIndex > toIndex) condition
698 >     */
699 >    private static String outOfBoundsMsg(int fromIndex, int toIndex) {
700 >        return "From Index: " + fromIndex + " > To Index: " + toIndex;
701 >    }
702 >
703 >    /**
704 >     * Removes from this list all of its elements that are contained in the
705 >     * specified collection.
706 >     *
707 >     * @param c collection containing elements to be removed from this list
708 >     * @return {@code true} if this list changed as a result of the call
709 >     * @throws ClassCastException if the class of an element of this list
710 >     *         is incompatible with the specified collection
711 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
712 >     * @throws NullPointerException if this list contains a null element and the
713 >     *         specified collection does not permit null elements
714 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
715 >     *         or if the specified collection is null
716 >     * @see Collection#contains(Object)
717 >     */
718 >    public boolean removeAll(Collection<?> c) {
719 >        return batchRemove(c, false, 0, size);
720 >    }
721 >
722 >    /**
723 >     * Retains only the elements in this list that are contained in the
724 >     * specified collection.  In other words, removes from this list all
725 >     * of its elements that are not contained in the specified collection.
726 >     *
727 >     * @param c collection containing elements to be retained in this list
728 >     * @return {@code true} if this list changed as a result of the call
729 >     * @throws ClassCastException if the class of an element of this list
730 >     *         is incompatible with the specified collection
731 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
732 >     * @throws NullPointerException if this list contains a null element and the
733 >     *         specified collection does not permit null elements
734 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
735 >     *         or if the specified collection is null
736 >     * @see Collection#contains(Object)
737 >     */
738 >    public boolean retainAll(Collection<?> c) {
739 >        return batchRemove(c, true, 0, size);
740 >    }
741  
742 <        // Let gc do its work
743 <        int newSize = size - (toIndex-fromIndex);
744 <        while (size != newSize)
745 <            elementData[--size] = null;
742 >    boolean batchRemove(Collection<?> c, boolean complement,
743 >                        final int from, final int end) {
744 >        Objects.requireNonNull(c);
745 >        final Object[] es = elementData;
746 >        final boolean modified;
747 >        int r;
748 >        // Optimize for initial run of survivors
749 >        for (r = from; r < end && c.contains(es[r]) == complement; r++)
750 >            ;
751 >        if (modified = (r < end)) {
752 >            int w = r++;
753 >            try {
754 >                for (Object e; r < end; r++)
755 >                    if (c.contains(e = es[r]) == complement)
756 >                        es[w++] = e;
757 >            } catch (Throwable ex) {
758 >                // Preserve behavioral compatibility with AbstractCollection,
759 >                // even if c.contains() throws.
760 >                System.arraycopy(es, r, es, w, end - r);
761 >                w += end - r;
762 >                throw ex;
763 >            } finally {
764 >                final int oldSize = size, deleted = end - w;
765 >                modCount += deleted;
766 >                System.arraycopy(es, end, es, w, oldSize - end);
767 >                Arrays.fill(es, size -= deleted, oldSize, null);
768 >            }
769 >        }
770 >        // checkInvariants();
771 >        return modified;
772      }
773  
774      /**
775 <     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
776 <     * is, serialize it).
775 >     * Saves the state of the {@code ArrayList} instance to a stream
776 >     * (that is, serializes it).
777       *
778 <     * @serialData The length of the array backing the <tt>ArrayList</tt>
778 >     * @param s the stream
779 >     * @throws java.io.IOException if an I/O error occurs
780 >     * @serialData The length of the array backing the {@code ArrayList}
781       *             instance is emitted (int), followed by all of its elements
782 <     *             (each an <tt>Object</tt>) in the proper order.
782 >     *             (each an {@code Object}) in the proper order.
783       */
784      private void writeObject(java.io.ObjectOutputStream s)
785 <        throws java.io.IOException{
786 <        // Write out element count, and any hidden stuff
787 <        int expectedModCount = modCount;
788 <        s.defaultWriteObject();
785 >        throws java.io.IOException {
786 >        // Write out element count, and any hidden stuff
787 >        int expectedModCount = modCount;
788 >        s.defaultWriteObject();
789  
790 <        // Write out array length
791 <        s.writeInt(elementData.length);
790 >        // Write out size as capacity for behavioural compatibility with clone()
791 >        s.writeInt(size);
792  
793 <        // Write out all elements in the proper order.
794 <        for (int i=0; i<size; i++)
793 >        // Write out all elements in the proper order.
794 >        for (int i=0; i<size; i++) {
795              s.writeObject(elementData[i]);
796 +        }
797  
798 <        if (expectedModCount != modCount) {
798 >        if (modCount != expectedModCount) {
799              throw new ConcurrentModificationException();
800          }
609
801      }
802  
803      /**
804 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
805 <     * deserialize it).
804 >     * Reconstitutes the {@code ArrayList} instance from a stream (that is,
805 >     * deserializes it).
806 >     * @param s the stream
807 >     * @throws ClassNotFoundException if the class of a serialized object
808 >     *         could not be found
809 >     * @throws java.io.IOException if an I/O error occurs
810       */
811      private void readObject(java.io.ObjectInputStream s)
812          throws java.io.IOException, ClassNotFoundException {
618        // Read in size, and any hidden stuff
619        s.defaultReadObject();
813  
814 <        // Read in array length and allocate array
815 <        int arrayLength = s.readInt();
623 <        Object[] a = elementData = new Object[arrayLength];
814 >        // Read in size, and any hidden stuff
815 >        s.defaultReadObject();
816  
817 <        // Read in all elements in the proper order.
818 <        for (int i=0; i<size; i++)
819 <            a[i] = s.readObject();
820 <    }
817 >        // Read in capacity
818 >        s.readInt(); // ignored
819 >
820 >        if (size > 0) {
821 >            // like clone(), allocate array based upon size not capacity
822 >            Object[] elements = new Object[size];
823 >
824 >            // Read in all elements in the proper order.
825 >            for (int i = 0; i < size; i++) {
826 >                elements[i] = s.readObject();
827 >            }
828  
829 +            elementData = elements;
830 +        } else if (size == 0) {
831 +            elementData = EMPTY_ELEMENTDATA;
832 +        } else {
833 +            throw new java.io.InvalidObjectException("Invalid size: " + size);
834 +        }
835 +    }
836  
837      /**
838 <     * Returns a list-iterator of the elements in this list (in proper
838 >     * Returns a list iterator over the elements in this list (in proper
839       * sequence), starting at the specified position in the list.
840 <     * Obeys the general contract of <tt>List.listIterator(int)</tt>.<p>
840 >     * The specified index indicates the first element that would be
841 >     * returned by an initial call to {@link ListIterator#next next}.
842 >     * An initial call to {@link ListIterator#previous previous} would
843 >     * return the element with the specified index minus one.
844 >     *
845 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
846       *
636     * The list-iterator is <i>fail-fast</i>: if the list is structurally
637     * modified at any time after the Iterator is created, in any way except
638     * through the list-iterator's own <tt>remove</tt> or <tt>add</tt>
639     * methods, the list-iterator will throw a
640     * <tt>ConcurrentModificationException</tt>.  Thus, in the face of
641     * concurrent modification, the iterator fails quickly and cleanly, rather
642     * than risking arbitrary, non-deterministic behavior at an undetermined
643     * time in the future.
644     *
645     * @param index index of the first element to be returned from the
646     *              list-iterator (by a call to <tt>next</tt>)
647     * @return a ListIterator of the elements in this list (in proper
648     *         sequence), starting at the specified position in the list
847       * @throws IndexOutOfBoundsException {@inheritDoc}
650     * @see List#listIterator(int)
848       */
849      public ListIterator<E> listIterator(int index) {
850 <        if (index < 0 || index > size)
851 <            throw new IndexOutOfBoundsException(ioobe(index));
655 <        return new ArrayListIterator(index);
850 >        rangeCheckForAdd(index);
851 >        return new ListItr(index);
852      }
853  
854      /**
855 <     * {@inheritDoc}
855 >     * Returns a list iterator over the elements in this list (in proper
856 >     * sequence).
857 >     *
858 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
859 >     *
860 >     * @see #listIterator(int)
861       */
862      public ListIterator<E> listIterator() {
863 <        return new ArrayListIterator(0);
863 >        return new ListItr(0);
864      }
865  
866      /**
867       * Returns an iterator over the elements in this list in proper sequence.
868       *
869 +     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
870 +     *
871       * @return an iterator over the elements in this list in proper sequence
872       */
873      public Iterator<E> iterator() {
874 <        return new ArrayListIterator(0);
874 >        return new Itr();
875      }
876  
877      /**
878 <     * A streamlined version of AbstractList.ListItr
878 >     * An optimized version of AbstractList.Itr
879       */
880 <    final class ArrayListIterator implements ListIterator<E> {
881 <        int cursor;           // index of next element to return;
882 <        int lastRet;          // index of last element, or -1 if no such
883 <        int expectedModCount; // to check for CME
880 >    private class Itr implements Iterator<E> {
881 >        int cursor;       // index of next element to return
882 >        int lastRet = -1; // index of last element returned; -1 if no such
883 >        int expectedModCount = modCount;
884  
885 <        ArrayListIterator(int index) {
886 <            cursor = index;
684 <            lastRet = -1;
685 <            expectedModCount = modCount;
686 <        }
885 >        // prevent creating a synthetic constructor
886 >        Itr() {}
887  
888 <        public boolean hasNext() {
888 >        public boolean hasNext() {
889              return cursor != size;
890 <        }
691 <
692 <        public boolean hasPrevious() {
693 <            return cursor != 0;
694 <        }
890 >        }
891  
892 <        public int nextIndex() {
893 <            return cursor;
894 <        }
892 >        @SuppressWarnings("unchecked")
893 >        public E next() {
894 >            checkForComodification();
895 >            int i = cursor;
896 >            if (i >= size)
897 >                throw new NoSuchElementException();
898 >            Object[] elementData = ArrayList.this.elementData;
899 >            if (i >= elementData.length)
900 >                throw new ConcurrentModificationException();
901 >            cursor = i + 1;
902 >            return (E) elementData[lastRet = i];
903 >        }
904  
905 <        public int previousIndex() {
906 <            return cursor - 1;
907 <        }
905 >        public void remove() {
906 >            if (lastRet < 0)
907 >                throw new IllegalStateException();
908 >            checkForComodification();
909  
704        public E next() {
910              try {
911 <                int i = cursor;
912 <                E next = get(i);
913 <                lastRet = i;
914 <                cursor = i + 1;
710 <                return next;
911 >                ArrayList.this.remove(lastRet);
912 >                cursor = lastRet;
913 >                lastRet = -1;
914 >                expectedModCount = modCount;
915              } catch (IndexOutOfBoundsException ex) {
916 <                throw new NoSuchElementException();
917 <            } finally {
918 <                if (expectedModCount != modCount)
916 >                throw new ConcurrentModificationException();
917 >            }
918 >        }
919 >
920 >        @Override
921 >        public void forEachRemaining(Consumer<? super E> action) {
922 >            Objects.requireNonNull(action);
923 >            final int size = ArrayList.this.size;
924 >            int i = cursor;
925 >            if (i < size) {
926 >                final Object[] es = elementData;
927 >                if (i >= es.length)
928                      throw new ConcurrentModificationException();
929 +                for (; i < size && modCount == expectedModCount; i++)
930 +                    action.accept(elementAt(es, i));
931 +                // update once at end to reduce heap write traffic
932 +                cursor = i;
933 +                lastRet = i - 1;
934 +                checkForComodification();
935              }
936 <        }
936 >        }
937 >
938 >        final void checkForComodification() {
939 >            if (modCount != expectedModCount)
940 >                throw new ConcurrentModificationException();
941 >        }
942 >    }
943  
944 +    /**
945 +     * An optimized version of AbstractList.ListItr
946 +     */
947 +    private class ListItr extends Itr implements ListIterator<E> {
948 +        ListItr(int index) {
949 +            super();
950 +            cursor = index;
951 +        }
952 +
953 +        public boolean hasPrevious() {
954 +            return cursor != 0;
955 +        }
956 +
957 +        public int nextIndex() {
958 +            return cursor;
959 +        }
960 +
961 +        public int previousIndex() {
962 +            return cursor - 1;
963 +        }
964 +
965 +        @SuppressWarnings("unchecked")
966          public E previous() {
967 +            checkForComodification();
968 +            int i = cursor - 1;
969 +            if (i < 0)
970 +                throw new NoSuchElementException();
971 +            Object[] elementData = ArrayList.this.elementData;
972 +            if (i >= elementData.length)
973 +                throw new ConcurrentModificationException();
974 +            cursor = i;
975 +            return (E) elementData[lastRet = i];
976 +        }
977 +
978 +        public void set(E e) {
979 +            if (lastRet < 0)
980 +                throw new IllegalStateException();
981 +            checkForComodification();
982 +
983              try {
984 <                int i = cursor - 1;
722 <                E prev = get(i);
723 <                lastRet = i;
724 <                cursor = i;
725 <                return prev;
984 >                ArrayList.this.set(lastRet, e);
985              } catch (IndexOutOfBoundsException ex) {
986 <                throw new NoSuchElementException();
728 <            } finally {
729 <                if (expectedModCount != modCount)
730 <                    throw new ConcurrentModificationException();
986 >                throw new ConcurrentModificationException();
987              }
988          }
989  
990 <        public void remove() {
991 <            if (lastRet < 0)
992 <                throw new IllegalStateException();
993 <            if (expectedModCount != modCount)
994 <                throw new ConcurrentModificationException();
995 <            ArrayList.this.remove(lastRet);
996 <            if (lastRet < cursor)
997 <                cursor--;
998 <            lastRet = -1;
999 <            expectedModCount = modCount;
744 <        }
745 <
746 <        public void set(E e) {
747 <            if (lastRet < 0)
748 <                throw new IllegalStateException();
749 <            if (expectedModCount != modCount)
990 >        public void add(E e) {
991 >            checkForComodification();
992 >
993 >            try {
994 >                int i = cursor;
995 >                ArrayList.this.add(i, e);
996 >                cursor = i + 1;
997 >                lastRet = -1;
998 >                expectedModCount = modCount;
999 >            } catch (IndexOutOfBoundsException ex) {
1000                  throw new ConcurrentModificationException();
1001 <            ArrayList.this.set(lastRet, e);
1002 <            expectedModCount = modCount;
1003 <        }
1001 >            }
1002 >        }
1003 >    }
1004 >
1005 >    /**
1006 >     * Returns a view of the portion of this list between the specified
1007 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1008 >     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1009 >     * empty.)  The returned list is backed by this list, so non-structural
1010 >     * changes in the returned list are reflected in this list, and vice-versa.
1011 >     * The returned list supports all of the optional list operations.
1012 >     *
1013 >     * <p>This method eliminates the need for explicit range operations (of
1014 >     * the sort that commonly exist for arrays).  Any operation that expects
1015 >     * a list can be used as a range operation by passing a subList view
1016 >     * instead of a whole list.  For example, the following idiom
1017 >     * removes a range of elements from a list:
1018 >     * <pre>
1019 >     *      list.subList(from, to).clear();
1020 >     * </pre>
1021 >     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1022 >     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1023 >     * {@link Collections} class can be applied to a subList.
1024 >     *
1025 >     * <p>The semantics of the list returned by this method become undefined if
1026 >     * the backing list (i.e., this list) is <i>structurally modified</i> in
1027 >     * any way other than via the returned list.  (Structural modifications are
1028 >     * those that change the size of this list, or otherwise perturb it in such
1029 >     * a fashion that iterations in progress may yield incorrect results.)
1030 >     *
1031 >     * @throws IndexOutOfBoundsException {@inheritDoc}
1032 >     * @throws IllegalArgumentException {@inheritDoc}
1033 >     */
1034 >    public List<E> subList(int fromIndex, int toIndex) {
1035 >        subListRangeCheck(fromIndex, toIndex, size);
1036 >        return new SubList<>(this, fromIndex, toIndex);
1037 >    }
1038 >
1039 >    private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1040 >        private final ArrayList<E> root;
1041 >        private final SubList<E> parent;
1042 >        private final int offset;
1043 >        private int size;
1044 >
1045 >        /**
1046 >         * Constructs a sublist of an arbitrary ArrayList.
1047 >         */
1048 >        public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1049 >            this.root = root;
1050 >            this.parent = null;
1051 >            this.offset = fromIndex;
1052 >            this.size = toIndex - fromIndex;
1053 >            this.modCount = root.modCount;
1054 >        }
1055 >
1056 >        /**
1057 >         * Constructs a sublist of another SubList.
1058 >         */
1059 >        private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1060 >            this.root = parent.root;
1061 >            this.parent = parent;
1062 >            this.offset = parent.offset + fromIndex;
1063 >            this.size = toIndex - fromIndex;
1064 >            this.modCount = root.modCount;
1065 >        }
1066 >
1067 >        public E set(int index, E element) {
1068 >            Objects.checkIndex(index, size);
1069 >            checkForComodification();
1070 >            E oldValue = root.elementData(offset + index);
1071 >            root.elementData[offset + index] = element;
1072 >            return oldValue;
1073 >        }
1074 >
1075 >        public E get(int index) {
1076 >            Objects.checkIndex(index, size);
1077 >            checkForComodification();
1078 >            return root.elementData(offset + index);
1079 >        }
1080 >
1081 >        public int size() {
1082 >            checkForComodification();
1083 >            return size;
1084 >        }
1085 >
1086 >        public void add(int index, E element) {
1087 >            rangeCheckForAdd(index);
1088 >            checkForComodification();
1089 >            root.add(offset + index, element);
1090 >            updateSizeAndModCount(1);
1091 >        }
1092 >
1093 >        public E remove(int index) {
1094 >            Objects.checkIndex(index, size);
1095 >            checkForComodification();
1096 >            E result = root.remove(offset + index);
1097 >            updateSizeAndModCount(-1);
1098 >            return result;
1099 >        }
1100 >
1101 >        protected void removeRange(int fromIndex, int toIndex) {
1102 >            checkForComodification();
1103 >            root.removeRange(offset + fromIndex, offset + toIndex);
1104 >            updateSizeAndModCount(fromIndex - toIndex);
1105 >        }
1106 >
1107 >        public boolean addAll(Collection<? extends E> c) {
1108 >            return addAll(this.size, c);
1109 >        }
1110 >
1111 >        public boolean addAll(int index, Collection<? extends E> c) {
1112 >            rangeCheckForAdd(index);
1113 >            int cSize = c.size();
1114 >            if (cSize==0)
1115 >                return false;
1116 >            checkForComodification();
1117 >            root.addAll(offset + index, c);
1118 >            updateSizeAndModCount(cSize);
1119 >            return true;
1120 >        }
1121 >
1122 >        public boolean removeAll(Collection<?> c) {
1123 >            return batchRemove(c, false);
1124 >        }
1125 >
1126 >        public boolean retainAll(Collection<?> c) {
1127 >            return batchRemove(c, true);
1128 >        }
1129 >
1130 >        private boolean batchRemove(Collection<?> c, boolean complement) {
1131 >            checkForComodification();
1132 >            int oldSize = root.size;
1133 >            boolean modified =
1134 >                root.batchRemove(c, complement, offset, offset + size);
1135 >            if (modified)
1136 >                updateSizeAndModCount(root.size - oldSize);
1137 >            return modified;
1138 >        }
1139 >
1140 >        public boolean removeIf(Predicate<? super E> filter) {
1141 >            checkForComodification();
1142 >            int oldSize = root.size;
1143 >            boolean modified = root.removeIf(filter, offset, offset + size);
1144 >            if (modified)
1145 >                updateSizeAndModCount(root.size - oldSize);
1146 >            return modified;
1147 >        }
1148  
1149 <        public void add(E e) {
1150 <            if (expectedModCount != modCount)
1149 >        public Iterator<E> iterator() {
1150 >            return listIterator();
1151 >        }
1152 >
1153 >        public ListIterator<E> listIterator(int index) {
1154 >            checkForComodification();
1155 >            rangeCheckForAdd(index);
1156 >
1157 >            return new ListIterator<E>() {
1158 >                int cursor = index;
1159 >                int lastRet = -1;
1160 >                int expectedModCount = root.modCount;
1161 >
1162 >                public boolean hasNext() {
1163 >                    return cursor != SubList.this.size;
1164 >                }
1165 >
1166 >                @SuppressWarnings("unchecked")
1167 >                public E next() {
1168 >                    checkForComodification();
1169 >                    int i = cursor;
1170 >                    if (i >= SubList.this.size)
1171 >                        throw new NoSuchElementException();
1172 >                    Object[] elementData = root.elementData;
1173 >                    if (offset + i >= elementData.length)
1174 >                        throw new ConcurrentModificationException();
1175 >                    cursor = i + 1;
1176 >                    return (E) elementData[offset + (lastRet = i)];
1177 >                }
1178 >
1179 >                public boolean hasPrevious() {
1180 >                    return cursor != 0;
1181 >                }
1182 >
1183 >                @SuppressWarnings("unchecked")
1184 >                public E previous() {
1185 >                    checkForComodification();
1186 >                    int i = cursor - 1;
1187 >                    if (i < 0)
1188 >                        throw new NoSuchElementException();
1189 >                    Object[] elementData = root.elementData;
1190 >                    if (offset + i >= elementData.length)
1191 >                        throw new ConcurrentModificationException();
1192 >                    cursor = i;
1193 >                    return (E) elementData[offset + (lastRet = i)];
1194 >                }
1195 >
1196 >                public void forEachRemaining(Consumer<? super E> action) {
1197 >                    Objects.requireNonNull(action);
1198 >                    final int size = SubList.this.size;
1199 >                    int i = cursor;
1200 >                    if (i < size) {
1201 >                        final Object[] es = root.elementData;
1202 >                        if (offset + i >= es.length)
1203 >                            throw new ConcurrentModificationException();
1204 >                        for (; i < size && modCount == expectedModCount; i++)
1205 >                            action.accept(elementAt(es, offset + i));
1206 >                        // update once at end to reduce heap write traffic
1207 >                        cursor = i;
1208 >                        lastRet = i - 1;
1209 >                        checkForComodification();
1210 >                    }
1211 >                }
1212 >
1213 >                public int nextIndex() {
1214 >                    return cursor;
1215 >                }
1216 >
1217 >                public int previousIndex() {
1218 >                    return cursor - 1;
1219 >                }
1220 >
1221 >                public void remove() {
1222 >                    if (lastRet < 0)
1223 >                        throw new IllegalStateException();
1224 >                    checkForComodification();
1225 >
1226 >                    try {
1227 >                        SubList.this.remove(lastRet);
1228 >                        cursor = lastRet;
1229 >                        lastRet = -1;
1230 >                        expectedModCount = root.modCount;
1231 >                    } catch (IndexOutOfBoundsException ex) {
1232 >                        throw new ConcurrentModificationException();
1233 >                    }
1234 >                }
1235 >
1236 >                public void set(E e) {
1237 >                    if (lastRet < 0)
1238 >                        throw new IllegalStateException();
1239 >                    checkForComodification();
1240 >
1241 >                    try {
1242 >                        root.set(offset + lastRet, e);
1243 >                    } catch (IndexOutOfBoundsException ex) {
1244 >                        throw new ConcurrentModificationException();
1245 >                    }
1246 >                }
1247 >
1248 >                public void add(E e) {
1249 >                    checkForComodification();
1250 >
1251 >                    try {
1252 >                        int i = cursor;
1253 >                        SubList.this.add(i, e);
1254 >                        cursor = i + 1;
1255 >                        lastRet = -1;
1256 >                        expectedModCount = root.modCount;
1257 >                    } catch (IndexOutOfBoundsException ex) {
1258 >                        throw new ConcurrentModificationException();
1259 >                    }
1260 >                }
1261 >
1262 >                final void checkForComodification() {
1263 >                    if (root.modCount != expectedModCount)
1264 >                        throw new ConcurrentModificationException();
1265 >                }
1266 >            };
1267 >        }
1268 >
1269 >        public List<E> subList(int fromIndex, int toIndex) {
1270 >            subListRangeCheck(fromIndex, toIndex, size);
1271 >            return new SubList<>(this, fromIndex, toIndex);
1272 >        }
1273 >
1274 >        private void rangeCheckForAdd(int index) {
1275 >            if (index < 0 || index > this.size)
1276 >                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1277 >        }
1278 >
1279 >        private String outOfBoundsMsg(int index) {
1280 >            return "Index: "+index+", Size: "+this.size;
1281 >        }
1282 >
1283 >        private void checkForComodification() {
1284 >            if (root.modCount != modCount)
1285                  throw new ConcurrentModificationException();
1286 <            try {
1287 <                ArrayList.this.add(cursor++, e);
1288 <                lastRet = -1;
1286 >        }
1287 >
1288 >        private void updateSizeAndModCount(int sizeChange) {
1289 >            SubList<E> slist = this;
1290 >            do {
1291 >                slist.size += sizeChange;
1292 >                slist.modCount = root.modCount;
1293 >                slist = slist.parent;
1294 >            } while (slist != null);
1295 >        }
1296 >
1297 >        public Spliterator<E> spliterator() {
1298 >            checkForComodification();
1299 >
1300 >            // ArrayListSpliterator not used here due to late-binding
1301 >            return new Spliterator<E>() {
1302 >                private int index = offset; // current index, modified on advance/split
1303 >                private int fence = -1; // -1 until used; then one past last index
1304 >                private int expectedModCount; // initialized when fence set
1305 >
1306 >                private int getFence() { // initialize fence to size on first use
1307 >                    int hi; // (a specialized variant appears in method forEach)
1308 >                    if ((hi = fence) < 0) {
1309 >                        expectedModCount = modCount;
1310 >                        hi = fence = offset + size;
1311 >                    }
1312 >                    return hi;
1313 >                }
1314 >
1315 >                public ArrayList<E>.ArrayListSpliterator trySplit() {
1316 >                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1317 >                    // ArrayListSpliterator can be used here as the source is already bound
1318 >                    return (lo >= mid) ? null : // divide range in half unless too small
1319 >                        root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1320 >                }
1321 >
1322 >                public boolean tryAdvance(Consumer<? super E> action) {
1323 >                    Objects.requireNonNull(action);
1324 >                    int hi = getFence(), i = index;
1325 >                    if (i < hi) {
1326 >                        index = i + 1;
1327 >                        @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1328 >                        action.accept(e);
1329 >                        if (root.modCount != expectedModCount)
1330 >                            throw new ConcurrentModificationException();
1331 >                        return true;
1332 >                    }
1333 >                    return false;
1334 >                }
1335 >
1336 >                public void forEachRemaining(Consumer<? super E> action) {
1337 >                    Objects.requireNonNull(action);
1338 >                    int i, hi, mc; // hoist accesses and checks from loop
1339 >                    ArrayList<E> lst = root;
1340 >                    Object[] a;
1341 >                    if ((a = lst.elementData) != null) {
1342 >                        if ((hi = fence) < 0) {
1343 >                            mc = modCount;
1344 >                            hi = offset + size;
1345 >                        }
1346 >                        else
1347 >                            mc = expectedModCount;
1348 >                        if ((i = index) >= 0 && (index = hi) <= a.length) {
1349 >                            for (; i < hi; ++i) {
1350 >                                @SuppressWarnings("unchecked") E e = (E) a[i];
1351 >                                action.accept(e);
1352 >                            }
1353 >                            if (lst.modCount == mc)
1354 >                                return;
1355 >                        }
1356 >                    }
1357 >                    throw new ConcurrentModificationException();
1358 >                }
1359 >
1360 >                public long estimateSize() {
1361 >                    return getFence() - index;
1362 >                }
1363 >
1364 >                public int characteristics() {
1365 >                    return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1366 >                }
1367 >            };
1368 >        }
1369 >    }
1370 >
1371 >    @Override
1372 >    public void forEach(Consumer<? super E> action) {
1373 >        Objects.requireNonNull(action);
1374 >        final int expectedModCount = modCount;
1375 >        final Object[] es = elementData;
1376 >        final int size = this.size;
1377 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1378 >            action.accept(elementAt(es, i));
1379 >        if (modCount != expectedModCount)
1380 >            throw new ConcurrentModificationException();
1381 >    }
1382 >
1383 >    /**
1384 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1385 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1386 >     * list.
1387 >     *
1388 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1389 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1390 >     * Overriding implementations should document the reporting of additional
1391 >     * characteristic values.
1392 >     *
1393 >     * @return a {@code Spliterator} over the elements in this list
1394 >     * @since 1.8
1395 >     */
1396 >    @Override
1397 >    public Spliterator<E> spliterator() {
1398 >        return new ArrayListSpliterator(0, -1, 0);
1399 >    }
1400 >
1401 >    /** Index-based split-by-two, lazily initialized Spliterator */
1402 >    final class ArrayListSpliterator implements Spliterator<E> {
1403 >
1404 >        /*
1405 >         * If ArrayLists were immutable, or structurally immutable (no
1406 >         * adds, removes, etc), we could implement their spliterators
1407 >         * with Arrays.spliterator. Instead we detect as much
1408 >         * interference during traversal as practical without
1409 >         * sacrificing much performance. We rely primarily on
1410 >         * modCounts. These are not guaranteed to detect concurrency
1411 >         * violations, and are sometimes overly conservative about
1412 >         * within-thread interference, but detect enough problems to
1413 >         * be worthwhile in practice. To carry this out, we (1) lazily
1414 >         * initialize fence and expectedModCount until the latest
1415 >         * point that we need to commit to the state we are checking
1416 >         * against; thus improving precision.  (This doesn't apply to
1417 >         * SubLists, that create spliterators with current non-lazy
1418 >         * values).  (2) We perform only a single
1419 >         * ConcurrentModificationException check at the end of forEach
1420 >         * (the most performance-sensitive method). When using forEach
1421 >         * (as opposed to iterators), we can normally only detect
1422 >         * interference after actions, not before. Further
1423 >         * CME-triggering checks apply to all other possible
1424 >         * violations of assumptions for example null or too-small
1425 >         * elementData array given its size(), that could only have
1426 >         * occurred due to interference.  This allows the inner loop
1427 >         * of forEach to run without any further checks, and
1428 >         * simplifies lambda-resolution. While this does entail a
1429 >         * number of checks, note that in the common case of
1430 >         * list.stream().forEach(a), no checks or other computation
1431 >         * occur anywhere other than inside forEach itself.  The other
1432 >         * less-often-used methods cannot take advantage of most of
1433 >         * these streamlinings.
1434 >         */
1435 >
1436 >        private int index; // current index, modified on advance/split
1437 >        private int fence; // -1 until used; then one past last index
1438 >        private int expectedModCount; // initialized when fence set
1439 >
1440 >        /** Create new spliterator covering the given range */
1441 >        ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1442 >            this.index = origin;
1443 >            this.fence = fence;
1444 >            this.expectedModCount = expectedModCount;
1445 >        }
1446 >
1447 >        private int getFence() { // initialize fence to size on first use
1448 >            int hi; // (a specialized variant appears in method forEach)
1449 >            if ((hi = fence) < 0) {
1450                  expectedModCount = modCount;
1451 <            } catch (IndexOutOfBoundsException ex) {
1452 <                throw new ConcurrentModificationException();
1453 <            }
1454 <        }
1451 >                hi = fence = size;
1452 >            }
1453 >            return hi;
1454 >        }
1455 >
1456 >        public ArrayListSpliterator trySplit() {
1457 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1458 >            return (lo >= mid) ? null : // divide range in half unless too small
1459 >                new ArrayListSpliterator(lo, index = mid, expectedModCount);
1460 >        }
1461 >
1462 >        public boolean tryAdvance(Consumer<? super E> action) {
1463 >            if (action == null)
1464 >                throw new NullPointerException();
1465 >            int hi = getFence(), i = index;
1466 >            if (i < hi) {
1467 >                index = i + 1;
1468 >                @SuppressWarnings("unchecked") E e = (E)elementData[i];
1469 >                action.accept(e);
1470 >                if (modCount != expectedModCount)
1471 >                    throw new ConcurrentModificationException();
1472 >                return true;
1473 >            }
1474 >            return false;
1475 >        }
1476 >
1477 >        public void forEachRemaining(Consumer<? super E> action) {
1478 >            int i, hi, mc; // hoist accesses and checks from loop
1479 >            Object[] a;
1480 >            if (action == null)
1481 >                throw new NullPointerException();
1482 >            if ((a = elementData) != null) {
1483 >                if ((hi = fence) < 0) {
1484 >                    mc = modCount;
1485 >                    hi = size;
1486 >                }
1487 >                else
1488 >                    mc = expectedModCount;
1489 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
1490 >                    for (; i < hi; ++i) {
1491 >                        @SuppressWarnings("unchecked") E e = (E) a[i];
1492 >                        action.accept(e);
1493 >                    }
1494 >                    if (modCount == mc)
1495 >                        return;
1496 >                }
1497 >            }
1498 >            throw new ConcurrentModificationException();
1499 >        }
1500 >
1501 >        public long estimateSize() {
1502 >            return getFence() - index;
1503 >        }
1504 >
1505 >        public int characteristics() {
1506 >            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1507 >        }
1508 >    }
1509 >
1510 >    // A tiny bit set implementation
1511 >
1512 >    private static long[] nBits(int n) {
1513 >        return new long[((n - 1) >> 6) + 1];
1514 >    }
1515 >    private static void setBit(long[] bits, int i) {
1516 >        bits[i >> 6] |= 1L << i;
1517 >    }
1518 >    private static boolean isClear(long[] bits, int i) {
1519 >        return (bits[i >> 6] & (1L << i)) == 0;
1520 >    }
1521 >
1522 >    @Override
1523 >    public boolean removeIf(Predicate<? super E> filter) {
1524 >        return removeIf(filter, 0, size);
1525 >    }
1526 >
1527 >    /**
1528 >     * Removes all elements satisfying the given predicate, from index
1529 >     * i (inclusive) to index end (exclusive).
1530 >     */
1531 >    boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1532 >        Objects.requireNonNull(filter);
1533 >        int expectedModCount = modCount;
1534 >        final Object[] es = elementData;
1535 >        // Optimize for initial run of survivors
1536 >        for (; i < end && !filter.test(elementAt(es, i)); i++)
1537 >            ;
1538 >        // Tolerate predicates that reentrantly access the collection for
1539 >        // read (but writers still get CME), so traverse once to find
1540 >        // elements to delete, a second pass to physically expunge.
1541 >        if (i < end) {
1542 >            final int beg = i;
1543 >            final long[] deathRow = nBits(end - beg);
1544 >            deathRow[0] = 1L;   // set bit 0
1545 >            for (i = beg + 1; i < end; i++)
1546 >                if (filter.test(elementAt(es, i)))
1547 >                    setBit(deathRow, i - beg);
1548 >            if (modCount != expectedModCount)
1549 >                throw new ConcurrentModificationException();
1550 >            expectedModCount++;
1551 >            modCount++;
1552 >            int w = beg;
1553 >            for (i = beg; i < end; i++)
1554 >                if (isClear(deathRow, i - beg))
1555 >                    es[w++] = es[i];
1556 >            final int oldSize = size;
1557 >            System.arraycopy(es, end, es, w, oldSize - end);
1558 >            Arrays.fill(es, size -= (end - w), oldSize, null);
1559 >            // checkInvariants();
1560 >            return true;
1561 >        } else {
1562 >            if (modCount != expectedModCount)
1563 >                throw new ConcurrentModificationException();
1564 >            // checkInvariants();
1565 >            return false;
1566 >        }
1567 >    }
1568 >
1569 >    @Override
1570 >    public void replaceAll(UnaryOperator<E> operator) {
1571 >        Objects.requireNonNull(operator);
1572 >        final int expectedModCount = modCount;
1573 >        final Object[] es = elementData;
1574 >        final int size = this.size;
1575 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1576 >            es[i] = operator.apply(elementAt(es, i));
1577 >        if (modCount != expectedModCount)
1578 >            throw new ConcurrentModificationException();
1579 >        modCount++;
1580 >        // checkInvariants();
1581 >    }
1582 >
1583 >    @Override
1584 >    @SuppressWarnings("unchecked")
1585 >    public void sort(Comparator<? super E> c) {
1586 >        final int expectedModCount = modCount;
1587 >        Arrays.sort((E[]) elementData, 0, size, c);
1588 >        if (modCount != expectedModCount)
1589 >            throw new ConcurrentModificationException();
1590 >        modCount++;
1591 >        // checkInvariants();
1592 >    }
1593 >
1594 >    void checkInvariants() {
1595 >        // assert size >= 0;
1596 >        // assert size == elementData.length || elementData[size] == null;
1597      }
1598   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines