ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayList.java (file contents):
Revision 1.30 by jsr166, Sun Sep 5 21:32:19 2010 UTC vs.
Revision 1.47 by jsr166, Mon Dec 5 00:08:01 2016 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (c) 1997, 2008, Oracle and/or its affiliates. All rights reserved.
2 > * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3   * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5   * This code is free software; you can redistribute it and/or modify it
6   * under the terms of the GNU General Public License version 2 only, as
7 < * published by the Free Software Foundation.  Sun designates this
7 > * published by the Free Software Foundation.  Oracle designates this
8   * particular file as subject to the "Classpath" exception as provided
9 < * by Sun in the LICENSE file that accompanied this code.
9 > * by Oracle in the LICENSE file that accompanied this code.
10   *
11   * This code is distributed in the hope that it will be useful, but WITHOUT
12   * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# Line 25 | Line 25
25  
26   package java.util;
27  
28 + import java.util.function.Consumer;
29 + import java.util.function.Predicate;
30 + import java.util.function.UnaryOperator;
31 +
32   /**
33 < * Resizable-array implementation of the <tt>List</tt> interface.  Implements
33 > * Resizable-array implementation of the {@code List} interface.  Implements
34   * all optional list operations, and permits all elements, including
35 < * <tt>null</tt>.  In addition to implementing the <tt>List</tt> interface,
35 > * {@code null}.  In addition to implementing the {@code List} interface,
36   * this class provides methods to manipulate the size of the array that is
37   * used internally to store the list.  (This class is roughly equivalent to
38 < * <tt>Vector</tt>, except that it is unsynchronized.)
38 > * {@code Vector}, except that it is unsynchronized.)
39   *
40 < * <p>The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
41 < * <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
42 < * time.  The <tt>add</tt> operation runs in <i>amortized constant time</i>,
40 > * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 > * {@code iterator}, and {@code listIterator} operations run in constant
42 > * time.  The {@code add} operation runs in <i>amortized constant time</i>,
43   * that is, adding n elements requires O(n) time.  All of the other operations
44   * run in linear time (roughly speaking).  The constant factor is low compared
45 < * to that for the <tt>LinkedList</tt> implementation.
45 > * to that for the {@code LinkedList} implementation.
46   *
47 < * <p>Each <tt>ArrayList</tt> instance has a <i>capacity</i>.  The capacity is
47 > * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
48   * the size of the array used to store the elements in the list.  It is always
49   * at least as large as the list size.  As elements are added to an ArrayList,
50   * its capacity grows automatically.  The details of the growth policy are not
51   * specified beyond the fact that adding an element has constant amortized
52   * time cost.
53   *
54 < * <p>An application can increase the capacity of an <tt>ArrayList</tt> instance
55 < * before adding a large number of elements using the <tt>ensureCapacity</tt>
54 > * <p>An application can increase the capacity of an {@code ArrayList} instance
55 > * before adding a large number of elements using the {@code ensureCapacity}
56   * operation.  This may reduce the amount of incremental reallocation.
57   *
58   * <p><strong>Note that this implementation is not synchronized.</strong>
59 < * If multiple threads access an <tt>ArrayList</tt> instance concurrently,
59 > * If multiple threads access an {@code ArrayList} instance concurrently,
60   * and at least one of the threads modifies the list structurally, it
61   * <i>must</i> be synchronized externally.  (A structural modification is
62   * any operation that adds or deletes one or more elements, or explicitly
# Line 66 | Line 70 | package java.util;
70   * unsynchronized access to the list:<pre>
71   *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
72   *
73 < * <p><a name="fail-fast"/>
73 > * <p id="fail-fast">
74   * The iterators returned by this class's {@link #iterator() iterator} and
75   * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76   * if the list is structurally modified at any time after the iterator is
# Line 90 | Line 94 | package java.util;
94   * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95   * Java Collections Framework</a>.
96   *
97 + * @param <E> the type of elements in this list
98 + *
99   * @author  Josh Bloch
100   * @author  Neal Gafter
101   * @see     Collection
# Line 98 | Line 104 | package java.util;
104   * @see     Vector
105   * @since   1.2
106   */
101
107   public class ArrayList<E> extends AbstractList<E>
108          implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109   {
110      private static final long serialVersionUID = 8683452581122892189L;
111  
112      /**
113 +     * Default initial capacity.
114 +     */
115 +    private static final int DEFAULT_CAPACITY = 10;
116 +
117 +    /**
118 +     * Shared empty array instance used for empty instances.
119 +     */
120 +    private static final Object[] EMPTY_ELEMENTDATA = {};
121 +
122 +    /**
123 +     * Shared empty array instance used for default sized empty instances. We
124 +     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 +     * first element is added.
126 +     */
127 +    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128 +
129 +    /**
130       * The array buffer into which the elements of the ArrayList are stored.
131 <     * The capacity of the ArrayList is the length of this array buffer.
131 >     * The capacity of the ArrayList is the length of this array buffer. Any
132 >     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 >     * will be expanded to DEFAULT_CAPACITY when the first element is added.
134       */
135 <    private transient Object[] elementData;
135 >    transient Object[] elementData; // non-private to simplify nested class access
136  
137      /**
138       * The size of the ArrayList (the number of elements it contains).
# Line 120 | Line 144 | public class ArrayList<E> extends Abstra
144      /**
145       * Constructs an empty list with the specified initial capacity.
146       *
147 <     * @param   initialCapacity   the initial capacity of the list
148 <     * @exception IllegalArgumentException if the specified initial capacity
149 <     *            is negative
147 >     * @param  initialCapacity  the initial capacity of the list
148 >     * @throws IllegalArgumentException if the specified initial capacity
149 >     *         is negative
150       */
151      public ArrayList(int initialCapacity) {
152 <        super();
153 <        if (initialCapacity < 0)
152 >        if (initialCapacity > 0) {
153 >            this.elementData = new Object[initialCapacity];
154 >        } else if (initialCapacity == 0) {
155 >            this.elementData = EMPTY_ELEMENTDATA;
156 >        } else {
157              throw new IllegalArgumentException("Illegal Capacity: "+
158                                                 initialCapacity);
159 <        this.elementData = new Object[initialCapacity];
159 >        }
160      }
161  
162      /**
163       * Constructs an empty list with an initial capacity of ten.
164       */
165      public ArrayList() {
166 <        this(10);
166 >        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167      }
168  
169      /**
# Line 149 | Line 176 | public class ArrayList<E> extends Abstra
176       */
177      public ArrayList(Collection<? extends E> c) {
178          elementData = c.toArray();
179 <        size = elementData.length;
180 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
181 <        if (elementData.getClass() != Object[].class)
182 <            elementData = Arrays.copyOf(elementData, size, Object[].class);
179 >        if ((size = elementData.length) != 0) {
180 >            // defend against c.toArray (incorrectly) not returning Object[]
181 >            // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 >            if (elementData.getClass() != Object[].class)
183 >                elementData = Arrays.copyOf(elementData, size, Object[].class);
184 >        } else {
185 >            // replace with empty array.
186 >            this.elementData = EMPTY_ELEMENTDATA;
187 >        }
188      }
189  
190      /**
191 <     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
191 >     * Trims the capacity of this {@code ArrayList} instance to be the
192       * list's current size.  An application can use this operation to minimize
193 <     * the storage of an <tt>ArrayList</tt> instance.
193 >     * the storage of an {@code ArrayList} instance.
194       */
195      public void trimToSize() {
196          modCount++;
197 <        int oldCapacity = elementData.length;
198 <        if (size < oldCapacity) {
199 <            elementData = Arrays.copyOf(elementData, size);
197 >        if (size < elementData.length) {
198 >            elementData = (size == 0)
199 >              ? EMPTY_ELEMENTDATA
200 >              : Arrays.copyOf(elementData, size);
201          }
202      }
203  
204      /**
205 <     * Increases the capacity of this <tt>ArrayList</tt> instance, if
205 >     * Increases the capacity of this {@code ArrayList} instance, if
206       * necessary, to ensure that it can hold at least the number of elements
207       * specified by the minimum capacity argument.
208       *
209 <     * @param   minCapacity   the desired minimum capacity
209 >     * @param minCapacity the desired minimum capacity
210       */
211      public void ensureCapacity(int minCapacity) {
212 <        modCount++;
213 <        int oldCapacity = elementData.length;
214 <        if (minCapacity > oldCapacity) {
215 <            int newCapacity = (oldCapacity * 3)/2 + 1;
216 <            if (newCapacity < minCapacity)
184 <                newCapacity = minCapacity;
185 <            // minCapacity is usually close to size, so this is a win:
186 <            elementData = Arrays.copyOf(elementData, newCapacity);
212 >        if (minCapacity > elementData.length
213 >            && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 >                 && minCapacity <= DEFAULT_CAPACITY)) {
215 >            modCount++;
216 >            grow(minCapacity);
217          }
218      }
219  
220      /**
221 +     * The maximum size of array to allocate (unless necessary).
222 +     * Some VMs reserve some header words in an array.
223 +     * Attempts to allocate larger arrays may result in
224 +     * OutOfMemoryError: Requested array size exceeds VM limit
225 +     */
226 +    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227 +
228 +    /**
229 +     * Increases the capacity to ensure that it can hold at least the
230 +     * number of elements specified by the minimum capacity argument.
231 +     *
232 +     * @param minCapacity the desired minimum capacity
233 +     * @throws OutOfMemoryError if minCapacity is less than zero
234 +     */
235 +    private Object[] grow(int minCapacity) {
236 +        return elementData = Arrays.copyOf(elementData,
237 +                                           newCapacity(minCapacity));
238 +    }
239 +
240 +    private Object[] grow() {
241 +        return grow(size + 1);
242 +    }
243 +
244 +    /**
245 +     * Returns a capacity at least as large as the given minimum capacity.
246 +     * Returns the current capacity increased by 50% if that suffices.
247 +     * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 +     * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249 +     *
250 +     * @param minCapacity the desired minimum capacity
251 +     * @throws OutOfMemoryError if minCapacity is less than zero
252 +     */
253 +    private int newCapacity(int minCapacity) {
254 +        // overflow-conscious code
255 +        int oldCapacity = elementData.length;
256 +        int newCapacity = oldCapacity + (oldCapacity >> 1);
257 +        if (newCapacity - minCapacity <= 0) {
258 +            if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 +                return Math.max(DEFAULT_CAPACITY, minCapacity);
260 +            if (minCapacity < 0) // overflow
261 +                throw new OutOfMemoryError();
262 +            return minCapacity;
263 +        }
264 +        return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 +            ? newCapacity
266 +            : hugeCapacity(minCapacity);
267 +    }
268 +
269 +    private static int hugeCapacity(int minCapacity) {
270 +        if (minCapacity < 0) // overflow
271 +            throw new OutOfMemoryError();
272 +        return (minCapacity > MAX_ARRAY_SIZE)
273 +            ? Integer.MAX_VALUE
274 +            : MAX_ARRAY_SIZE;
275 +    }
276 +
277 +    /**
278       * Returns the number of elements in this list.
279       *
280       * @return the number of elements in this list
# Line 197 | Line 284 | public class ArrayList<E> extends Abstra
284      }
285  
286      /**
287 <     * Returns <tt>true</tt> if this list contains no elements.
287 >     * Returns {@code true} if this list contains no elements.
288       *
289 <     * @return <tt>true</tt> if this list contains no elements
289 >     * @return {@code true} if this list contains no elements
290       */
291      public boolean isEmpty() {
292          return size == 0;
293      }
294  
295      /**
296 <     * Returns <tt>true</tt> if this list contains the specified element.
297 <     * More formally, returns <tt>true</tt> if and only if this list contains
298 <     * at least one element <tt>e</tt> such that
299 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
296 >     * Returns {@code true} if this list contains the specified element.
297 >     * More formally, returns {@code true} if and only if this list contains
298 >     * at least one element {@code e} such that
299 >     * {@code Objects.equals(o, e)}.
300       *
301       * @param o element whose presence in this list is to be tested
302 <     * @return <tt>true</tt> if this list contains the specified element
302 >     * @return {@code true} if this list contains the specified element
303       */
304      public boolean contains(Object o) {
305          return indexOf(o) >= 0;
# Line 221 | Line 308 | public class ArrayList<E> extends Abstra
308      /**
309       * Returns the index of the first occurrence of the specified element
310       * in this list, or -1 if this list does not contain the element.
311 <     * More formally, returns the lowest index <tt>i</tt> such that
312 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
311 >     * More formally, returns the lowest index {@code i} such that
312 >     * {@code Objects.equals(o, get(i))},
313       * or -1 if there is no such index.
314       */
315      public int indexOf(Object o) {
# Line 241 | Line 328 | public class ArrayList<E> extends Abstra
328      /**
329       * Returns the index of the last occurrence of the specified element
330       * in this list, or -1 if this list does not contain the element.
331 <     * More formally, returns the highest index <tt>i</tt> such that
332 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
331 >     * More formally, returns the highest index {@code i} such that
332 >     * {@code Objects.equals(o, get(i))},
333       * or -1 if there is no such index.
334       */
335      public int lastIndexOf(Object o) {
# Line 259 | Line 346 | public class ArrayList<E> extends Abstra
346      }
347  
348      /**
349 <     * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
349 >     * Returns a shallow copy of this {@code ArrayList} instance.  (The
350       * elements themselves are not copied.)
351       *
352 <     * @return a clone of this <tt>ArrayList</tt> instance
352 >     * @return a clone of this {@code ArrayList} instance
353       */
354      public Object clone() {
355          try {
356 <            @SuppressWarnings("unchecked")
270 <                ArrayList<E> v = (ArrayList<E>) super.clone();
356 >            ArrayList<?> v = (ArrayList<?>) super.clone();
357              v.elementData = Arrays.copyOf(elementData, size);
358              v.modCount = 0;
359              return v;
360          } catch (CloneNotSupportedException e) {
361              // this shouldn't happen, since we are Cloneable
362 <            throw new InternalError();
362 >            throw new InternalError(e);
363          }
364      }
365  
# Line 306 | Line 392 | public class ArrayList<E> extends Abstra
392       * <p>If the list fits in the specified array with room to spare
393       * (i.e., the array has more elements than the list), the element in
394       * the array immediately following the end of the collection is set to
395 <     * <tt>null</tt>.  (This is useful in determining the length of the
395 >     * {@code null}.  (This is useful in determining the length of the
396       * list <i>only</i> if the caller knows that the list does not contain
397       * any null elements.)
398       *
# Line 337 | Line 423 | public class ArrayList<E> extends Abstra
423          return (E) elementData[index];
424      }
425  
426 +    @SuppressWarnings("unchecked")
427 +    static <E> E elementAt(Object[] es, int index) {
428 +        return (E) es[index];
429 +    }
430 +
431      /**
432       * Returns the element at the specified position in this list.
433       *
# Line 345 | Line 436 | public class ArrayList<E> extends Abstra
436       * @throws IndexOutOfBoundsException {@inheritDoc}
437       */
438      public E get(int index) {
439 <        rangeCheck(index);
349 <
439 >        Objects.checkIndex(index, size);
440          return elementData(index);
441      }
442  
# Line 360 | Line 450 | public class ArrayList<E> extends Abstra
450       * @throws IndexOutOfBoundsException {@inheritDoc}
451       */
452      public E set(int index, E element) {
453 <        rangeCheck(index);
364 <
453 >        Objects.checkIndex(index, size);
454          E oldValue = elementData(index);
455          elementData[index] = element;
456          return oldValue;
457      }
458  
459      /**
460 +     * This helper method split out from add(E) to keep method
461 +     * bytecode size under 35 (the -XX:MaxInlineSize default value),
462 +     * which helps when add(E) is called in a C1-compiled loop.
463 +     */
464 +    private void add(E e, Object[] elementData, int s) {
465 +        if (s == elementData.length)
466 +            elementData = grow();
467 +        elementData[s] = e;
468 +        size = s + 1;
469 +    }
470 +
471 +    /**
472       * Appends the specified element to the end of this list.
473       *
474       * @param e element to be appended to this list
475 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
475 >     * @return {@code true} (as specified by {@link Collection#add})
476       */
477      public boolean add(E e) {
478 <        ensureCapacity(size + 1);  // Increments modCount!!
479 <        elementData[size++] = e;
478 >        modCount++;
479 >        add(e, elementData, size);
480          return true;
481      }
482  
# Line 390 | Line 491 | public class ArrayList<E> extends Abstra
491       */
492      public void add(int index, E element) {
493          rangeCheckForAdd(index);
494 <
495 <        ensureCapacity(size+1);  // Increments modCount!!
496 <        System.arraycopy(elementData, index, elementData, index + 1,
497 <                         size - index);
494 >        modCount++;
495 >        final int s;
496 >        Object[] elementData;
497 >        if ((s = size) == (elementData = this.elementData).length)
498 >            elementData = grow();
499 >        System.arraycopy(elementData, index,
500 >                         elementData, index + 1,
501 >                         s - index);
502          elementData[index] = element;
503 <        size++;
503 >        size = s + 1;
504 >        // checkInvariants();
505      }
506  
507      /**
# Line 408 | Line 514 | public class ArrayList<E> extends Abstra
514       * @throws IndexOutOfBoundsException {@inheritDoc}
515       */
516      public E remove(int index) {
517 <        rangeCheck(index);
517 >        Objects.checkIndex(index, size);
518  
519          modCount++;
520          E oldValue = elementData(index);
# Line 417 | Line 523 | public class ArrayList<E> extends Abstra
523          if (numMoved > 0)
524              System.arraycopy(elementData, index+1, elementData, index,
525                               numMoved);
526 <        elementData[--size] = null; // Let gc do its work
526 >        elementData[--size] = null; // clear to let GC do its work
527  
528 +        // checkInvariants();
529          return oldValue;
530      }
531  
# Line 426 | Line 533 | public class ArrayList<E> extends Abstra
533       * Removes the first occurrence of the specified element from this list,
534       * if it is present.  If the list does not contain the element, it is
535       * unchanged.  More formally, removes the element with the lowest index
536 <     * <tt>i</tt> such that
537 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
538 <     * (if such an element exists).  Returns <tt>true</tt> if this list
536 >     * {@code i} such that
537 >     * {@code Objects.equals(o, get(i))}
538 >     * (if such an element exists).  Returns {@code true} if this list
539       * contained the specified element (or equivalently, if this list
540       * changed as a result of the call).
541       *
542       * @param o element to be removed from this list, if present
543 <     * @return <tt>true</tt> if this list contained the specified element
543 >     * @return {@code true} if this list contained the specified element
544       */
545      public boolean remove(Object o) {
546          if (o == null) {
# Line 452 | Line 559 | public class ArrayList<E> extends Abstra
559          return false;
560      }
561  
562 <    /*
562 >    /**
563       * Private remove method that skips bounds checking and does not
564       * return the value removed.
565       */
# Line 462 | Line 569 | public class ArrayList<E> extends Abstra
569          if (numMoved > 0)
570              System.arraycopy(elementData, index+1, elementData, index,
571                               numMoved);
572 <        elementData[--size] = null; // Let gc do its work
572 >        elementData[--size] = null; // clear to let GC do its work
573      }
574  
575      /**
# Line 471 | Line 578 | public class ArrayList<E> extends Abstra
578       */
579      public void clear() {
580          modCount++;
581 <
582 <        // Let gc do its work
583 <        for (int i = 0; i < size; i++)
477 <            elementData[i] = null;
478 <
479 <        size = 0;
581 >        final Object[] es = elementData;
582 >        for (int to = size, i = size = 0; i < to; i++)
583 >            es[i] = null;
584      }
585  
586      /**
# Line 489 | Line 593 | public class ArrayList<E> extends Abstra
593       * list is nonempty.)
594       *
595       * @param c collection containing elements to be added to this list
596 <     * @return <tt>true</tt> if this list changed as a result of the call
596 >     * @return {@code true} if this list changed as a result of the call
597       * @throws NullPointerException if the specified collection is null
598       */
599      public boolean addAll(Collection<? extends E> c) {
600          Object[] a = c.toArray();
601 +        modCount++;
602          int numNew = a.length;
603 <        ensureCapacity(size + numNew);  // Increments modCount
604 <        System.arraycopy(a, 0, elementData, size, numNew);
605 <        size += numNew;
606 <        return numNew != 0;
603 >        if (numNew == 0)
604 >            return false;
605 >        Object[] elementData;
606 >        final int s;
607 >        if (numNew > (elementData = this.elementData).length - (s = size))
608 >            elementData = grow(s + numNew);
609 >        System.arraycopy(a, 0, elementData, s, numNew);
610 >        size = s + numNew;
611 >        // checkInvariants();
612 >        return true;
613      }
614  
615      /**
# Line 512 | Line 623 | public class ArrayList<E> extends Abstra
623       * @param index index at which to insert the first element from the
624       *              specified collection
625       * @param c collection containing elements to be added to this list
626 <     * @return <tt>true</tt> if this list changed as a result of the call
626 >     * @return {@code true} if this list changed as a result of the call
627       * @throws IndexOutOfBoundsException {@inheritDoc}
628       * @throws NullPointerException if the specified collection is null
629       */
# Line 520 | Line 631 | public class ArrayList<E> extends Abstra
631          rangeCheckForAdd(index);
632  
633          Object[] a = c.toArray();
634 +        modCount++;
635          int numNew = a.length;
636 <        ensureCapacity(size + numNew);  // Increments modCount
636 >        if (numNew == 0)
637 >            return false;
638 >        Object[] elementData;
639 >        final int s;
640 >        if (numNew > (elementData = this.elementData).length - (s = size))
641 >            elementData = grow(s + numNew);
642  
643 <        int numMoved = size - index;
643 >        int numMoved = s - index;
644          if (numMoved > 0)
645 <            System.arraycopy(elementData, index, elementData, index + numNew,
645 >            System.arraycopy(elementData, index,
646 >                             elementData, index + numNew,
647                               numMoved);
530
648          System.arraycopy(a, 0, elementData, index, numNew);
649 <        size += numNew;
650 <        return numNew != 0;
649 >        size = s + numNew;
650 >        // checkInvariants();
651 >        return true;
652      }
653  
654      /**
# Line 543 | Line 661 | public class ArrayList<E> extends Abstra
661       * @throws IndexOutOfBoundsException if {@code fromIndex} or
662       *         {@code toIndex} is out of range
663       *         ({@code fromIndex < 0 ||
546     *          fromIndex >= size() ||
664       *          toIndex > size() ||
665       *          toIndex < fromIndex})
666       */
667      protected void removeRange(int fromIndex, int toIndex) {
668 +        if (fromIndex > toIndex) {
669 +            throw new IndexOutOfBoundsException(
670 +                    outOfBoundsMsg(fromIndex, toIndex));
671 +        }
672          modCount++;
673 <        int numMoved = size - toIndex;
674 <        System.arraycopy(elementData, toIndex, elementData, fromIndex,
554 <                         numMoved);
555 <
556 <        // Let gc do its work
557 <        int newSize = size - (toIndex-fromIndex);
558 <        while (size != newSize)
559 <            elementData[--size] = null;
673 >        shiftTailOverGap(elementData, fromIndex, toIndex);
674 >        // checkInvariants();
675      }
676  
677 <    /**
678 <     * Checks if the given index is in range.  If not, throws an appropriate
679 <     * runtime exception.  This method does *not* check if the index is
680 <     * negative: It is always used immediately prior to an array access,
681 <     * which throws an ArrayIndexOutOfBoundsException if index is negative.
567 <     */
568 <    private void rangeCheck(int index) {
569 <        if (index >= size)
570 <            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
677 >    /** Erases the gap from lo to hi, by sliding down following elements. */
678 >    private void shiftTailOverGap(Object[] es, int lo, int hi) {
679 >        System.arraycopy(es, hi, es, lo, size - hi);
680 >        for (int to = size, i = (size -= hi - lo); i < to; i++)
681 >            es[i] = null;
682      }
683  
684      /**
# Line 588 | Line 699 | public class ArrayList<E> extends Abstra
699      }
700  
701      /**
702 +     * A version used in checking (fromIndex > toIndex) condition
703 +     */
704 +    private static String outOfBoundsMsg(int fromIndex, int toIndex) {
705 +        return "From Index: " + fromIndex + " > To Index: " + toIndex;
706 +    }
707 +
708 +    /**
709       * Removes from this list all of its elements that are contained in the
710       * specified collection.
711       *
712       * @param c collection containing elements to be removed from this list
713       * @return {@code true} if this list changed as a result of the call
714       * @throws ClassCastException if the class of an element of this list
715 <     *         is incompatible with the specified collection (optional)
715 >     *         is incompatible with the specified collection
716 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
717       * @throws NullPointerException if this list contains a null element and the
718 <     *         specified collection does not permit null elements (optional),
718 >     *         specified collection does not permit null elements
719 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
720       *         or if the specified collection is null
721       * @see Collection#contains(Object)
722       */
723      public boolean removeAll(Collection<?> c) {
724 <        return batchRemove(c, false);
724 >        return batchRemove(c, false, 0, size);
725      }
726  
727      /**
# Line 612 | Line 732 | public class ArrayList<E> extends Abstra
732       * @param c collection containing elements to be retained in this list
733       * @return {@code true} if this list changed as a result of the call
734       * @throws ClassCastException if the class of an element of this list
735 <     *         is incompatible with the specified collection (optional)
735 >     *         is incompatible with the specified collection
736 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
737       * @throws NullPointerException if this list contains a null element and the
738 <     *         specified collection does not permit null elements (optional),
738 >     *         specified collection does not permit null elements
739 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
740       *         or if the specified collection is null
741       * @see Collection#contains(Object)
742       */
743      public boolean retainAll(Collection<?> c) {
744 <        return batchRemove(c, true);
744 >        return batchRemove(c, true, 0, size);
745      }
746  
747 <    private boolean batchRemove(Collection<?> c, boolean complement) {
748 <        final Object[] elementData = this.elementData;
749 <        int r = 0, w = 0;
750 <        boolean modified = false;
751 <        try {
752 <            for (; r < size; r++)
753 <                if (c.contains(elementData[r]) == complement)
754 <                    elementData[w++] = elementData[r];
755 <        } finally {
756 <            // Preserve behavioral compatibility with AbstractCollection,
757 <            // even if c.contains() throws.
758 <            if (r != size) {
759 <                System.arraycopy(elementData, r,
760 <                                 elementData, w,
761 <                                 size - r);
762 <                w += size - r;
763 <            }
764 <            if (w != size) {
765 <                for (int i = w; i < size; i++)
766 <                    elementData[i] = null;
767 <                modCount += size - w;
768 <                size = w;
769 <                modified = true;
747 >    boolean batchRemove(Collection<?> c, boolean complement,
748 >                        final int from, final int end) {
749 >        Objects.requireNonNull(c);
750 >        final Object[] es = elementData;
751 >        final boolean modified;
752 >        int r;
753 >        // Optimize for initial run of survivors
754 >        for (r = from; r < end && c.contains(es[r]) == complement; r++)
755 >            ;
756 >        if (modified = (r < end)) {
757 >            int w = r++;
758 >            try {
759 >                for (Object e; r < end; r++)
760 >                    if (c.contains(e = es[r]) == complement)
761 >                        es[w++] = e;
762 >            } catch (Throwable ex) {
763 >                // Preserve behavioral compatibility with AbstractCollection,
764 >                // even if c.contains() throws.
765 >                System.arraycopy(es, r, es, w, end - r);
766 >                w += end - r;
767 >                throw ex;
768 >            } finally {
769 >                modCount += end - w;
770 >                shiftTailOverGap(es, w, end);
771              }
772          }
773 +        // checkInvariants();
774          return modified;
775      }
776  
777      /**
778 <     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
779 <     * is, serialize it).
778 >     * Saves the state of the {@code ArrayList} instance to a stream
779 >     * (that is, serializes it).
780       *
781 <     * @serialData The length of the array backing the <tt>ArrayList</tt>
781 >     * @param s the stream
782 >     * @throws java.io.IOException if an I/O error occurs
783 >     * @serialData The length of the array backing the {@code ArrayList}
784       *             instance is emitted (int), followed by all of its elements
785 <     *             (each an <tt>Object</tt>) in the proper order.
785 >     *             (each an {@code Object}) in the proper order.
786       */
787      private void writeObject(java.io.ObjectOutputStream s)
788 <        throws java.io.IOException{
788 >        throws java.io.IOException {
789          // Write out element count, and any hidden stuff
790          int expectedModCount = modCount;
791          s.defaultWriteObject();
792  
793 <        // Write out array length
794 <        s.writeInt(elementData.length);
793 >        // Write out size as capacity for behavioural compatibility with clone()
794 >        s.writeInt(size);
795  
796          // Write out all elements in the proper order.
797 <        for (int i=0; i<size; i++)
797 >        for (int i=0; i<size; i++) {
798              s.writeObject(elementData[i]);
799 +        }
800  
801          if (modCount != expectedModCount) {
802              throw new ConcurrentModificationException();
803          }
677
804      }
805  
806      /**
807 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
808 <     * deserialize it).
807 >     * Reconstitutes the {@code ArrayList} instance from a stream (that is,
808 >     * deserializes it).
809 >     * @param s the stream
810 >     * @throws ClassNotFoundException if the class of a serialized object
811 >     *         could not be found
812 >     * @throws java.io.IOException if an I/O error occurs
813       */
814      private void readObject(java.io.ObjectInputStream s)
815          throws java.io.IOException, ClassNotFoundException {
816 +
817          // Read in size, and any hidden stuff
818          s.defaultReadObject();
819  
820 <        // Read in array length and allocate array
821 <        int arrayLength = s.readInt();
822 <        Object[] a = elementData = new Object[arrayLength];
823 <
824 <        // Read in all elements in the proper order.
825 <        for (int i=0; i<size; i++)
826 <            a[i] = s.readObject();
820 >        // Read in capacity
821 >        s.readInt(); // ignored
822 >
823 >        if (size > 0) {
824 >            // like clone(), allocate array based upon size not capacity
825 >            Object[] elements = new Object[size];
826 >
827 >            // Read in all elements in the proper order.
828 >            for (int i = 0; i < size; i++) {
829 >                elements[i] = s.readObject();
830 >            }
831 >
832 >            elementData = elements;
833 >        } else if (size == 0) {
834 >            elementData = EMPTY_ELEMENTDATA;
835 >        } else {
836 >            throw new java.io.InvalidObjectException("Invalid size: " + size);
837 >        }
838      }
839  
840      /**
# Line 708 | Line 850 | public class ArrayList<E> extends Abstra
850       * @throws IndexOutOfBoundsException {@inheritDoc}
851       */
852      public ListIterator<E> listIterator(int index) {
853 <        if (index < 0 || index > size)
712 <            throw new IndexOutOfBoundsException("Index: "+index);
853 >        rangeCheckForAdd(index);
854          return new ListItr(index);
855      }
856  
# Line 744 | Line 885 | public class ArrayList<E> extends Abstra
885          int lastRet = -1; // index of last element returned; -1 if no such
886          int expectedModCount = modCount;
887  
888 +        // prevent creating a synthetic constructor
889 +        Itr() {}
890 +
891          public boolean hasNext() {
892              return cursor != size;
893          }
# Line 776 | Line 920 | public class ArrayList<E> extends Abstra
920              }
921          }
922  
923 +        @Override
924 +        public void forEachRemaining(Consumer<? super E> action) {
925 +            Objects.requireNonNull(action);
926 +            final int size = ArrayList.this.size;
927 +            int i = cursor;
928 +            if (i < size) {
929 +                final Object[] es = elementData;
930 +                if (i >= es.length)
931 +                    throw new ConcurrentModificationException();
932 +                for (; i < size && modCount == expectedModCount; i++)
933 +                    action.accept(elementAt(es, i));
934 +                // update once at end to reduce heap write traffic
935 +                cursor = i;
936 +                lastRet = i - 1;
937 +                checkForComodification();
938 +            }
939 +        }
940 +
941          final void checkForComodification() {
942              if (modCount != expectedModCount)
943                  throw new ConcurrentModificationException();
# Line 874 | Line 1036 | public class ArrayList<E> extends Abstra
1036       */
1037      public List<E> subList(int fromIndex, int toIndex) {
1038          subListRangeCheck(fromIndex, toIndex, size);
1039 <        return new SubList(this, 0, fromIndex, toIndex);
1039 >        return new SubList<>(this, fromIndex, toIndex);
1040      }
1041  
1042 <    static void subListRangeCheck(int fromIndex, int toIndex, int size) {
1043 <        if (fromIndex < 0)
1044 <            throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
883 <        if (toIndex > size)
884 <            throw new IndexOutOfBoundsException("toIndex = " + toIndex);
885 <        if (fromIndex > toIndex)
886 <            throw new IllegalArgumentException("fromIndex(" + fromIndex +
887 <                                               ") > toIndex(" + toIndex + ")");
888 <    }
889 <
890 <    private class SubList extends AbstractList<E> implements RandomAccess {
891 <        private final AbstractList<E> parent;
892 <        private final int parentOffset;
1042 >    private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1043 >        private final ArrayList<E> root;
1044 >        private final SubList<E> parent;
1045          private final int offset;
1046 <        int size;
1046 >        private int size;
1047  
1048 <        SubList(AbstractList<E> parent,
1049 <                int offset, int fromIndex, int toIndex) {
1048 >        /**
1049 >         * Constructs a sublist of an arbitrary ArrayList.
1050 >         */
1051 >        public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1052 >            this.root = root;
1053 >            this.parent = null;
1054 >            this.offset = fromIndex;
1055 >            this.size = toIndex - fromIndex;
1056 >            this.modCount = root.modCount;
1057 >        }
1058 >
1059 >        /**
1060 >         * Constructs a sublist of another SubList.
1061 >         */
1062 >        private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1063 >            this.root = parent.root;
1064              this.parent = parent;
1065 <            this.parentOffset = fromIndex;
900 <            this.offset = offset + fromIndex;
1065 >            this.offset = parent.offset + fromIndex;
1066              this.size = toIndex - fromIndex;
1067 <            this.modCount = ArrayList.this.modCount;
1067 >            this.modCount = root.modCount;
1068          }
1069  
1070 <        public E set(int index, E e) {
1071 <            rangeCheck(index);
1070 >        public E set(int index, E element) {
1071 >            Objects.checkIndex(index, size);
1072              checkForComodification();
1073 <            E oldValue = ArrayList.this.elementData(offset + index);
1074 <            ArrayList.this.elementData[offset + index] = e;
1073 >            E oldValue = root.elementData(offset + index);
1074 >            root.elementData[offset + index] = element;
1075              return oldValue;
1076          }
1077  
1078          public E get(int index) {
1079 <            rangeCheck(index);
1079 >            Objects.checkIndex(index, size);
1080              checkForComodification();
1081 <            return ArrayList.this.elementData(offset + index);
1081 >            return root.elementData(offset + index);
1082          }
1083  
1084          public int size() {
1085              checkForComodification();
1086 <            return this.size;
1086 >            return size;
1087          }
1088  
1089 <        public void add(int index, E e) {
1089 >        public void add(int index, E element) {
1090              rangeCheckForAdd(index);
1091              checkForComodification();
1092 <            parent.add(parentOffset + index, e);
1093 <            this.modCount = parent.modCount;
929 <            this.size++;
1092 >            root.add(offset + index, element);
1093 >            updateSizeAndModCount(1);
1094          }
1095  
1096          public E remove(int index) {
1097 <            rangeCheck(index);
1097 >            Objects.checkIndex(index, size);
1098              checkForComodification();
1099 <            E result = parent.remove(parentOffset + index);
1100 <            this.modCount = parent.modCount;
937 <            this.size--;
1099 >            E result = root.remove(offset + index);
1100 >            updateSizeAndModCount(-1);
1101              return result;
1102          }
1103  
1104          protected void removeRange(int fromIndex, int toIndex) {
1105              checkForComodification();
1106 <            parent.removeRange(parentOffset + fromIndex,
1107 <                               parentOffset + toIndex);
945 <            this.modCount = parent.modCount;
946 <            this.size -= toIndex - fromIndex;
1106 >            root.removeRange(offset + fromIndex, offset + toIndex);
1107 >            updateSizeAndModCount(fromIndex - toIndex);
1108          }
1109  
1110          public boolean addAll(Collection<? extends E> c) {
# Line 955 | Line 1116 | public class ArrayList<E> extends Abstra
1116              int cSize = c.size();
1117              if (cSize==0)
1118                  return false;
958
1119              checkForComodification();
1120 <            parent.addAll(parentOffset + index, c);
1121 <            this.modCount = parent.modCount;
962 <            this.size += cSize;
1120 >            root.addAll(offset + index, c);
1121 >            updateSizeAndModCount(cSize);
1122              return true;
1123          }
1124  
1125 +        public boolean removeAll(Collection<?> c) {
1126 +            return batchRemove(c, false);
1127 +        }
1128 +
1129 +        public boolean retainAll(Collection<?> c) {
1130 +            return batchRemove(c, true);
1131 +        }
1132 +
1133 +        private boolean batchRemove(Collection<?> c, boolean complement) {
1134 +            checkForComodification();
1135 +            int oldSize = root.size;
1136 +            boolean modified =
1137 +                root.batchRemove(c, complement, offset, offset + size);
1138 +            if (modified)
1139 +                updateSizeAndModCount(root.size - oldSize);
1140 +            return modified;
1141 +        }
1142 +
1143 +        public boolean removeIf(Predicate<? super E> filter) {
1144 +            checkForComodification();
1145 +            int oldSize = root.size;
1146 +            boolean modified = root.removeIf(filter, offset, offset + size);
1147 +            if (modified)
1148 +                updateSizeAndModCount(root.size - oldSize);
1149 +            return modified;
1150 +        }
1151 +
1152          public Iterator<E> iterator() {
1153              return listIterator();
1154          }
1155  
1156 <        public ListIterator<E> listIterator(final int index) {
1156 >        public ListIterator<E> listIterator(int index) {
1157              checkForComodification();
1158              rangeCheckForAdd(index);
973            final int offset = this.offset;
1159  
1160              return new ListIterator<E>() {
1161                  int cursor = index;
1162                  int lastRet = -1;
1163 <                int expectedModCount = ArrayList.this.modCount;
1163 >                int expectedModCount = root.modCount;
1164  
1165                  public boolean hasNext() {
1166                      return cursor != SubList.this.size;
# Line 987 | Line 1172 | public class ArrayList<E> extends Abstra
1172                      int i = cursor;
1173                      if (i >= SubList.this.size)
1174                          throw new NoSuchElementException();
1175 <                    Object[] elementData = ArrayList.this.elementData;
1175 >                    Object[] elementData = root.elementData;
1176                      if (offset + i >= elementData.length)
1177                          throw new ConcurrentModificationException();
1178                      cursor = i + 1;
# Line 1004 | Line 1189 | public class ArrayList<E> extends Abstra
1189                      int i = cursor - 1;
1190                      if (i < 0)
1191                          throw new NoSuchElementException();
1192 <                    Object[] elementData = ArrayList.this.elementData;
1192 >                    Object[] elementData = root.elementData;
1193                      if (offset + i >= elementData.length)
1194                          throw new ConcurrentModificationException();
1195                      cursor = i;
1196                      return (E) elementData[offset + (lastRet = i)];
1197                  }
1198  
1199 +                public void forEachRemaining(Consumer<? super E> action) {
1200 +                    Objects.requireNonNull(action);
1201 +                    final int size = SubList.this.size;
1202 +                    int i = cursor;
1203 +                    if (i < size) {
1204 +                        final Object[] es = root.elementData;
1205 +                        if (offset + i >= es.length)
1206 +                            throw new ConcurrentModificationException();
1207 +                        for (; i < size && modCount == expectedModCount; i++)
1208 +                            action.accept(elementAt(es, offset + i));
1209 +                        // update once at end to reduce heap write traffic
1210 +                        cursor = i;
1211 +                        lastRet = i - 1;
1212 +                        checkForComodification();
1213 +                    }
1214 +                }
1215 +
1216                  public int nextIndex() {
1217                      return cursor;
1218                  }
# Line 1028 | Line 1230 | public class ArrayList<E> extends Abstra
1230                          SubList.this.remove(lastRet);
1231                          cursor = lastRet;
1232                          lastRet = -1;
1233 <                        expectedModCount = ArrayList.this.modCount;
1233 >                        expectedModCount = root.modCount;
1234                      } catch (IndexOutOfBoundsException ex) {
1235                          throw new ConcurrentModificationException();
1236                      }
# Line 1040 | Line 1242 | public class ArrayList<E> extends Abstra
1242                      checkForComodification();
1243  
1244                      try {
1245 <                        ArrayList.this.set(offset + lastRet, e);
1245 >                        root.set(offset + lastRet, e);
1246                      } catch (IndexOutOfBoundsException ex) {
1247                          throw new ConcurrentModificationException();
1248                      }
# Line 1054 | Line 1256 | public class ArrayList<E> extends Abstra
1256                          SubList.this.add(i, e);
1257                          cursor = i + 1;
1258                          lastRet = -1;
1259 <                        expectedModCount = ArrayList.this.modCount;
1259 >                        expectedModCount = root.modCount;
1260                      } catch (IndexOutOfBoundsException ex) {
1261                          throw new ConcurrentModificationException();
1262                      }
1263                  }
1264  
1265                  final void checkForComodification() {
1266 <                    if (expectedModCount != ArrayList.this.modCount)
1266 >                    if (root.modCount != expectedModCount)
1267                          throw new ConcurrentModificationException();
1268                  }
1269              };
# Line 1069 | Line 1271 | public class ArrayList<E> extends Abstra
1271  
1272          public List<E> subList(int fromIndex, int toIndex) {
1273              subListRangeCheck(fromIndex, toIndex, size);
1274 <            return new SubList(this, offset, fromIndex, toIndex);
1073 <        }
1074 <
1075 <        private void rangeCheck(int index) {
1076 <            if (index < 0 || index >= this.size)
1077 <                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1274 >            return new SubList<>(this, fromIndex, toIndex);
1275          }
1276  
1277          private void rangeCheckForAdd(int index) {
# Line 1087 | Line 1284 | public class ArrayList<E> extends Abstra
1284          }
1285  
1286          private void checkForComodification() {
1287 <            if (ArrayList.this.modCount != this.modCount)
1287 >            if (root.modCount != modCount)
1288 >                throw new ConcurrentModificationException();
1289 >        }
1290 >
1291 >        private void updateSizeAndModCount(int sizeChange) {
1292 >            SubList<E> slist = this;
1293 >            do {
1294 >                slist.size += sizeChange;
1295 >                slist.modCount = root.modCount;
1296 >                slist = slist.parent;
1297 >            } while (slist != null);
1298 >        }
1299 >
1300 >        public Spliterator<E> spliterator() {
1301 >            checkForComodification();
1302 >
1303 >            // ArrayListSpliterator not used here due to late-binding
1304 >            return new Spliterator<E>() {
1305 >                private int index = offset; // current index, modified on advance/split
1306 >                private int fence = -1; // -1 until used; then one past last index
1307 >                private int expectedModCount; // initialized when fence set
1308 >
1309 >                private int getFence() { // initialize fence to size on first use
1310 >                    int hi; // (a specialized variant appears in method forEach)
1311 >                    if ((hi = fence) < 0) {
1312 >                        expectedModCount = modCount;
1313 >                        hi = fence = offset + size;
1314 >                    }
1315 >                    return hi;
1316 >                }
1317 >
1318 >                public ArrayList<E>.ArrayListSpliterator trySplit() {
1319 >                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1320 >                    // ArrayListSpliterator can be used here as the source is already bound
1321 >                    return (lo >= mid) ? null : // divide range in half unless too small
1322 >                        root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1323 >                }
1324 >
1325 >                public boolean tryAdvance(Consumer<? super E> action) {
1326 >                    Objects.requireNonNull(action);
1327 >                    int hi = getFence(), i = index;
1328 >                    if (i < hi) {
1329 >                        index = i + 1;
1330 >                        @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1331 >                        action.accept(e);
1332 >                        if (root.modCount != expectedModCount)
1333 >                            throw new ConcurrentModificationException();
1334 >                        return true;
1335 >                    }
1336 >                    return false;
1337 >                }
1338 >
1339 >                public void forEachRemaining(Consumer<? super E> action) {
1340 >                    Objects.requireNonNull(action);
1341 >                    int i, hi, mc; // hoist accesses and checks from loop
1342 >                    ArrayList<E> lst = root;
1343 >                    Object[] a;
1344 >                    if ((a = lst.elementData) != null) {
1345 >                        if ((hi = fence) < 0) {
1346 >                            mc = modCount;
1347 >                            hi = offset + size;
1348 >                        }
1349 >                        else
1350 >                            mc = expectedModCount;
1351 >                        if ((i = index) >= 0 && (index = hi) <= a.length) {
1352 >                            for (; i < hi; ++i) {
1353 >                                @SuppressWarnings("unchecked") E e = (E) a[i];
1354 >                                action.accept(e);
1355 >                            }
1356 >                            if (lst.modCount == mc)
1357 >                                return;
1358 >                        }
1359 >                    }
1360 >                    throw new ConcurrentModificationException();
1361 >                }
1362 >
1363 >                public long estimateSize() {
1364 >                    return getFence() - index;
1365 >                }
1366 >
1367 >                public int characteristics() {
1368 >                    return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1369 >                }
1370 >            };
1371 >        }
1372 >    }
1373 >
1374 >    @Override
1375 >    public void forEach(Consumer<? super E> action) {
1376 >        Objects.requireNonNull(action);
1377 >        final int expectedModCount = modCount;
1378 >        final Object[] es = elementData;
1379 >        final int size = this.size;
1380 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1381 >            action.accept(elementAt(es, i));
1382 >        if (modCount != expectedModCount)
1383 >            throw new ConcurrentModificationException();
1384 >    }
1385 >
1386 >    /**
1387 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1388 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1389 >     * list.
1390 >     *
1391 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1392 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1393 >     * Overriding implementations should document the reporting of additional
1394 >     * characteristic values.
1395 >     *
1396 >     * @return a {@code Spliterator} over the elements in this list
1397 >     * @since 1.8
1398 >     */
1399 >    @Override
1400 >    public Spliterator<E> spliterator() {
1401 >        return new ArrayListSpliterator(0, -1, 0);
1402 >    }
1403 >
1404 >    /** Index-based split-by-two, lazily initialized Spliterator */
1405 >    final class ArrayListSpliterator implements Spliterator<E> {
1406 >
1407 >        /*
1408 >         * If ArrayLists were immutable, or structurally immutable (no
1409 >         * adds, removes, etc), we could implement their spliterators
1410 >         * with Arrays.spliterator. Instead we detect as much
1411 >         * interference during traversal as practical without
1412 >         * sacrificing much performance. We rely primarily on
1413 >         * modCounts. These are not guaranteed to detect concurrency
1414 >         * violations, and are sometimes overly conservative about
1415 >         * within-thread interference, but detect enough problems to
1416 >         * be worthwhile in practice. To carry this out, we (1) lazily
1417 >         * initialize fence and expectedModCount until the latest
1418 >         * point that we need to commit to the state we are checking
1419 >         * against; thus improving precision.  (This doesn't apply to
1420 >         * SubLists, that create spliterators with current non-lazy
1421 >         * values).  (2) We perform only a single
1422 >         * ConcurrentModificationException check at the end of forEach
1423 >         * (the most performance-sensitive method). When using forEach
1424 >         * (as opposed to iterators), we can normally only detect
1425 >         * interference after actions, not before. Further
1426 >         * CME-triggering checks apply to all other possible
1427 >         * violations of assumptions for example null or too-small
1428 >         * elementData array given its size(), that could only have
1429 >         * occurred due to interference.  This allows the inner loop
1430 >         * of forEach to run without any further checks, and
1431 >         * simplifies lambda-resolution. While this does entail a
1432 >         * number of checks, note that in the common case of
1433 >         * list.stream().forEach(a), no checks or other computation
1434 >         * occur anywhere other than inside forEach itself.  The other
1435 >         * less-often-used methods cannot take advantage of most of
1436 >         * these streamlinings.
1437 >         */
1438 >
1439 >        private int index; // current index, modified on advance/split
1440 >        private int fence; // -1 until used; then one past last index
1441 >        private int expectedModCount; // initialized when fence set
1442 >
1443 >        /** Create new spliterator covering the given range */
1444 >        ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1445 >            this.index = origin;
1446 >            this.fence = fence;
1447 >            this.expectedModCount = expectedModCount;
1448 >        }
1449 >
1450 >        private int getFence() { // initialize fence to size on first use
1451 >            int hi; // (a specialized variant appears in method forEach)
1452 >            if ((hi = fence) < 0) {
1453 >                expectedModCount = modCount;
1454 >                hi = fence = size;
1455 >            }
1456 >            return hi;
1457 >        }
1458 >
1459 >        public ArrayListSpliterator trySplit() {
1460 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1461 >            return (lo >= mid) ? null : // divide range in half unless too small
1462 >                new ArrayListSpliterator(lo, index = mid, expectedModCount);
1463 >        }
1464 >
1465 >        public boolean tryAdvance(Consumer<? super E> action) {
1466 >            if (action == null)
1467 >                throw new NullPointerException();
1468 >            int hi = getFence(), i = index;
1469 >            if (i < hi) {
1470 >                index = i + 1;
1471 >                @SuppressWarnings("unchecked") E e = (E)elementData[i];
1472 >                action.accept(e);
1473 >                if (modCount != expectedModCount)
1474 >                    throw new ConcurrentModificationException();
1475 >                return true;
1476 >            }
1477 >            return false;
1478 >        }
1479 >
1480 >        public void forEachRemaining(Consumer<? super E> action) {
1481 >            int i, hi, mc; // hoist accesses and checks from loop
1482 >            Object[] a;
1483 >            if (action == null)
1484 >                throw new NullPointerException();
1485 >            if ((a = elementData) != null) {
1486 >                if ((hi = fence) < 0) {
1487 >                    mc = modCount;
1488 >                    hi = size;
1489 >                }
1490 >                else
1491 >                    mc = expectedModCount;
1492 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
1493 >                    for (; i < hi; ++i) {
1494 >                        @SuppressWarnings("unchecked") E e = (E) a[i];
1495 >                        action.accept(e);
1496 >                    }
1497 >                    if (modCount == mc)
1498 >                        return;
1499 >                }
1500 >            }
1501 >            throw new ConcurrentModificationException();
1502 >        }
1503 >
1504 >        public long estimateSize() {
1505 >            return getFence() - index;
1506 >        }
1507 >
1508 >        public int characteristics() {
1509 >            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1510 >        }
1511 >    }
1512 >
1513 >    // A tiny bit set implementation
1514 >
1515 >    private static long[] nBits(int n) {
1516 >        return new long[((n - 1) >> 6) + 1];
1517 >    }
1518 >    private static void setBit(long[] bits, int i) {
1519 >        bits[i >> 6] |= 1L << i;
1520 >    }
1521 >    private static boolean isClear(long[] bits, int i) {
1522 >        return (bits[i >> 6] & (1L << i)) == 0;
1523 >    }
1524 >
1525 >    @Override
1526 >    public boolean removeIf(Predicate<? super E> filter) {
1527 >        return removeIf(filter, 0, size);
1528 >    }
1529 >
1530 >    /**
1531 >     * Removes all elements satisfying the given predicate, from index
1532 >     * i (inclusive) to index end (exclusive).
1533 >     */
1534 >    boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1535 >        Objects.requireNonNull(filter);
1536 >        int expectedModCount = modCount;
1537 >        final Object[] es = elementData;
1538 >        // Optimize for initial run of survivors
1539 >        for (; i < end && !filter.test(elementAt(es, i)); i++)
1540 >            ;
1541 >        // Tolerate predicates that reentrantly access the collection for
1542 >        // read (but writers still get CME), so traverse once to find
1543 >        // elements to delete, a second pass to physically expunge.
1544 >        if (i < end) {
1545 >            final int beg = i;
1546 >            final long[] deathRow = nBits(end - beg);
1547 >            deathRow[0] = 1L;   // set bit 0
1548 >            for (i = beg + 1; i < end; i++)
1549 >                if (filter.test(elementAt(es, i)))
1550 >                    setBit(deathRow, i - beg);
1551 >            if (modCount != expectedModCount)
1552 >                throw new ConcurrentModificationException();
1553 >            expectedModCount++;
1554 >            modCount++;
1555 >            int w = beg;
1556 >            for (i = beg; i < end; i++)
1557 >                if (isClear(deathRow, i - beg))
1558 >                    es[w++] = es[i];
1559 >            shiftTailOverGap(es, w, end);
1560 >            // checkInvariants();
1561 >            return true;
1562 >        } else {
1563 >            if (modCount != expectedModCount)
1564                  throw new ConcurrentModificationException();
1565 +            // checkInvariants();
1566 +            return false;
1567          }
1568      }
1569 +
1570 +    @Override
1571 +    public void replaceAll(UnaryOperator<E> operator) {
1572 +        Objects.requireNonNull(operator);
1573 +        final int expectedModCount = modCount;
1574 +        final Object[] es = elementData;
1575 +        final int size = this.size;
1576 +        for (int i = 0; modCount == expectedModCount && i < size; i++)
1577 +            es[i] = operator.apply(elementAt(es, i));
1578 +        if (modCount != expectedModCount)
1579 +            throw new ConcurrentModificationException();
1580 +        modCount++;
1581 +        // checkInvariants();
1582 +    }
1583 +
1584 +    @Override
1585 +    @SuppressWarnings("unchecked")
1586 +    public void sort(Comparator<? super E> c) {
1587 +        final int expectedModCount = modCount;
1588 +        Arrays.sort((E[]) elementData, 0, size, c);
1589 +        if (modCount != expectedModCount)
1590 +            throw new ConcurrentModificationException();
1591 +        modCount++;
1592 +        // checkInvariants();
1593 +    }
1594 +
1595 +    void checkInvariants() {
1596 +        // assert size >= 0;
1597 +        // assert size == elementData.length || elementData[size] == null;
1598 +    }
1599   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines