ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayList.java (file contents):
Revision 1.10 by jsr166, Mon Nov 28 02:35:46 2005 UTC vs.
Revision 1.68 by jsr166, Sat Aug 10 16:48:05 2019 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27 < import java.util.*; // for javadoc (till 6280605 is fixed)
27 >
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > import java.util.function.UnaryOperator;
31 > // OPENJDK import jdk.internal.access.SharedSecrets;
32 > import jdk.internal.util.ArraysSupport;
33  
34   /**
35 < * Resizable-array implementation of the <tt>List</tt> interface.  Implements
35 > * Resizable-array implementation of the {@code List} interface.  Implements
36   * all optional list operations, and permits all elements, including
37 < * <tt>null</tt>.  In addition to implementing the <tt>List</tt> interface,
37 > * {@code null}.  In addition to implementing the {@code List} interface,
38   * this class provides methods to manipulate the size of the array that is
39   * used internally to store the list.  (This class is roughly equivalent to
40 < * <tt>Vector</tt>, except that it is unsynchronized.)<p>
40 > * {@code Vector}, except that it is unsynchronized.)
41   *
42 < * The <tt>size</tt>, <tt>isEmpty</tt>, <tt>get</tt>, <tt>set</tt>,
43 < * <tt>iterator</tt>, and <tt>listIterator</tt> operations run in constant
44 < * time.  The <tt>add</tt> operation runs in <i>amortized constant time</i>,
42 > * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
43 > * {@code iterator}, and {@code listIterator} operations run in constant
44 > * time.  The {@code add} operation runs in <i>amortized constant time</i>,
45   * that is, adding n elements requires O(n) time.  All of the other operations
46   * run in linear time (roughly speaking).  The constant factor is low compared
47 < * to that for the <tt>LinkedList</tt> implementation.<p>
47 > * to that for the {@code LinkedList} implementation.
48   *
49 < * Each <tt>ArrayList</tt> instance has a <i>capacity</i>.  The capacity is
49 > * <p>Each {@code ArrayList} instance has a <i>capacity</i>.  The capacity is
50   * the size of the array used to store the elements in the list.  It is always
51   * at least as large as the list size.  As elements are added to an ArrayList,
52   * its capacity grows automatically.  The details of the growth policy are not
53   * specified beyond the fact that adding an element has constant amortized
54 < * time cost.<p>
54 > * time cost.
55   *
56 < * An application can increase the capacity of an <tt>ArrayList</tt> instance
57 < * before adding a large number of elements using the <tt>ensureCapacity</tt>
56 > * <p>An application can increase the capacity of an {@code ArrayList} instance
57 > * before adding a large number of elements using the {@code ensureCapacity}
58   * operation.  This may reduce the amount of incremental reallocation.
59   *
60   * <p><strong>Note that this implementation is not synchronized.</strong>
61 < * If multiple threads access an <tt>ArrayList</tt> instance concurrently,
61 > * If multiple threads access an {@code ArrayList} instance concurrently,
62   * and at least one of the threads modifies the list structurally, it
63   * <i>must</i> be synchronized externally.  (A structural modification is
64   * any operation that adds or deletes one or more elements, or explicitly
# Line 49 | Line 72 | import java.util.*; // for javadoc (till
72   * unsynchronized access to the list:<pre>
73   *   List list = Collections.synchronizedList(new ArrayList(...));</pre>
74   *
75 < * <p>The iterators returned by this class's <tt>iterator</tt> and
76 < * <tt>listIterator</tt> methods are <i>fail-fast</i>: if the list is
77 < * structurally modified at any time after the iterator is created, in any way
78 < * except through the iterator's own <tt>remove</tt> or <tt>add</tt> methods,
79 < * the iterator will throw a {@link ConcurrentModificationException}.  Thus, in
80 < * the face of concurrent modification, the iterator fails quickly and cleanly,
81 < * rather than risking arbitrary, non-deterministic behavior at an undetermined
82 < * time in the future.<p>
75 > * <p id="fail-fast">
76 > * The iterators returned by this class's {@link #iterator() iterator} and
77 > * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
78 > * if the list is structurally modified at any time after the iterator is
79 > * created, in any way except through the iterator's own
80 > * {@link ListIterator#remove() remove} or
81 > * {@link ListIterator#add(Object) add} methods, the iterator will throw a
82 > * {@link ConcurrentModificationException}.  Thus, in the face of
83 > * concurrent modification, the iterator fails quickly and cleanly, rather
84 > * than risking arbitrary, non-deterministic behavior at an undetermined
85 > * time in the future.
86   *
87 < * Note that the fail-fast behavior of an iterator cannot be guaranteed
87 > * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
88   * as it is, generally speaking, impossible to make any hard guarantees in the
89   * presence of unsynchronized concurrent modification.  Fail-fast iterators
90 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
90 > * throw {@code ConcurrentModificationException} on a best-effort basis.
91   * Therefore, it would be wrong to write a program that depended on this
92 < * exception for its correctness: <i>the fail-fast behavior of iterators
93 < * should be used only to detect bugs.</i><p>
92 > * exception for its correctness:  <i>the fail-fast behavior of iterators
93 > * should be used only to detect bugs.</i>
94   *
95 < * This class is a member of the
96 < * <a href="{@docRoot}/../guide/collections/index.html">
95 > * <p>This class is a member of the
96 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
97   * Java Collections Framework</a>.
98   *
99 + * @param <E> the type of elements in this list
100 + *
101   * @author  Josh Bloch
102   * @author  Neal Gafter
103 < * @version %I%, %G%
104 < * @see     Collection
105 < * @see     List
106 < * @see     LinkedList
79 < * @see     Vector
103 > * @see     Collection
104 > * @see     List
105 > * @see     LinkedList
106 > * @see     Vector
107   * @since   1.2
108   */
82
109   public class ArrayList<E> extends AbstractList<E>
110          implements List<E>, RandomAccess, Cloneable, java.io.Serializable
111   {
112      private static final long serialVersionUID = 8683452581122892189L;
113  
114      /**
115 +     * Default initial capacity.
116 +     */
117 +    private static final int DEFAULT_CAPACITY = 10;
118 +
119 +    /**
120 +     * Shared empty array instance used for empty instances.
121 +     */
122 +    private static final Object[] EMPTY_ELEMENTDATA = {};
123 +
124 +    /**
125 +     * Shared empty array instance used for default sized empty instances. We
126 +     * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
127 +     * first element is added.
128 +     */
129 +    private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
130 +
131 +    /**
132       * The array buffer into which the elements of the ArrayList are stored.
133 <     * The capacity of the ArrayList is the length of this array buffer.
133 >     * The capacity of the ArrayList is the length of this array buffer. Any
134 >     * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
135 >     * will be expanded to DEFAULT_CAPACITY when the first element is added.
136       */
137 <    private transient Object[] elementData;
137 >    transient Object[] elementData; // non-private to simplify nested class access
138  
139      /**
140       * The size of the ArrayList (the number of elements it contains).
# Line 101 | Line 146 | public class ArrayList<E> extends Abstra
146      /**
147       * Constructs an empty list with the specified initial capacity.
148       *
149 <     * @param initialCapacity the initial capacity of the list
149 >     * @param  initialCapacity  the initial capacity of the list
150       * @throws IllegalArgumentException if the specified initial capacity
151       *         is negative
152       */
153      public ArrayList(int initialCapacity) {
154 <        super();
155 <        if (initialCapacity < 0)
154 >        if (initialCapacity > 0) {
155 >            this.elementData = new Object[initialCapacity];
156 >        } else if (initialCapacity == 0) {
157 >            this.elementData = EMPTY_ELEMENTDATA;
158 >        } else {
159              throw new IllegalArgumentException("Illegal Capacity: "+
160                                                 initialCapacity);
161 <        this.elementData = new Object[initialCapacity];
161 >        }
162      }
163  
164      /**
165       * Constructs an empty list with an initial capacity of ten.
166       */
167      public ArrayList() {
168 <        this(10);
168 >        this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
169      }
170  
171      /**
172       * Constructs a list containing the elements of the specified
173       * collection, in the order they are returned by the collection's
174 <     * iterator.  The <tt>ArrayList</tt> instance has an initial capacity of
127 <     * 110% the size of the specified collection.
174 >     * iterator.
175       *
176       * @param c the collection whose elements are to be placed into this list
177       * @throws NullPointerException if the specified collection is null
178       */
179      public ArrayList(Collection<? extends E> c) {
180 <        int size = c.size();
181 <        // 10% for growth
182 <        int cap = ((size/10)+1)*11;
183 <        if (cap > 0) {
184 <            Object[] a = new Object[cap];
185 <            a[size] = a[size+1] = UNALLOCATED;
186 <            Object[] b = c.toArray(a);
187 <            if (b[size] == null && b[size+1] == UNALLOCATED) {
188 <                b[size+1] = null;
189 <                elementData = b;
143 <                this.size = size;
144 <                return;
145 <            }
146 <        }
147 <        initFromConcurrentlyMutating(c);
148 <    }
149 <
150 <    private void initFromConcurrentlyMutating(Collection<? extends E> c) {
151 <        elementData = c.toArray();
152 <        size = elementData.length;
153 <        // c.toArray might (incorrectly) not return Object[] (see 6260652)
154 <        if (elementData.getClass() != Object[].class)
155 <            elementData = Arrays.copyOf(elementData, size, Object[].class);
180 >        elementData = c.toArray();
181 >        if ((size = elementData.length) != 0) {
182 >            // defend against c.toArray (incorrectly) not returning Object[]
183 >            // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
184 >            if (elementData.getClass() != Object[].class)
185 >                elementData = Arrays.copyOf(elementData, size, Object[].class);
186 >        } else {
187 >            // replace with empty array.
188 >            this.elementData = EMPTY_ELEMENTDATA;
189 >        }
190      }
191  
158    private final static Object UNALLOCATED = new Object();
159
192      /**
193 <     * Trims the capacity of this <tt>ArrayList</tt> instance to be the
193 >     * Trims the capacity of this {@code ArrayList} instance to be the
194       * list's current size.  An application can use this operation to minimize
195 <     * the storage of an <tt>ArrayList</tt> instance.
195 >     * the storage of an {@code ArrayList} instance.
196       */
197      public void trimToSize() {
198 <        modCount++;
199 <        int oldCapacity = elementData.length;
200 <        if (size < oldCapacity) {
201 <            elementData = Arrays.copyOf(elementData, size);
202 <        }
198 >        modCount++;
199 >        if (size < elementData.length) {
200 >            elementData = (size == 0)
201 >              ? EMPTY_ELEMENTDATA
202 >              : Arrays.copyOf(elementData, size);
203 >        }
204      }
205  
206      /**
207 <     * Increases the capacity of this <tt>ArrayList</tt> instance, if
207 >     * Increases the capacity of this {@code ArrayList} instance, if
208       * necessary, to ensure that it can hold at least the number of elements
209       * specified by the minimum capacity argument.
210       *
211       * @param minCapacity the desired minimum capacity
212       */
213      public void ensureCapacity(int minCapacity) {
214 <        modCount++;
215 <        if (minCapacity > elementData.length)
216 <            growArray(minCapacity);
214 >        if (minCapacity > elementData.length
215 >            && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
216 >                 && minCapacity <= DEFAULT_CAPACITY)) {
217 >            modCount++;
218 >            grow(minCapacity);
219 >        }
220      }
221  
222      /**
223 <     * Increases the capacity of the array.
223 >     * Increases the capacity to ensure that it can hold at least the
224 >     * number of elements specified by the minimum capacity argument.
225       *
226       * @param minCapacity the desired minimum capacity
227 +     * @throws OutOfMemoryError if minCapacity is less than zero
228       */
229 <    private void growArray(int minCapacity) {
230 <        if (minCapacity < 0)
231 <            throw new OutOfMemoryError(); // int overflow
232 <        int oldCapacity = elementData.length;
233 <        // Double size if small; else grow by 50%
234 <        int newCapacity = ((oldCapacity < 64)?
235 <                           ((oldCapacity + 1) * 2):
236 <                           ((oldCapacity * 3) / 2));
237 <        if (newCapacity < minCapacity)
238 <            newCapacity = minCapacity;
239 <        elementData = Arrays.copyOf(elementData, newCapacity);
229 >    private Object[] grow(int minCapacity) {
230 >        int oldCapacity = elementData.length;
231 >        if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
232 >            int newCapacity = ArraysSupport.newLength(oldCapacity,
233 >                    minCapacity - oldCapacity, /* minimum growth */
234 >                    oldCapacity >> 1           /* preferred growth */);
235 >            return elementData = Arrays.copyOf(elementData, newCapacity);
236 >        } else {
237 >            return elementData = new Object[Math.max(DEFAULT_CAPACITY, minCapacity)];
238 >        }
239 >    }
240 >
241 >    private Object[] grow() {
242 >        return grow(size + 1);
243      }
244  
245      /**
# Line 207 | Line 248 | public class ArrayList<E> extends Abstra
248       * @return the number of elements in this list
249       */
250      public int size() {
251 <        return size;
251 >        return size;
252      }
253  
254      /**
255 <     * Returns <tt>true</tt> if this list contains no elements.
255 >     * Returns {@code true} if this list contains no elements.
256       *
257 <     * @return <tt>true</tt> if this list contains no elements
257 >     * @return {@code true} if this list contains no elements
258       */
259      public boolean isEmpty() {
260 <        return size == 0;
260 >        return size == 0;
261      }
262  
263      /**
264 <     * Returns <tt>true</tt> if this list contains the specified element.
265 <     * More formally, returns <tt>true</tt> if and only if this list contains
266 <     * at least one element <tt>e</tt> such that
267 <     * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
264 >     * Returns {@code true} if this list contains the specified element.
265 >     * More formally, returns {@code true} if and only if this list contains
266 >     * at least one element {@code e} such that
267 >     * {@code Objects.equals(o, e)}.
268       *
269       * @param o element whose presence in this list is to be tested
270 <     * @return <tt>true</tt> if this list contains the specified element
270 >     * @return {@code true} if this list contains the specified element
271       */
272      public boolean contains(Object o) {
273 <        return indexOf(o) >= 0;
273 >        return indexOf(o) >= 0;
274      }
275  
276      /**
277       * Returns the index of the first occurrence of the specified element
278       * in this list, or -1 if this list does not contain the element.
279 <     * More formally, returns the lowest index <tt>i</tt> such that
280 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
279 >     * More formally, returns the lowest index {@code i} such that
280 >     * {@code Objects.equals(o, get(i))},
281       * or -1 if there is no such index.
282       */
283      public int indexOf(Object o) {
284 <        if (o == null) {
285 <            for (int i = 0; i < size; i++)
286 <                if (elementData[i]==null)
287 <                    return i;
288 <        } else {
289 <            for (int i = 0; i < size; i++)
290 <                if (o.equals(elementData[i]))
291 <                    return i;
292 <        }
293 <        return -1;
284 >        return indexOfRange(o, 0, size);
285 >    }
286 >
287 >    int indexOfRange(Object o, int start, int end) {
288 >        Object[] es = elementData;
289 >        if (o == null) {
290 >            for (int i = start; i < end; i++) {
291 >                if (es[i] == null) {
292 >                    return i;
293 >                }
294 >            }
295 >        } else {
296 >            for (int i = start; i < end; i++) {
297 >                if (o.equals(es[i])) {
298 >                    return i;
299 >                }
300 >            }
301 >        }
302 >        return -1;
303      }
304  
305      /**
306       * Returns the index of the last occurrence of the specified element
307       * in this list, or -1 if this list does not contain the element.
308 <     * More formally, returns the highest index <tt>i</tt> such that
309 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>,
308 >     * More formally, returns the highest index {@code i} such that
309 >     * {@code Objects.equals(o, get(i))},
310       * or -1 if there is no such index.
311       */
312      public int lastIndexOf(Object o) {
313 <        if (o == null) {
314 <            for (int i = size-1; i >= 0; i--)
315 <                if (elementData[i]==null)
316 <                    return i;
317 <        } else {
318 <            for (int i = size-1; i >= 0; i--)
319 <                if (o.equals(elementData[i]))
320 <                    return i;
321 <        }
322 <        return -1;
313 >        return lastIndexOfRange(o, 0, size);
314 >    }
315 >
316 >    int lastIndexOfRange(Object o, int start, int end) {
317 >        Object[] es = elementData;
318 >        if (o == null) {
319 >            for (int i = end - 1; i >= start; i--) {
320 >                if (es[i] == null) {
321 >                    return i;
322 >                }
323 >            }
324 >        } else {
325 >            for (int i = end - 1; i >= start; i--) {
326 >                if (o.equals(es[i])) {
327 >                    return i;
328 >                }
329 >            }
330 >        }
331 >        return -1;
332      }
333  
334      /**
335 <     * Returns a shallow copy of this <tt>ArrayList</tt> instance.  (The
335 >     * Returns a shallow copy of this {@code ArrayList} instance.  (The
336       * elements themselves are not copied.)
337       *
338 <     * @return a clone of this <tt>ArrayList</tt> instance
338 >     * @return a clone of this {@code ArrayList} instance
339       */
340      public Object clone() {
341 <        try {
342 <            ArrayList<E> v = (ArrayList<E>) super.clone();
343 <            v.elementData = Arrays.copyOf(elementData, size);
344 <            v.modCount = 0;
345 <            return v;
346 <        } catch (CloneNotSupportedException e) {
347 <            // this shouldn't happen, since we are Cloneable
348 <            throw new InternalError();
349 <        }
341 >        try {
342 >            ArrayList<?> v = (ArrayList<?>) super.clone();
343 >            v.elementData = Arrays.copyOf(elementData, size);
344 >            v.modCount = 0;
345 >            return v;
346 >        } catch (CloneNotSupportedException e) {
347 >            // this shouldn't happen, since we are Cloneable
348 >            throw new InternalError(e);
349 >        }
350      }
351  
352      /**
# Line 319 | Line 378 | public class ArrayList<E> extends Abstra
378       * <p>If the list fits in the specified array with room to spare
379       * (i.e., the array has more elements than the list), the element in
380       * the array immediately following the end of the collection is set to
381 <     * <tt>null</tt>.  (This is useful in determining the length of the
381 >     * {@code null}.  (This is useful in determining the length of the
382       * list <i>only</i> if the caller knows that the list does not contain
383       * any null elements.)
384       *
# Line 332 | Line 391 | public class ArrayList<E> extends Abstra
391       *         this list
392       * @throws NullPointerException if the specified array is null
393       */
394 +    @SuppressWarnings("unchecked")
395      public <T> T[] toArray(T[] a) {
396          if (a.length < size)
397              // Make a new array of a's runtime type, but my contents:
398              return (T[]) Arrays.copyOf(elementData, size, a.getClass());
399 <        System.arraycopy(elementData, 0, a, 0, size);
399 >        System.arraycopy(elementData, 0, a, 0, size);
400          if (a.length > size)
401              a[size] = null;
402          return a;
# Line 344 | Line 404 | public class ArrayList<E> extends Abstra
404  
405      // Positional Access Operations
406  
407 <    /**
408 <     * Returns error message string for IndexOutOfBoundsExceptions
409 <     */
410 <    private String ioobe(int index) {
411 <        return "Index: " + index + ", Size: " + size;
407 >    @SuppressWarnings("unchecked")
408 >    E elementData(int index) {
409 >        return (E) elementData[index];
410 >    }
411 >
412 >    @SuppressWarnings("unchecked")
413 >    static <E> E elementAt(Object[] es, int index) {
414 >        return (E) es[index];
415      }
416  
417      /**
# Line 359 | Line 422 | public class ArrayList<E> extends Abstra
422       * @throws IndexOutOfBoundsException {@inheritDoc}
423       */
424      public E get(int index) {
425 <        if (index >= size)
426 <            throw new IndexOutOfBoundsException(ioobe(index));
364 <        return (E)elementData[index];
425 >        Objects.checkIndex(index, size);
426 >        return elementData(index);
427      }
428  
429      /**
# Line 374 | Line 436 | public class ArrayList<E> extends Abstra
436       * @throws IndexOutOfBoundsException {@inheritDoc}
437       */
438      public E set(int index, E element) {
439 <        if (index >= size)
440 <            throw new IndexOutOfBoundsException(ioobe(index));
439 >        Objects.checkIndex(index, size);
440 >        E oldValue = elementData(index);
441 >        elementData[index] = element;
442 >        return oldValue;
443 >    }
444  
445 <        E oldValue = (E) elementData[index];
446 <        elementData[index] = element;
447 <        return oldValue;
445 >    /**
446 >     * This helper method split out from add(E) to keep method
447 >     * bytecode size under 35 (the -XX:MaxInlineSize default value),
448 >     * which helps when add(E) is called in a C1-compiled loop.
449 >     */
450 >    private void add(E e, Object[] elementData, int s) {
451 >        if (s == elementData.length)
452 >            elementData = grow();
453 >        elementData[s] = e;
454 >        size = s + 1;
455      }
456  
457      /**
458       * Appends the specified element to the end of this list.
459       *
460       * @param e element to be appended to this list
461 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
461 >     * @return {@code true} (as specified by {@link Collection#add})
462       */
463      public boolean add(E e) {
464          modCount++;
465 <        int s = size;
466 <        if (s >= elementData.length)
395 <            growArray(s + 1);
396 <        elementData[s] = e;
397 <        size = s + 1;
398 <        return true;
465 >        add(e, elementData, size);
466 >        return true;
467      }
468  
469      /**
# Line 408 | Line 476 | public class ArrayList<E> extends Abstra
476       * @throws IndexOutOfBoundsException {@inheritDoc}
477       */
478      public void add(int index, E element) {
479 <        int s = size;
412 <        if (index > s || index < 0)
413 <            throw new IndexOutOfBoundsException(ioobe(index));
479 >        rangeCheckForAdd(index);
480          modCount++;
481 <        if (s >= elementData.length)
482 <            growArray(s + 1);
483 <        System.arraycopy(elementData, index,
484 <                         elementData, index + 1, s - index);
485 <        elementData[index] = element;
481 >        final int s;
482 >        Object[] elementData;
483 >        if ((s = size) == (elementData = this.elementData).length)
484 >            elementData = grow();
485 >        System.arraycopy(elementData, index,
486 >                         elementData, index + 1,
487 >                         s - index);
488 >        elementData[index] = element;
489          size = s + 1;
490 +        // checkInvariants();
491      }
492  
493      /**
# Line 430 | Line 500 | public class ArrayList<E> extends Abstra
500       * @throws IndexOutOfBoundsException {@inheritDoc}
501       */
502      public E remove(int index) {
503 <        int s = size - 1;
504 <        if (index > s)
505 <            throw new IndexOutOfBoundsException(ioobe(index));
506 <        modCount++;
507 <        E oldValue = (E)elementData[index];
508 <        int numMoved = s - index;
509 <        if (numMoved > 0)
510 <            System.arraycopy(elementData, index + 1,
511 <                             elementData, index, numMoved);
512 <        elementData[s] = null;
513 <        size = s;
514 <        return oldValue;
503 >        Objects.checkIndex(index, size);
504 >        final Object[] es = elementData;
505 >
506 >        @SuppressWarnings("unchecked") E oldValue = (E) es[index];
507 >        fastRemove(es, index);
508 >
509 >        // checkInvariants();
510 >        return oldValue;
511 >    }
512 >
513 >    /**
514 >     * {@inheritDoc}
515 >     */
516 >    public boolean equals(Object o) {
517 >        if (o == this) {
518 >            return true;
519 >        }
520 >
521 >        if (!(o instanceof List)) {
522 >            return false;
523 >        }
524 >
525 >        final int expectedModCount = modCount;
526 >        // ArrayList can be subclassed and given arbitrary behavior, but we can
527 >        // still deal with the common case where o is ArrayList precisely
528 >        boolean equal = (o.getClass() == ArrayList.class)
529 >            ? equalsArrayList((ArrayList<?>) o)
530 >            : equalsRange((List<?>) o, 0, size);
531 >
532 >        checkForComodification(expectedModCount);
533 >        return equal;
534 >    }
535 >
536 >    boolean equalsRange(List<?> other, int from, int to) {
537 >        final Object[] es = elementData;
538 >        if (to > es.length) {
539 >            throw new ConcurrentModificationException();
540 >        }
541 >        var oit = other.iterator();
542 >        for (; from < to; from++) {
543 >            if (!oit.hasNext() || !Objects.equals(es[from], oit.next())) {
544 >                return false;
545 >            }
546 >        }
547 >        return !oit.hasNext();
548 >    }
549 >
550 >    private boolean equalsArrayList(ArrayList<?> other) {
551 >        final int otherModCount = other.modCount;
552 >        final int s = size;
553 >        boolean equal;
554 >        if (equal = (s == other.size)) {
555 >            final Object[] otherEs = other.elementData;
556 >            final Object[] es = elementData;
557 >            if (s > es.length || s > otherEs.length) {
558 >                throw new ConcurrentModificationException();
559 >            }
560 >            for (int i = 0; i < s; i++) {
561 >                if (!Objects.equals(es[i], otherEs[i])) {
562 >                    equal = false;
563 >                    break;
564 >                }
565 >            }
566 >        }
567 >        other.checkForComodification(otherModCount);
568 >        return equal;
569 >    }
570 >
571 >    private void checkForComodification(final int expectedModCount) {
572 >        if (modCount != expectedModCount) {
573 >            throw new ConcurrentModificationException();
574 >        }
575 >    }
576 >
577 >    /**
578 >     * {@inheritDoc}
579 >     */
580 >    public int hashCode() {
581 >        int expectedModCount = modCount;
582 >        int hash = hashCodeRange(0, size);
583 >        checkForComodification(expectedModCount);
584 >        return hash;
585 >    }
586 >
587 >    int hashCodeRange(int from, int to) {
588 >        final Object[] es = elementData;
589 >        if (to > es.length) {
590 >            throw new ConcurrentModificationException();
591 >        }
592 >        int hashCode = 1;
593 >        for (int i = from; i < to; i++) {
594 >            Object e = es[i];
595 >            hashCode = 31 * hashCode + (e == null ? 0 : e.hashCode());
596 >        }
597 >        return hashCode;
598      }
599  
600      /**
601       * Removes the first occurrence of the specified element from this list,
602       * if it is present.  If the list does not contain the element, it is
603       * unchanged.  More formally, removes the element with the lowest index
604 <     * <tt>i</tt> such that
605 <     * <tt>(o==null&nbsp;?&nbsp;get(i)==null&nbsp;:&nbsp;o.equals(get(i)))</tt>
606 <     * (if such an element exists).  Returns <tt>true</tt> if this list
604 >     * {@code i} such that
605 >     * {@code Objects.equals(o, get(i))}
606 >     * (if such an element exists).  Returns {@code true} if this list
607       * contained the specified element (or equivalently, if this list
608       * changed as a result of the call).
609       *
610       * @param o element to be removed from this list, if present
611 <     * @return <tt>true</tt> if this list contained the specified element
611 >     * @return {@code true} if this list contained the specified element
612       */
613      public boolean remove(Object o) {
614 <        if (o == null) {
615 <            for (int index = 0; index < size; index++)
616 <                if (elementData[index] == null) {
617 <                    fastRemove(index);
618 <                    return true;
619 <                }
620 <        } else {
621 <            for (int index = 0; index < size; index++)
622 <                if (o.equals(elementData[index])) {
623 <                    fastRemove(index);
624 <                    return true;
625 <                }
614 >        final Object[] es = elementData;
615 >        final int size = this.size;
616 >        int i = 0;
617 >        found: {
618 >            if (o == null) {
619 >                for (; i < size; i++)
620 >                    if (es[i] == null)
621 >                        break found;
622 >            } else {
623 >                for (; i < size; i++)
624 >                    if (o.equals(es[i]))
625 >                        break found;
626 >            }
627 >            return false;
628          }
629 <        return false;
629 >        fastRemove(es, i);
630 >        return true;
631      }
632  
633 <    /*
633 >    /**
634       * Private remove method that skips bounds checking and does not
635       * return the value removed.
636       */
637 <    private void fastRemove(int index) {
637 >    private void fastRemove(Object[] es, int i) {
638          modCount++;
639 <        int numMoved = size - index - 1;
640 <        if (numMoved > 0)
641 <            System.arraycopy(elementData, index+1, elementData, index,
642 <                             numMoved);
487 <        elementData[--size] = null; // Let gc do its work
639 >        final int newSize;
640 >        if ((newSize = size - 1) > i)
641 >            System.arraycopy(es, i + 1, es, i, newSize - i);
642 >        es[size = newSize] = null;
643      }
644  
645      /**
# Line 492 | Line 647 | public class ArrayList<E> extends Abstra
647       * be empty after this call returns.
648       */
649      public void clear() {
650 <        modCount++;
651 <
652 <        // Let gc do its work
653 <        for (int i = 0; i < size; i++)
499 <            elementData[i] = null;
500 <
501 <        size = 0;
650 >        modCount++;
651 >        final Object[] es = elementData;
652 >        for (int to = size, i = size = 0; i < to; i++)
653 >            es[i] = null;
654      }
655  
656      /**
# Line 511 | Line 663 | public class ArrayList<E> extends Abstra
663       * list is nonempty.)
664       *
665       * @param c collection containing elements to be added to this list
666 <     * @return <tt>true</tt> if this list changed as a result of the call
666 >     * @return {@code true} if this list changed as a result of the call
667       * @throws NullPointerException if the specified collection is null
668       */
669      public boolean addAll(Collection<? extends E> c) {
670 <        Object[] a = c.toArray();
670 >        Object[] a = c.toArray();
671 >        modCount++;
672          int numNew = a.length;
673 <        ensureCapacity(size + numNew);  // Increments modCount
674 <        System.arraycopy(a, 0, elementData, size, numNew);
675 <        size += numNew;
676 <        return numNew != 0;
673 >        if (numNew == 0)
674 >            return false;
675 >        Object[] elementData;
676 >        final int s;
677 >        if (numNew > (elementData = this.elementData).length - (s = size))
678 >            elementData = grow(s + numNew);
679 >        System.arraycopy(a, 0, elementData, s, numNew);
680 >        size = s + numNew;
681 >        // checkInvariants();
682 >        return true;
683      }
684  
685      /**
# Line 534 | Line 693 | public class ArrayList<E> extends Abstra
693       * @param index index at which to insert the first element from the
694       *              specified collection
695       * @param c collection containing elements to be added to this list
696 <     * @return <tt>true</tt> if this list changed as a result of the call
696 >     * @return {@code true} if this list changed as a result of the call
697       * @throws IndexOutOfBoundsException {@inheritDoc}
698       * @throws NullPointerException if the specified collection is null
699       */
700      public boolean addAll(int index, Collection<? extends E> c) {
701 <        if (index > size || index < 0)
543 <            throw new IndexOutOfBoundsException(ioobe(index));
701 >        rangeCheckForAdd(index);
702  
703 <        Object[] a = c.toArray();
704 <        int numNew = a.length;
705 <        ensureCapacity(size + numNew);  // Increments modCount
706 <
707 <        int numMoved = size - index;
708 <        if (numMoved > 0)
709 <            System.arraycopy(elementData, index, elementData, index + numNew,
710 <                             numMoved);
703 >        Object[] a = c.toArray();
704 >        modCount++;
705 >        int numNew = a.length;
706 >        if (numNew == 0)
707 >            return false;
708 >        Object[] elementData;
709 >        final int s;
710 >        if (numNew > (elementData = this.elementData).length - (s = size))
711 >            elementData = grow(s + numNew);
712  
713 +        int numMoved = s - index;
714 +        if (numMoved > 0)
715 +            System.arraycopy(elementData, index,
716 +                             elementData, index + numNew,
717 +                             numMoved);
718          System.arraycopy(a, 0, elementData, index, numNew);
719 <        size += numNew;
720 <        return numNew != 0;
719 >        size = s + numNew;
720 >        // checkInvariants();
721 >        return true;
722      }
723  
724      /**
725       * Removes from this list all of the elements whose index is between
726 <     * <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive.
726 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
727       * Shifts any succeeding elements to the left (reduces their index).
728 <     * This call shortens the list by <tt>(toIndex - fromIndex)</tt> elements.
729 <     * (If <tt>toIndex==fromIndex</tt>, this operation has no effect.)
728 >     * This call shortens the list by {@code (toIndex - fromIndex)} elements.
729 >     * (If {@code toIndex==fromIndex}, this operation has no effect.)
730       *
731 <     * @param fromIndex index of first element to be removed
732 <     * @param toIndex index after last element to be removed
733 <     * @throws IndexOutOfBoundsException if fromIndex or toIndex out of
734 <     *              range (fromIndex &lt; 0 || fromIndex &gt;= size() || toIndex
735 <     *              &gt; size() || toIndex &lt; fromIndex)
731 >     * @throws IndexOutOfBoundsException if {@code fromIndex} or
732 >     *         {@code toIndex} is out of range
733 >     *         ({@code fromIndex < 0 ||
734 >     *          toIndex > size() ||
735 >     *          toIndex < fromIndex})
736       */
737      protected void removeRange(int fromIndex, int toIndex) {
738 <        modCount++;
739 <        int numMoved = size - toIndex;
740 <        System.arraycopy(elementData, toIndex, elementData, fromIndex,
741 <                         numMoved);
738 >        if (fromIndex > toIndex) {
739 >            throw new IndexOutOfBoundsException(
740 >                    outOfBoundsMsg(fromIndex, toIndex));
741 >        }
742 >        modCount++;
743 >        shiftTailOverGap(elementData, fromIndex, toIndex);
744 >        // checkInvariants();
745 >    }
746 >
747 >    /** Erases the gap from lo to hi, by sliding down following elements. */
748 >    private void shiftTailOverGap(Object[] es, int lo, int hi) {
749 >        System.arraycopy(es, hi, es, lo, size - hi);
750 >        for (int to = size, i = (size -= hi - lo); i < to; i++)
751 >            es[i] = null;
752 >    }
753 >
754 >    /**
755 >     * A version of rangeCheck used by add and addAll.
756 >     */
757 >    private void rangeCheckForAdd(int index) {
758 >        if (index > size || index < 0)
759 >            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
760 >    }
761 >
762 >    /**
763 >     * Constructs an IndexOutOfBoundsException detail message.
764 >     * Of the many possible refactorings of the error handling code,
765 >     * this "outlining" performs best with both server and client VMs.
766 >     */
767 >    private String outOfBoundsMsg(int index) {
768 >        return "Index: "+index+", Size: "+size;
769 >    }
770 >
771 >    /**
772 >     * A version used in checking (fromIndex > toIndex) condition
773 >     */
774 >    private static String outOfBoundsMsg(int fromIndex, int toIndex) {
775 >        return "From Index: " + fromIndex + " > To Index: " + toIndex;
776 >    }
777 >
778 >    /**
779 >     * Removes from this list all of its elements that are contained in the
780 >     * specified collection.
781 >     *
782 >     * @param c collection containing elements to be removed from this list
783 >     * @return {@code true} if this list changed as a result of the call
784 >     * @throws ClassCastException if the class of an element of this list
785 >     *         is incompatible with the specified collection
786 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
787 >     * @throws NullPointerException if this list contains a null element and the
788 >     *         specified collection does not permit null elements
789 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
790 >     *         or if the specified collection is null
791 >     * @see Collection#contains(Object)
792 >     */
793 >    public boolean removeAll(Collection<?> c) {
794 >        return batchRemove(c, false, 0, size);
795 >    }
796 >
797 >    /**
798 >     * Retains only the elements in this list that are contained in the
799 >     * specified collection.  In other words, removes from this list all
800 >     * of its elements that are not contained in the specified collection.
801 >     *
802 >     * @param c collection containing elements to be retained in this list
803 >     * @return {@code true} if this list changed as a result of the call
804 >     * @throws ClassCastException if the class of an element of this list
805 >     *         is incompatible with the specified collection
806 >     * (<a href="Collection.html#optional-restrictions">optional</a>)
807 >     * @throws NullPointerException if this list contains a null element and the
808 >     *         specified collection does not permit null elements
809 >     * (<a href="Collection.html#optional-restrictions">optional</a>),
810 >     *         or if the specified collection is null
811 >     * @see Collection#contains(Object)
812 >     */
813 >    public boolean retainAll(Collection<?> c) {
814 >        return batchRemove(c, true, 0, size);
815 >    }
816  
817 <        // Let gc do its work
818 <        int newSize = size - (toIndex-fromIndex);
819 <        while (size != newSize)
820 <            elementData[--size] = null;
817 >    boolean batchRemove(Collection<?> c, boolean complement,
818 >                        final int from, final int end) {
819 >        Objects.requireNonNull(c);
820 >        final Object[] es = elementData;
821 >        int r;
822 >        // Optimize for initial run of survivors
823 >        for (r = from;; r++) {
824 >            if (r == end)
825 >                return false;
826 >            if (c.contains(es[r]) != complement)
827 >                break;
828 >        }
829 >        int w = r++;
830 >        try {
831 >            for (Object e; r < end; r++)
832 >                if (c.contains(e = es[r]) == complement)
833 >                    es[w++] = e;
834 >        } catch (Throwable ex) {
835 >            // Preserve behavioral compatibility with AbstractCollection,
836 >            // even if c.contains() throws.
837 >            System.arraycopy(es, r, es, w, end - r);
838 >            w += end - r;
839 >            throw ex;
840 >        } finally {
841 >            modCount += end - w;
842 >            shiftTailOverGap(es, w, end);
843 >        }
844 >        // checkInvariants();
845 >        return true;
846      }
847  
848      /**
849 <     * Save the state of the <tt>ArrayList</tt> instance to a stream (that
850 <     * is, serialize it).
849 >     * Saves the state of the {@code ArrayList} instance to a stream
850 >     * (that is, serializes it).
851       *
852 <     * @serialData The length of the array backing the <tt>ArrayList</tt>
852 >     * @param s the stream
853 >     * @throws java.io.IOException if an I/O error occurs
854 >     * @serialData The length of the array backing the {@code ArrayList}
855       *             instance is emitted (int), followed by all of its elements
856 <     *             (each an <tt>Object</tt>) in the proper order.
856 >     *             (each an {@code Object}) in the proper order.
857       */
858      private void writeObject(java.io.ObjectOutputStream s)
859 <        throws java.io.IOException{
860 <        // Write out element count, and any hidden stuff
861 <        int expectedModCount = modCount;
862 <        s.defaultWriteObject();
859 >        throws java.io.IOException {
860 >        // Write out element count, and any hidden stuff
861 >        int expectedModCount = modCount;
862 >        s.defaultWriteObject();
863  
864 <        // Write out array length
865 <        s.writeInt(elementData.length);
864 >        // Write out size as capacity for behavioral compatibility with clone()
865 >        s.writeInt(size);
866  
867 <        // Write out all elements in the proper order.
868 <        for (int i=0; i<size; i++)
867 >        // Write out all elements in the proper order.
868 >        for (int i=0; i<size; i++) {
869              s.writeObject(elementData[i]);
870 +        }
871  
872 <        if (modCount != expectedModCount) {
872 >        if (modCount != expectedModCount) {
873              throw new ConcurrentModificationException();
874          }
608
875      }
876  
877      /**
878 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
879 <     * deserialize it).
878 >     * Reconstitutes the {@code ArrayList} instance from a stream (that is,
879 >     * deserializes it).
880 >     * @param s the stream
881 >     * @throws ClassNotFoundException if the class of a serialized object
882 >     *         could not be found
883 >     * @throws java.io.IOException if an I/O error occurs
884       */
885      private void readObject(java.io.ObjectInputStream s)
886          throws java.io.IOException, ClassNotFoundException {
617        // Read in size, and any hidden stuff
618        s.defaultReadObject();
887  
888 <        // Read in array length and allocate array
889 <        int arrayLength = s.readInt();
622 <        Object[] a = elementData = new Object[arrayLength];
888 >        // Read in size, and any hidden stuff
889 >        s.defaultReadObject();
890  
891 <        // Read in all elements in the proper order.
892 <        for (int i=0; i<size; i++)
893 <            a[i] = s.readObject();
894 <    }
891 >        // Read in capacity
892 >        s.readInt(); // ignored
893 >
894 >        if (size > 0) {
895 >            // like clone(), allocate array based upon size not capacity
896 >            jsr166.Platform.checkArray(s, Object[].class, size);
897 >            Object[] elements = new Object[size];
898 >
899 >            // Read in all elements in the proper order.
900 >            for (int i = 0; i < size; i++) {
901 >                elements[i] = s.readObject();
902 >            }
903  
904 +            elementData = elements;
905 +        } else if (size == 0) {
906 +            elementData = EMPTY_ELEMENTDATA;
907 +        } else {
908 +            throw new java.io.InvalidObjectException("Invalid size: " + size);
909 +        }
910 +    }
911  
912      /**
913 <     * Returns a list-iterator of the elements in this list (in proper
913 >     * Returns a list iterator over the elements in this list (in proper
914       * sequence), starting at the specified position in the list.
915 <     * Obeys the general contract of <tt>List.listIterator(int)</tt>.<p>
915 >     * The specified index indicates the first element that would be
916 >     * returned by an initial call to {@link ListIterator#next next}.
917 >     * An initial call to {@link ListIterator#previous previous} would
918 >     * return the element with the specified index minus one.
919 >     *
920 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
921       *
635     * The list-iterator is <i>fail-fast</i>: if the list is structurally
636     * modified at any time after the Iterator is created, in any way except
637     * through the list-iterator's own <tt>remove</tt> or <tt>add</tt>
638     * methods, the list-iterator will throw a
639     * <tt>ConcurrentModificationException</tt>.  Thus, in the face of
640     * concurrent modification, the iterator fails quickly and cleanly, rather
641     * than risking arbitrary, non-deterministic behavior at an undetermined
642     * time in the future.
643     *
644     * @param index index of the first element to be returned from the
645     *              list-iterator (by a call to <tt>next</tt>)
646     * @return a ListIterator of the elements in this list (in proper
647     *         sequence), starting at the specified position in the list
922       * @throws IndexOutOfBoundsException {@inheritDoc}
649     * @see List#listIterator(int)
923       */
924      public ListIterator<E> listIterator(int index) {
925 <        if (index < 0 || index > size)
926 <            throw new IndexOutOfBoundsException(ioobe(index));
654 <        return new ArrayListIterator(index);
925 >        rangeCheckForAdd(index);
926 >        return new ListItr(index);
927      }
928  
929      /**
930 <     * {@inheritDoc}
930 >     * Returns a list iterator over the elements in this list (in proper
931 >     * sequence).
932 >     *
933 >     * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
934 >     *
935 >     * @see #listIterator(int)
936       */
937      public ListIterator<E> listIterator() {
938 <        return new ArrayListIterator(0);
938 >        return new ListItr(0);
939      }
940  
941      /**
942       * Returns an iterator over the elements in this list in proper sequence.
943       *
944 +     * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
945 +     *
946       * @return an iterator over the elements in this list in proper sequence
947       */
948      public Iterator<E> iterator() {
949 <        return new ArrayListIterator(0);
949 >        return new Itr();
950      }
951  
952      /**
953 <     * A streamlined version of AbstractList.ListItr
953 >     * An optimized version of AbstractList.Itr
954       */
955 <    final class ArrayListIterator implements ListIterator<E> {
956 <        int cursor;           // index of next element to return;
957 <        int lastRet;          // index of last element, or -1 if no such
958 <        int expectedModCount; // to check for CME
680 <
681 <        ArrayListIterator(int index) {
682 <            cursor = index;
683 <            lastRet = -1;
684 <            expectedModCount = modCount;
685 <        }
955 >    private class Itr implements Iterator<E> {
956 >        int cursor;       // index of next element to return
957 >        int lastRet = -1; // index of last element returned; -1 if no such
958 >        int expectedModCount = modCount;
959  
960 <        public boolean hasNext() {
961 <            return cursor < size;
689 <        }
960 >        // prevent creating a synthetic constructor
961 >        Itr() {}
962  
963 <        public boolean hasPrevious() {
964 <            return cursor > 0;
965 <        }
963 >        public boolean hasNext() {
964 >            return cursor != size;
965 >        }
966  
967 <        public int nextIndex() {
968 <            return cursor;
969 <        }
967 >        @SuppressWarnings("unchecked")
968 >        public E next() {
969 >            checkForComodification();
970 >            int i = cursor;
971 >            if (i >= size)
972 >                throw new NoSuchElementException();
973 >            Object[] elementData = ArrayList.this.elementData;
974 >            if (i >= elementData.length)
975 >                throw new ConcurrentModificationException();
976 >            cursor = i + 1;
977 >            return (E) elementData[lastRet = i];
978 >        }
979  
980 <        public int previousIndex() {
981 <            return cursor - 1;
982 <        }
980 >        public void remove() {
981 >            if (lastRet < 0)
982 >                throw new IllegalStateException();
983 >            checkForComodification();
984  
703        public E next() {
985              try {
986 <                int i = cursor;
987 <                E next = get(i);
988 <                lastRet = i;
989 <                cursor = i + 1;
709 <                return next;
986 >                ArrayList.this.remove(lastRet);
987 >                cursor = lastRet;
988 >                lastRet = -1;
989 >                expectedModCount = modCount;
990              } catch (IndexOutOfBoundsException ex) {
991 <                throw new NoSuchElementException();
992 <            } finally {
993 <                if (expectedModCount != modCount)
991 >                throw new ConcurrentModificationException();
992 >            }
993 >        }
994 >
995 >        @Override
996 >        public void forEachRemaining(Consumer<? super E> action) {
997 >            Objects.requireNonNull(action);
998 >            final int size = ArrayList.this.size;
999 >            int i = cursor;
1000 >            if (i < size) {
1001 >                final Object[] es = elementData;
1002 >                if (i >= es.length)
1003                      throw new ConcurrentModificationException();
1004 +                for (; i < size && modCount == expectedModCount; i++)
1005 +                    action.accept(elementAt(es, i));
1006 +                // update once at end to reduce heap write traffic
1007 +                cursor = i;
1008 +                lastRet = i - 1;
1009 +                checkForComodification();
1010              }
1011 <        }
1011 >        }
1012 >
1013 >        final void checkForComodification() {
1014 >            if (modCount != expectedModCount)
1015 >                throw new ConcurrentModificationException();
1016 >        }
1017 >    }
1018 >
1019 >    /**
1020 >     * An optimized version of AbstractList.ListItr
1021 >     */
1022 >    private class ListItr extends Itr implements ListIterator<E> {
1023 >        ListItr(int index) {
1024 >            super();
1025 >            cursor = index;
1026 >        }
1027 >
1028 >        public boolean hasPrevious() {
1029 >            return cursor != 0;
1030 >        }
1031 >
1032 >        public int nextIndex() {
1033 >            return cursor;
1034 >        }
1035 >
1036 >        public int previousIndex() {
1037 >            return cursor - 1;
1038 >        }
1039 >
1040 >        @SuppressWarnings("unchecked")
1041          public E previous() {
1042 +            checkForComodification();
1043 +            int i = cursor - 1;
1044 +            if (i < 0)
1045 +                throw new NoSuchElementException();
1046 +            Object[] elementData = ArrayList.this.elementData;
1047 +            if (i >= elementData.length)
1048 +                throw new ConcurrentModificationException();
1049 +            cursor = i;
1050 +            return (E) elementData[lastRet = i];
1051 +        }
1052 +
1053 +        public void set(E e) {
1054 +            if (lastRet < 0)
1055 +                throw new IllegalStateException();
1056 +            checkForComodification();
1057 +
1058              try {
1059 <                int i = cursor - 1;
720 <                E next = get(i);
721 <                lastRet = i;
722 <                cursor = i;
723 <                return next;
1059 >                ArrayList.this.set(lastRet, e);
1060              } catch (IndexOutOfBoundsException ex) {
1061 <                throw new NoSuchElementException();
1062 <            } finally {
1061 >                throw new ConcurrentModificationException();
1062 >            }
1063 >        }
1064 >
1065 >        public void add(E e) {
1066 >            checkForComodification();
1067 >
1068 >            try {
1069 >                int i = cursor;
1070 >                ArrayList.this.add(i, e);
1071 >                cursor = i + 1;
1072 >                lastRet = -1;
1073 >                expectedModCount = modCount;
1074 >            } catch (IndexOutOfBoundsException ex) {
1075 >                throw new ConcurrentModificationException();
1076 >            }
1077 >        }
1078 >    }
1079 >
1080 >    /**
1081 >     * Returns a view of the portion of this list between the specified
1082 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.  (If
1083 >     * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1084 >     * empty.)  The returned list is backed by this list, so non-structural
1085 >     * changes in the returned list are reflected in this list, and vice-versa.
1086 >     * The returned list supports all of the optional list operations.
1087 >     *
1088 >     * <p>This method eliminates the need for explicit range operations (of
1089 >     * the sort that commonly exist for arrays).  Any operation that expects
1090 >     * a list can be used as a range operation by passing a subList view
1091 >     * instead of a whole list.  For example, the following idiom
1092 >     * removes a range of elements from a list:
1093 >     * <pre>
1094 >     *      list.subList(from, to).clear();
1095 >     * </pre>
1096 >     * Similar idioms may be constructed for {@link #indexOf(Object)} and
1097 >     * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1098 >     * {@link Collections} class can be applied to a subList.
1099 >     *
1100 >     * <p>The semantics of the list returned by this method become undefined if
1101 >     * the backing list (i.e., this list) is <i>structurally modified</i> in
1102 >     * any way other than via the returned list.  (Structural modifications are
1103 >     * those that change the size of this list, or otherwise perturb it in such
1104 >     * a fashion that iterations in progress may yield incorrect results.)
1105 >     *
1106 >     * @throws IndexOutOfBoundsException {@inheritDoc}
1107 >     * @throws IllegalArgumentException {@inheritDoc}
1108 >     */
1109 >    public List<E> subList(int fromIndex, int toIndex) {
1110 >        subListRangeCheck(fromIndex, toIndex, size);
1111 >        return new SubList<>(this, fromIndex, toIndex);
1112 >    }
1113 >
1114 >    private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1115 >        private final ArrayList<E> root;
1116 >        private final SubList<E> parent;
1117 >        private final int offset;
1118 >        private int size;
1119 >
1120 >        /**
1121 >         * Constructs a sublist of an arbitrary ArrayList.
1122 >         */
1123 >        public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1124 >            this.root = root;
1125 >            this.parent = null;
1126 >            this.offset = fromIndex;
1127 >            this.size = toIndex - fromIndex;
1128 >            this.modCount = root.modCount;
1129 >        }
1130 >
1131 >        /**
1132 >         * Constructs a sublist of another SubList.
1133 >         */
1134 >        private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1135 >            this.root = parent.root;
1136 >            this.parent = parent;
1137 >            this.offset = parent.offset + fromIndex;
1138 >            this.size = toIndex - fromIndex;
1139 >            this.modCount = root.modCount;
1140 >        }
1141 >
1142 >        public E set(int index, E element) {
1143 >            Objects.checkIndex(index, size);
1144 >            checkForComodification();
1145 >            E oldValue = root.elementData(offset + index);
1146 >            root.elementData[offset + index] = element;
1147 >            return oldValue;
1148 >        }
1149 >
1150 >        public E get(int index) {
1151 >            Objects.checkIndex(index, size);
1152 >            checkForComodification();
1153 >            return root.elementData(offset + index);
1154 >        }
1155 >
1156 >        public int size() {
1157 >            checkForComodification();
1158 >            return size;
1159 >        }
1160 >
1161 >        public void add(int index, E element) {
1162 >            rangeCheckForAdd(index);
1163 >            checkForComodification();
1164 >            root.add(offset + index, element);
1165 >            updateSizeAndModCount(1);
1166 >        }
1167 >
1168 >        public E remove(int index) {
1169 >            Objects.checkIndex(index, size);
1170 >            checkForComodification();
1171 >            E result = root.remove(offset + index);
1172 >            updateSizeAndModCount(-1);
1173 >            return result;
1174 >        }
1175 >
1176 >        protected void removeRange(int fromIndex, int toIndex) {
1177 >            checkForComodification();
1178 >            root.removeRange(offset + fromIndex, offset + toIndex);
1179 >            updateSizeAndModCount(fromIndex - toIndex);
1180 >        }
1181 >
1182 >        public boolean addAll(Collection<? extends E> c) {
1183 >            return addAll(this.size, c);
1184 >        }
1185 >
1186 >        public boolean addAll(int index, Collection<? extends E> c) {
1187 >            rangeCheckForAdd(index);
1188 >            int cSize = c.size();
1189 >            if (cSize==0)
1190 >                return false;
1191 >            checkForComodification();
1192 >            root.addAll(offset + index, c);
1193 >            updateSizeAndModCount(cSize);
1194 >            return true;
1195 >        }
1196 >
1197 >        public void replaceAll(UnaryOperator<E> operator) {
1198 >            root.replaceAllRange(operator, offset, offset + size);
1199 >        }
1200 >
1201 >        public boolean removeAll(Collection<?> c) {
1202 >            return batchRemove(c, false);
1203 >        }
1204 >
1205 >        public boolean retainAll(Collection<?> c) {
1206 >            return batchRemove(c, true);
1207 >        }
1208 >
1209 >        private boolean batchRemove(Collection<?> c, boolean complement) {
1210 >            checkForComodification();
1211 >            int oldSize = root.size;
1212 >            boolean modified =
1213 >                root.batchRemove(c, complement, offset, offset + size);
1214 >            if (modified)
1215 >                updateSizeAndModCount(root.size - oldSize);
1216 >            return modified;
1217 >        }
1218 >
1219 >        public boolean removeIf(Predicate<? super E> filter) {
1220 >            checkForComodification();
1221 >            int oldSize = root.size;
1222 >            boolean modified = root.removeIf(filter, offset, offset + size);
1223 >            if (modified)
1224 >                updateSizeAndModCount(root.size - oldSize);
1225 >            return modified;
1226 >        }
1227 >
1228 >        public Object[] toArray() {
1229 >            checkForComodification();
1230 >            return Arrays.copyOfRange(root.elementData, offset, offset + size);
1231 >        }
1232 >
1233 >        @SuppressWarnings("unchecked")
1234 >        public <T> T[] toArray(T[] a) {
1235 >            checkForComodification();
1236 >            if (a.length < size)
1237 >                return (T[]) Arrays.copyOfRange(
1238 >                        root.elementData, offset, offset + size, a.getClass());
1239 >            System.arraycopy(root.elementData, offset, a, 0, size);
1240 >            if (a.length > size)
1241 >                a[size] = null;
1242 >            return a;
1243 >        }
1244 >
1245 >        public boolean equals(Object o) {
1246 >            if (o == this) {
1247 >                return true;
1248 >            }
1249 >
1250 >            if (!(o instanceof List)) {
1251 >                return false;
1252 >            }
1253 >
1254 >            boolean equal = root.equalsRange((List<?>)o, offset, offset + size);
1255 >            checkForComodification();
1256 >            return equal;
1257 >        }
1258 >
1259 >        public int hashCode() {
1260 >            int hash = root.hashCodeRange(offset, offset + size);
1261 >            checkForComodification();
1262 >            return hash;
1263 >        }
1264 >
1265 >        public int indexOf(Object o) {
1266 >            int index = root.indexOfRange(o, offset, offset + size);
1267 >            checkForComodification();
1268 >            return index >= 0 ? index - offset : -1;
1269 >        }
1270 >
1271 >        public int lastIndexOf(Object o) {
1272 >            int index = root.lastIndexOfRange(o, offset, offset + size);
1273 >            checkForComodification();
1274 >            return index >= 0 ? index - offset : -1;
1275 >        }
1276 >
1277 >        public boolean contains(Object o) {
1278 >            return indexOf(o) >= 0;
1279 >        }
1280 >
1281 >        public Iterator<E> iterator() {
1282 >            return listIterator();
1283 >        }
1284 >
1285 >        public ListIterator<E> listIterator(int index) {
1286 >            checkForComodification();
1287 >            rangeCheckForAdd(index);
1288 >
1289 >            return new ListIterator<E>() {
1290 >                int cursor = index;
1291 >                int lastRet = -1;
1292 >                int expectedModCount = root.modCount;
1293 >
1294 >                public boolean hasNext() {
1295 >                    return cursor != SubList.this.size;
1296 >                }
1297 >
1298 >                @SuppressWarnings("unchecked")
1299 >                public E next() {
1300 >                    checkForComodification();
1301 >                    int i = cursor;
1302 >                    if (i >= SubList.this.size)
1303 >                        throw new NoSuchElementException();
1304 >                    Object[] elementData = root.elementData;
1305 >                    if (offset + i >= elementData.length)
1306 >                        throw new ConcurrentModificationException();
1307 >                    cursor = i + 1;
1308 >                    return (E) elementData[offset + (lastRet = i)];
1309 >                }
1310 >
1311 >                public boolean hasPrevious() {
1312 >                    return cursor != 0;
1313 >                }
1314 >
1315 >                @SuppressWarnings("unchecked")
1316 >                public E previous() {
1317 >                    checkForComodification();
1318 >                    int i = cursor - 1;
1319 >                    if (i < 0)
1320 >                        throw new NoSuchElementException();
1321 >                    Object[] elementData = root.elementData;
1322 >                    if (offset + i >= elementData.length)
1323 >                        throw new ConcurrentModificationException();
1324 >                    cursor = i;
1325 >                    return (E) elementData[offset + (lastRet = i)];
1326 >                }
1327 >
1328 >                public void forEachRemaining(Consumer<? super E> action) {
1329 >                    Objects.requireNonNull(action);
1330 >                    final int size = SubList.this.size;
1331 >                    int i = cursor;
1332 >                    if (i < size) {
1333 >                        final Object[] es = root.elementData;
1334 >                        if (offset + i >= es.length)
1335 >                            throw new ConcurrentModificationException();
1336 >                        for (; i < size && modCount == expectedModCount; i++)
1337 >                            action.accept(elementAt(es, offset + i));
1338 >                        // update once at end to reduce heap write traffic
1339 >                        cursor = i;
1340 >                        lastRet = i - 1;
1341 >                        checkForComodification();
1342 >                    }
1343 >                }
1344 >
1345 >                public int nextIndex() {
1346 >                    return cursor;
1347 >                }
1348 >
1349 >                public int previousIndex() {
1350 >                    return cursor - 1;
1351 >                }
1352 >
1353 >                public void remove() {
1354 >                    if (lastRet < 0)
1355 >                        throw new IllegalStateException();
1356 >                    checkForComodification();
1357 >
1358 >                    try {
1359 >                        SubList.this.remove(lastRet);
1360 >                        cursor = lastRet;
1361 >                        lastRet = -1;
1362 >                        expectedModCount = root.modCount;
1363 >                    } catch (IndexOutOfBoundsException ex) {
1364 >                        throw new ConcurrentModificationException();
1365 >                    }
1366 >                }
1367 >
1368 >                public void set(E e) {
1369 >                    if (lastRet < 0)
1370 >                        throw new IllegalStateException();
1371 >                    checkForComodification();
1372 >
1373 >                    try {
1374 >                        root.set(offset + lastRet, e);
1375 >                    } catch (IndexOutOfBoundsException ex) {
1376 >                        throw new ConcurrentModificationException();
1377 >                    }
1378 >                }
1379 >
1380 >                public void add(E e) {
1381 >                    checkForComodification();
1382 >
1383 >                    try {
1384 >                        int i = cursor;
1385 >                        SubList.this.add(i, e);
1386 >                        cursor = i + 1;
1387 >                        lastRet = -1;
1388 >                        expectedModCount = root.modCount;
1389 >                    } catch (IndexOutOfBoundsException ex) {
1390 >                        throw new ConcurrentModificationException();
1391 >                    }
1392 >                }
1393 >
1394 >                final void checkForComodification() {
1395 >                    if (root.modCount != expectedModCount)
1396 >                        throw new ConcurrentModificationException();
1397 >                }
1398 >            };
1399 >        }
1400 >
1401 >        public List<E> subList(int fromIndex, int toIndex) {
1402 >            subListRangeCheck(fromIndex, toIndex, size);
1403 >            return new SubList<>(this, fromIndex, toIndex);
1404 >        }
1405 >
1406 >        private void rangeCheckForAdd(int index) {
1407 >            if (index < 0 || index > this.size)
1408 >                throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1409 >        }
1410 >
1411 >        private String outOfBoundsMsg(int index) {
1412 >            return "Index: "+index+", Size: "+this.size;
1413 >        }
1414 >
1415 >        private void checkForComodification() {
1416 >            if (root.modCount != modCount)
1417 >                throw new ConcurrentModificationException();
1418 >        }
1419 >
1420 >        private void updateSizeAndModCount(int sizeChange) {
1421 >            SubList<E> slist = this;
1422 >            do {
1423 >                slist.size += sizeChange;
1424 >                slist.modCount = root.modCount;
1425 >                slist = slist.parent;
1426 >            } while (slist != null);
1427 >        }
1428 >
1429 >        public Spliterator<E> spliterator() {
1430 >            checkForComodification();
1431 >
1432 >            // ArrayListSpliterator not used here due to late-binding
1433 >            return new Spliterator<E>() {
1434 >                private int index = offset; // current index, modified on advance/split
1435 >                private int fence = -1; // -1 until used; then one past last index
1436 >                private int expectedModCount; // initialized when fence set
1437 >
1438 >                private int getFence() { // initialize fence to size on first use
1439 >                    int hi; // (a specialized variant appears in method forEach)
1440 >                    if ((hi = fence) < 0) {
1441 >                        expectedModCount = modCount;
1442 >                        hi = fence = offset + size;
1443 >                    }
1444 >                    return hi;
1445 >                }
1446 >
1447 >                public ArrayList<E>.ArrayListSpliterator trySplit() {
1448 >                    int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1449 >                    // ArrayListSpliterator can be used here as the source is already bound
1450 >                    return (lo >= mid) ? null : // divide range in half unless too small
1451 >                        root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1452 >                }
1453 >
1454 >                public boolean tryAdvance(Consumer<? super E> action) {
1455 >                    Objects.requireNonNull(action);
1456 >                    int hi = getFence(), i = index;
1457 >                    if (i < hi) {
1458 >                        index = i + 1;
1459 >                        @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1460 >                        action.accept(e);
1461 >                        if (root.modCount != expectedModCount)
1462 >                            throw new ConcurrentModificationException();
1463 >                        return true;
1464 >                    }
1465 >                    return false;
1466 >                }
1467 >
1468 >                public void forEachRemaining(Consumer<? super E> action) {
1469 >                    Objects.requireNonNull(action);
1470 >                    int i, hi, mc; // hoist accesses and checks from loop
1471 >                    ArrayList<E> lst = root;
1472 >                    Object[] a;
1473 >                    if ((a = lst.elementData) != null) {
1474 >                        if ((hi = fence) < 0) {
1475 >                            mc = modCount;
1476 >                            hi = offset + size;
1477 >                        }
1478 >                        else
1479 >                            mc = expectedModCount;
1480 >                        if ((i = index) >= 0 && (index = hi) <= a.length) {
1481 >                            for (; i < hi; ++i) {
1482 >                                @SuppressWarnings("unchecked") E e = (E) a[i];
1483 >                                action.accept(e);
1484 >                            }
1485 >                            if (lst.modCount == mc)
1486 >                                return;
1487 >                        }
1488 >                    }
1489 >                    throw new ConcurrentModificationException();
1490 >                }
1491 >
1492 >                public long estimateSize() {
1493 >                    return getFence() - index;
1494 >                }
1495 >
1496 >                public int characteristics() {
1497 >                    return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1498 >                }
1499 >            };
1500 >        }
1501 >    }
1502 >
1503 >    /**
1504 >     * @throws NullPointerException {@inheritDoc}
1505 >     */
1506 >    @Override
1507 >    public void forEach(Consumer<? super E> action) {
1508 >        Objects.requireNonNull(action);
1509 >        final int expectedModCount = modCount;
1510 >        final Object[] es = elementData;
1511 >        final int size = this.size;
1512 >        for (int i = 0; modCount == expectedModCount && i < size; i++)
1513 >            action.accept(elementAt(es, i));
1514 >        if (modCount != expectedModCount)
1515 >            throw new ConcurrentModificationException();
1516 >    }
1517 >
1518 >    /**
1519 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1520 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1521 >     * list.
1522 >     *
1523 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1524 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1525 >     * Overriding implementations should document the reporting of additional
1526 >     * characteristic values.
1527 >     *
1528 >     * @return a {@code Spliterator} over the elements in this list
1529 >     * @since 1.8
1530 >     */
1531 >    @Override
1532 >    public Spliterator<E> spliterator() {
1533 >        return new ArrayListSpliterator(0, -1, 0);
1534 >    }
1535 >
1536 >    /** Index-based split-by-two, lazily initialized Spliterator */
1537 >    final class ArrayListSpliterator implements Spliterator<E> {
1538 >
1539 >        /*
1540 >         * If ArrayLists were immutable, or structurally immutable (no
1541 >         * adds, removes, etc), we could implement their spliterators
1542 >         * with Arrays.spliterator. Instead we detect as much
1543 >         * interference during traversal as practical without
1544 >         * sacrificing much performance. We rely primarily on
1545 >         * modCounts. These are not guaranteed to detect concurrency
1546 >         * violations, and are sometimes overly conservative about
1547 >         * within-thread interference, but detect enough problems to
1548 >         * be worthwhile in practice. To carry this out, we (1) lazily
1549 >         * initialize fence and expectedModCount until the latest
1550 >         * point that we need to commit to the state we are checking
1551 >         * against; thus improving precision.  (This doesn't apply to
1552 >         * SubLists, that create spliterators with current non-lazy
1553 >         * values).  (2) We perform only a single
1554 >         * ConcurrentModificationException check at the end of forEach
1555 >         * (the most performance-sensitive method). When using forEach
1556 >         * (as opposed to iterators), we can normally only detect
1557 >         * interference after actions, not before. Further
1558 >         * CME-triggering checks apply to all other possible
1559 >         * violations of assumptions for example null or too-small
1560 >         * elementData array given its size(), that could only have
1561 >         * occurred due to interference.  This allows the inner loop
1562 >         * of forEach to run without any further checks, and
1563 >         * simplifies lambda-resolution. While this does entail a
1564 >         * number of checks, note that in the common case of
1565 >         * list.stream().forEach(a), no checks or other computation
1566 >         * occur anywhere other than inside forEach itself.  The other
1567 >         * less-often-used methods cannot take advantage of most of
1568 >         * these streamlinings.
1569 >         */
1570 >
1571 >        private int index; // current index, modified on advance/split
1572 >        private int fence; // -1 until used; then one past last index
1573 >        private int expectedModCount; // initialized when fence set
1574 >
1575 >        /** Creates new spliterator covering the given range. */
1576 >        ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1577 >            this.index = origin;
1578 >            this.fence = fence;
1579 >            this.expectedModCount = expectedModCount;
1580 >        }
1581 >
1582 >        private int getFence() { // initialize fence to size on first use
1583 >            int hi; // (a specialized variant appears in method forEach)
1584 >            if ((hi = fence) < 0) {
1585 >                expectedModCount = modCount;
1586 >                hi = fence = size;
1587 >            }
1588 >            return hi;
1589 >        }
1590 >
1591 >        public ArrayListSpliterator trySplit() {
1592 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1593 >            return (lo >= mid) ? null : // divide range in half unless too small
1594 >                new ArrayListSpliterator(lo, index = mid, expectedModCount);
1595 >        }
1596 >
1597 >        public boolean tryAdvance(Consumer<? super E> action) {
1598 >            if (action == null)
1599 >                throw new NullPointerException();
1600 >            int hi = getFence(), i = index;
1601 >            if (i < hi) {
1602 >                index = i + 1;
1603 >                @SuppressWarnings("unchecked") E e = (E)elementData[i];
1604 >                action.accept(e);
1605                  if (modCount != expectedModCount)
1606                      throw new ConcurrentModificationException();
1607 +                return true;
1608              }
1609 +            return false;
1610          }
1611  
1612 <        public void remove() {
1613 <            if (lastRet < 0)
1614 <                throw new IllegalStateException();
1612 >        public void forEachRemaining(Consumer<? super E> action) {
1613 >            int i, hi, mc; // hoist accesses and checks from loop
1614 >            Object[] a;
1615 >            if (action == null)
1616 >                throw new NullPointerException();
1617 >            if ((a = elementData) != null) {
1618 >                if ((hi = fence) < 0) {
1619 >                    mc = modCount;
1620 >                    hi = size;
1621 >                }
1622 >                else
1623 >                    mc = expectedModCount;
1624 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
1625 >                    for (; i < hi; ++i) {
1626 >                        @SuppressWarnings("unchecked") E e = (E) a[i];
1627 >                        action.accept(e);
1628 >                    }
1629 >                    if (modCount == mc)
1630 >                        return;
1631 >                }
1632 >            }
1633 >            throw new ConcurrentModificationException();
1634 >        }
1635 >
1636 >        public long estimateSize() {
1637 >            return getFence() - index;
1638 >        }
1639 >
1640 >        public int characteristics() {
1641 >            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1642 >        }
1643 >    }
1644 >
1645 >    // A tiny bit set implementation
1646 >
1647 >    private static long[] nBits(int n) {
1648 >        return new long[((n - 1) >> 6) + 1];
1649 >    }
1650 >    private static void setBit(long[] bits, int i) {
1651 >        bits[i >> 6] |= 1L << i;
1652 >    }
1653 >    private static boolean isClear(long[] bits, int i) {
1654 >        return (bits[i >> 6] & (1L << i)) == 0;
1655 >    }
1656 >
1657 >    /**
1658 >     * @throws NullPointerException {@inheritDoc}
1659 >     */
1660 >    @Override
1661 >    public boolean removeIf(Predicate<? super E> filter) {
1662 >        return removeIf(filter, 0, size);
1663 >    }
1664 >
1665 >    /**
1666 >     * Removes all elements satisfying the given predicate, from index
1667 >     * i (inclusive) to index end (exclusive).
1668 >     */
1669 >    boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1670 >        Objects.requireNonNull(filter);
1671 >        int expectedModCount = modCount;
1672 >        final Object[] es = elementData;
1673 >        // Optimize for initial run of survivors
1674 >        for (; i < end && !filter.test(elementAt(es, i)); i++)
1675 >            ;
1676 >        // Tolerate predicates that reentrantly access the collection for
1677 >        // read (but writers still get CME), so traverse once to find
1678 >        // elements to delete, a second pass to physically expunge.
1679 >        if (i < end) {
1680 >            final int beg = i;
1681 >            final long[] deathRow = nBits(end - beg);
1682 >            deathRow[0] = 1L;   // set bit 0
1683 >            for (i = beg + 1; i < end; i++)
1684 >                if (filter.test(elementAt(es, i)))
1685 >                    setBit(deathRow, i - beg);
1686              if (modCount != expectedModCount)
1687                  throw new ConcurrentModificationException();
1688 <            ArrayList.this.remove(lastRet);
1689 <            if (lastRet < cursor)
1690 <                cursor--;
1691 <            lastRet = -1;
1692 <            expectedModCount = modCount;
1693 <        }
1694 <
1695 <        public void set(E e) {
1696 <            if (lastRet < 0)
746 <                throw new IllegalStateException();
1688 >            modCount++;
1689 >            int w = beg;
1690 >            for (i = beg; i < end; i++)
1691 >                if (isClear(deathRow, i - beg))
1692 >                    es[w++] = es[i];
1693 >            shiftTailOverGap(es, w, end);
1694 >            // checkInvariants();
1695 >            return true;
1696 >        } else {
1697              if (modCount != expectedModCount)
1698                  throw new ConcurrentModificationException();
1699 <            ArrayList.this.set(lastRet, e);
1700 <            expectedModCount = modCount;
1701 <        }
1699 >            // checkInvariants();
1700 >            return false;
1701 >        }
1702 >    }
1703  
1704 <        public void add(E e) {
1705 <            if (modCount != expectedModCount)
1706 <                throw new ConcurrentModificationException();
1707 <            ArrayList.this.add(cursor++, e);
1708 <            lastRet = -1;
758 <            expectedModCount = modCount;
759 <        }
1704 >    @Override
1705 >    public void replaceAll(UnaryOperator<E> operator) {
1706 >        replaceAllRange(operator, 0, size);
1707 >        // TODO(8203662): remove increment of modCount from ...
1708 >        modCount++;
1709      }
1710  
1711 +    private void replaceAllRange(UnaryOperator<E> operator, int i, int end) {
1712 +        Objects.requireNonNull(operator);
1713 +        final int expectedModCount = modCount;
1714 +        final Object[] es = elementData;
1715 +        for (; modCount == expectedModCount && i < end; i++)
1716 +            es[i] = operator.apply(elementAt(es, i));
1717 +        if (modCount != expectedModCount)
1718 +            throw new ConcurrentModificationException();
1719 +        // checkInvariants();
1720 +    }
1721 +
1722 +    @Override
1723 +    @SuppressWarnings("unchecked")
1724 +    public void sort(Comparator<? super E> c) {
1725 +        final int expectedModCount = modCount;
1726 +        Arrays.sort((E[]) elementData, 0, size, c);
1727 +        if (modCount != expectedModCount)
1728 +            throw new ConcurrentModificationException();
1729 +        modCount++;
1730 +        // checkInvariants();
1731 +    }
1732 +
1733 +    void checkInvariants() {
1734 +        // assert size >= 0;
1735 +        // assert size == elementData.length || elementData[size] == null;
1736 +    }
1737   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines