ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.38
Committed: Sat Nov 12 20:51:59 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.37: +4 -6 lines
Log Message:
code golf

File Contents

# Content
1 /*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31
32 /**
33 * Resizable-array implementation of the {@code List} interface. Implements
34 * all optional list operations, and permits all elements, including
35 * {@code null}. In addition to implementing the {@code List} interface,
36 * this class provides methods to manipulate the size of the array that is
37 * used internally to store the list. (This class is roughly equivalent to
38 * {@code Vector}, except that it is unsynchronized.)
39 *
40 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 * {@code iterator}, and {@code listIterator} operations run in constant
42 * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 * that is, adding n elements requires O(n) time. All of the other operations
44 * run in linear time (roughly speaking). The constant factor is low compared
45 * to that for the {@code LinkedList} implementation.
46 *
47 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 * the size of the array used to store the elements in the list. It is always
49 * at least as large as the list size. As elements are added to an ArrayList,
50 * its capacity grows automatically. The details of the growth policy are not
51 * specified beyond the fact that adding an element has constant amortized
52 * time cost.
53 *
54 * <p>An application can increase the capacity of an {@code ArrayList} instance
55 * before adding a large number of elements using the {@code ensureCapacity}
56 * operation. This may reduce the amount of incremental reallocation.
57 *
58 * <p><strong>Note that this implementation is not synchronized.</strong>
59 * If multiple threads access an {@code ArrayList} instance concurrently,
60 * and at least one of the threads modifies the list structurally, it
61 * <i>must</i> be synchronized externally. (A structural modification is
62 * any operation that adds or deletes one or more elements, or explicitly
63 * resizes the backing array; merely setting the value of an element is not
64 * a structural modification.) This is typically accomplished by
65 * synchronizing on some object that naturally encapsulates the list.
66 *
67 * If no such object exists, the list should be "wrapped" using the
68 * {@link Collections#synchronizedList Collections.synchronizedList}
69 * method. This is best done at creation time, to prevent accidental
70 * unsynchronized access to the list:<pre>
71 * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72 *
73 * <p id="fail-fast">
74 * The iterators returned by this class's {@link #iterator() iterator} and
75 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 * if the list is structurally modified at any time after the iterator is
77 * created, in any way except through the iterator's own
78 * {@link ListIterator#remove() remove} or
79 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 * {@link ConcurrentModificationException}. Thus, in the face of
81 * concurrent modification, the iterator fails quickly and cleanly, rather
82 * than risking arbitrary, non-deterministic behavior at an undetermined
83 * time in the future.
84 *
85 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 * as it is, generally speaking, impossible to make any hard guarantees in the
87 * presence of unsynchronized concurrent modification. Fail-fast iterators
88 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 * Therefore, it would be wrong to write a program that depended on this
90 * exception for its correctness: <i>the fail-fast behavior of iterators
91 * should be used only to detect bugs.</i>
92 *
93 * <p>This class is a member of the
94 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 * Java Collections Framework</a>.
96 *
97 * @param <E> the type of elements in this list
98 *
99 * @author Josh Bloch
100 * @author Neal Gafter
101 * @see Collection
102 * @see List
103 * @see LinkedList
104 * @see Vector
105 * @since 1.2
106 */
107 public class ArrayList<E> extends AbstractList<E>
108 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109 {
110 private static final long serialVersionUID = 8683452581122892189L;
111
112 /**
113 * Default initial capacity.
114 */
115 private static final int DEFAULT_CAPACITY = 10;
116
117 /**
118 * Shared empty array instance used for empty instances.
119 */
120 private static final Object[] EMPTY_ELEMENTDATA = {};
121
122 /**
123 * Shared empty array instance used for default sized empty instances. We
124 * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 * first element is added.
126 */
127 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128
129 /**
130 * The array buffer into which the elements of the ArrayList are stored.
131 * The capacity of the ArrayList is the length of this array buffer. Any
132 * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 * will be expanded to DEFAULT_CAPACITY when the first element is added.
134 */
135 transient Object[] elementData; // non-private to simplify nested class access
136
137 /**
138 * The size of the ArrayList (the number of elements it contains).
139 *
140 * @serial
141 */
142 private int size;
143
144 /**
145 * Constructs an empty list with the specified initial capacity.
146 *
147 * @param initialCapacity the initial capacity of the list
148 * @throws IllegalArgumentException if the specified initial capacity
149 * is negative
150 */
151 public ArrayList(int initialCapacity) {
152 if (initialCapacity > 0) {
153 this.elementData = new Object[initialCapacity];
154 } else if (initialCapacity == 0) {
155 this.elementData = EMPTY_ELEMENTDATA;
156 } else {
157 throw new IllegalArgumentException("Illegal Capacity: "+
158 initialCapacity);
159 }
160 }
161
162 /**
163 * Constructs an empty list with an initial capacity of ten.
164 */
165 public ArrayList() {
166 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167 }
168
169 /**
170 * Constructs a list containing the elements of the specified
171 * collection, in the order they are returned by the collection's
172 * iterator.
173 *
174 * @param c the collection whose elements are to be placed into this list
175 * @throws NullPointerException if the specified collection is null
176 */
177 public ArrayList(Collection<? extends E> c) {
178 elementData = c.toArray();
179 if ((size = elementData.length) != 0) {
180 // defend against c.toArray (incorrectly) not returning Object[]
181 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 if (elementData.getClass() != Object[].class)
183 elementData = Arrays.copyOf(elementData, size, Object[].class);
184 } else {
185 // replace with empty array.
186 this.elementData = EMPTY_ELEMENTDATA;
187 }
188 }
189
190 /**
191 * Trims the capacity of this {@code ArrayList} instance to be the
192 * list's current size. An application can use this operation to minimize
193 * the storage of an {@code ArrayList} instance.
194 */
195 public void trimToSize() {
196 modCount++;
197 if (size < elementData.length) {
198 elementData = (size == 0)
199 ? EMPTY_ELEMENTDATA
200 : Arrays.copyOf(elementData, size);
201 }
202 }
203
204 /**
205 * Increases the capacity of this {@code ArrayList} instance, if
206 * necessary, to ensure that it can hold at least the number of elements
207 * specified by the minimum capacity argument.
208 *
209 * @param minCapacity the desired minimum capacity
210 */
211 public void ensureCapacity(int minCapacity) {
212 if (minCapacity > elementData.length
213 && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 && minCapacity <= DEFAULT_CAPACITY)) {
215 modCount++;
216 grow(minCapacity);
217 }
218 }
219
220 /**
221 * The maximum size of array to allocate (unless necessary).
222 * Some VMs reserve some header words in an array.
223 * Attempts to allocate larger arrays may result in
224 * OutOfMemoryError: Requested array size exceeds VM limit
225 */
226 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227
228 /**
229 * Increases the capacity to ensure that it can hold at least the
230 * number of elements specified by the minimum capacity argument.
231 *
232 * @param minCapacity the desired minimum capacity
233 * @throws OutOfMemoryError if minCapacity is less than zero
234 */
235 private Object[] grow(int minCapacity) {
236 return elementData = Arrays.copyOf(elementData,
237 newCapacity(minCapacity));
238 }
239
240 private Object[] grow() {
241 return grow(size + 1);
242 }
243
244 /**
245 * Returns a capacity at least as large as the given minimum capacity.
246 * Returns the current capacity increased by 50% if that suffices.
247 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249 *
250 * @param minCapacity the desired minimum capacity
251 * @throws OutOfMemoryError if minCapacity is less than zero
252 */
253 private int newCapacity(int minCapacity) {
254 // overflow-conscious code
255 int oldCapacity = elementData.length;
256 int newCapacity = oldCapacity + (oldCapacity >> 1);
257 if (newCapacity - minCapacity <= 0) {
258 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 return Math.max(DEFAULT_CAPACITY, minCapacity);
260 if (minCapacity < 0) // overflow
261 throw new OutOfMemoryError();
262 return minCapacity;
263 }
264 return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 ? newCapacity
266 : hugeCapacity(minCapacity);
267 }
268
269 private static int hugeCapacity(int minCapacity) {
270 if (minCapacity < 0) // overflow
271 throw new OutOfMemoryError();
272 return (minCapacity > MAX_ARRAY_SIZE)
273 ? Integer.MAX_VALUE
274 : MAX_ARRAY_SIZE;
275 }
276
277 /**
278 * Returns the number of elements in this list.
279 *
280 * @return the number of elements in this list
281 */
282 public int size() {
283 return size;
284 }
285
286 /**
287 * Returns {@code true} if this list contains no elements.
288 *
289 * @return {@code true} if this list contains no elements
290 */
291 public boolean isEmpty() {
292 return size == 0;
293 }
294
295 /**
296 * Returns {@code true} if this list contains the specified element.
297 * More formally, returns {@code true} if and only if this list contains
298 * at least one element {@code e} such that
299 * {@code Objects.equals(o, e)}.
300 *
301 * @param o element whose presence in this list is to be tested
302 * @return {@code true} if this list contains the specified element
303 */
304 public boolean contains(Object o) {
305 return indexOf(o) >= 0;
306 }
307
308 /**
309 * Returns the index of the first occurrence of the specified element
310 * in this list, or -1 if this list does not contain the element.
311 * More formally, returns the lowest index {@code i} such that
312 * {@code Objects.equals(o, get(i))},
313 * or -1 if there is no such index.
314 */
315 public int indexOf(Object o) {
316 if (o == null) {
317 for (int i = 0; i < size; i++)
318 if (elementData[i]==null)
319 return i;
320 } else {
321 for (int i = 0; i < size; i++)
322 if (o.equals(elementData[i]))
323 return i;
324 }
325 return -1;
326 }
327
328 /**
329 * Returns the index of the last occurrence of the specified element
330 * in this list, or -1 if this list does not contain the element.
331 * More formally, returns the highest index {@code i} such that
332 * {@code Objects.equals(o, get(i))},
333 * or -1 if there is no such index.
334 */
335 public int lastIndexOf(Object o) {
336 if (o == null) {
337 for (int i = size-1; i >= 0; i--)
338 if (elementData[i]==null)
339 return i;
340 } else {
341 for (int i = size-1; i >= 0; i--)
342 if (o.equals(elementData[i]))
343 return i;
344 }
345 return -1;
346 }
347
348 /**
349 * Returns a shallow copy of this {@code ArrayList} instance. (The
350 * elements themselves are not copied.)
351 *
352 * @return a clone of this {@code ArrayList} instance
353 */
354 public Object clone() {
355 try {
356 ArrayList<?> v = (ArrayList<?>) super.clone();
357 v.elementData = Arrays.copyOf(elementData, size);
358 v.modCount = 0;
359 return v;
360 } catch (CloneNotSupportedException e) {
361 // this shouldn't happen, since we are Cloneable
362 throw new InternalError(e);
363 }
364 }
365
366 /**
367 * Returns an array containing all of the elements in this list
368 * in proper sequence (from first to last element).
369 *
370 * <p>The returned array will be "safe" in that no references to it are
371 * maintained by this list. (In other words, this method must allocate
372 * a new array). The caller is thus free to modify the returned array.
373 *
374 * <p>This method acts as bridge between array-based and collection-based
375 * APIs.
376 *
377 * @return an array containing all of the elements in this list in
378 * proper sequence
379 */
380 public Object[] toArray() {
381 return Arrays.copyOf(elementData, size);
382 }
383
384 /**
385 * Returns an array containing all of the elements in this list in proper
386 * sequence (from first to last element); the runtime type of the returned
387 * array is that of the specified array. If the list fits in the
388 * specified array, it is returned therein. Otherwise, a new array is
389 * allocated with the runtime type of the specified array and the size of
390 * this list.
391 *
392 * <p>If the list fits in the specified array with room to spare
393 * (i.e., the array has more elements than the list), the element in
394 * the array immediately following the end of the collection is set to
395 * {@code null}. (This is useful in determining the length of the
396 * list <i>only</i> if the caller knows that the list does not contain
397 * any null elements.)
398 *
399 * @param a the array into which the elements of the list are to
400 * be stored, if it is big enough; otherwise, a new array of the
401 * same runtime type is allocated for this purpose.
402 * @return an array containing the elements of the list
403 * @throws ArrayStoreException if the runtime type of the specified array
404 * is not a supertype of the runtime type of every element in
405 * this list
406 * @throws NullPointerException if the specified array is null
407 */
408 @SuppressWarnings("unchecked")
409 public <T> T[] toArray(T[] a) {
410 if (a.length < size)
411 // Make a new array of a's runtime type, but my contents:
412 return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 System.arraycopy(elementData, 0, a, 0, size);
414 if (a.length > size)
415 a[size] = null;
416 return a;
417 }
418
419 // Positional Access Operations
420
421 @SuppressWarnings("unchecked")
422 E elementData(int index) {
423 return (E) elementData[index];
424 }
425
426 /**
427 * Returns the element at the specified position in this list.
428 *
429 * @param index index of the element to return
430 * @return the element at the specified position in this list
431 * @throws IndexOutOfBoundsException {@inheritDoc}
432 */
433 public E get(int index) {
434 Objects.checkIndex(index, size);
435 return elementData(index);
436 }
437
438 /**
439 * Replaces the element at the specified position in this list with
440 * the specified element.
441 *
442 * @param index index of the element to replace
443 * @param element element to be stored at the specified position
444 * @return the element previously at the specified position
445 * @throws IndexOutOfBoundsException {@inheritDoc}
446 */
447 public E set(int index, E element) {
448 Objects.checkIndex(index, size);
449 E oldValue = elementData(index);
450 elementData[index] = element;
451 return oldValue;
452 }
453
454 /**
455 * This helper method split out from add(E) to keep method
456 * bytecode size under 35 (the -XX:MaxInlineSize default value),
457 * which helps when add(E) is called in a C1-compiled loop.
458 */
459 private void add(E e, Object[] elementData, int s) {
460 if (s == elementData.length)
461 elementData = grow();
462 elementData[s] = e;
463 size = s + 1;
464 }
465
466 /**
467 * Appends the specified element to the end of this list.
468 *
469 * @param e element to be appended to this list
470 * @return {@code true} (as specified by {@link Collection#add})
471 */
472 public boolean add(E e) {
473 modCount++;
474 add(e, elementData, size);
475 return true;
476 }
477
478 /**
479 * Inserts the specified element at the specified position in this
480 * list. Shifts the element currently at that position (if any) and
481 * any subsequent elements to the right (adds one to their indices).
482 *
483 * @param index index at which the specified element is to be inserted
484 * @param element element to be inserted
485 * @throws IndexOutOfBoundsException {@inheritDoc}
486 */
487 public void add(int index, E element) {
488 rangeCheckForAdd(index);
489 modCount++;
490 final int s;
491 Object[] elementData;
492 if ((s = size) == (elementData = this.elementData).length)
493 elementData = grow();
494 System.arraycopy(elementData, index,
495 elementData, index + 1,
496 s - index);
497 elementData[index] = element;
498 size = s + 1;
499 }
500
501 /**
502 * Removes the element at the specified position in this list.
503 * Shifts any subsequent elements to the left (subtracts one from their
504 * indices).
505 *
506 * @param index the index of the element to be removed
507 * @return the element that was removed from the list
508 * @throws IndexOutOfBoundsException {@inheritDoc}
509 */
510 public E remove(int index) {
511 Objects.checkIndex(index, size);
512
513 modCount++;
514 E oldValue = elementData(index);
515
516 int numMoved = size - index - 1;
517 if (numMoved > 0)
518 System.arraycopy(elementData, index+1, elementData, index,
519 numMoved);
520 elementData[--size] = null; // clear to let GC do its work
521
522 return oldValue;
523 }
524
525 /**
526 * Removes the first occurrence of the specified element from this list,
527 * if it is present. If the list does not contain the element, it is
528 * unchanged. More formally, removes the element with the lowest index
529 * {@code i} such that
530 * {@code Objects.equals(o, get(i))}
531 * (if such an element exists). Returns {@code true} if this list
532 * contained the specified element (or equivalently, if this list
533 * changed as a result of the call).
534 *
535 * @param o element to be removed from this list, if present
536 * @return {@code true} if this list contained the specified element
537 */
538 public boolean remove(Object o) {
539 if (o == null) {
540 for (int index = 0; index < size; index++)
541 if (elementData[index] == null) {
542 fastRemove(index);
543 return true;
544 }
545 } else {
546 for (int index = 0; index < size; index++)
547 if (o.equals(elementData[index])) {
548 fastRemove(index);
549 return true;
550 }
551 }
552 return false;
553 }
554
555 /*
556 * Private remove method that skips bounds checking and does not
557 * return the value removed.
558 */
559 private void fastRemove(int index) {
560 modCount++;
561 int numMoved = size - index - 1;
562 if (numMoved > 0)
563 System.arraycopy(elementData, index+1, elementData, index,
564 numMoved);
565 elementData[--size] = null; // clear to let GC do its work
566 }
567
568 /**
569 * Removes all of the elements from this list. The list will
570 * be empty after this call returns.
571 */
572 public void clear() {
573 modCount++;
574
575 // clear to let GC do its work
576 for (int i = 0; i < size; i++)
577 elementData[i] = null;
578
579 size = 0;
580 }
581
582 /**
583 * Appends all of the elements in the specified collection to the end of
584 * this list, in the order that they are returned by the
585 * specified collection's Iterator. The behavior of this operation is
586 * undefined if the specified collection is modified while the operation
587 * is in progress. (This implies that the behavior of this call is
588 * undefined if the specified collection is this list, and this
589 * list is nonempty.)
590 *
591 * @param c collection containing elements to be added to this list
592 * @return {@code true} if this list changed as a result of the call
593 * @throws NullPointerException if the specified collection is null
594 */
595 public boolean addAll(Collection<? extends E> c) {
596 Object[] a = c.toArray();
597 modCount++;
598 int numNew = a.length;
599 if (numNew == 0)
600 return false;
601 Object[] elementData;
602 final int s;
603 if (numNew > (elementData = this.elementData).length - (s = size))
604 elementData = grow(s + numNew);
605 System.arraycopy(a, 0, elementData, s, numNew);
606 size = s + numNew;
607 return true;
608 }
609
610 /**
611 * Inserts all of the elements in the specified collection into this
612 * list, starting at the specified position. Shifts the element
613 * currently at that position (if any) and any subsequent elements to
614 * the right (increases their indices). The new elements will appear
615 * in the list in the order that they are returned by the
616 * specified collection's iterator.
617 *
618 * @param index index at which to insert the first element from the
619 * specified collection
620 * @param c collection containing elements to be added to this list
621 * @return {@code true} if this list changed as a result of the call
622 * @throws IndexOutOfBoundsException {@inheritDoc}
623 * @throws NullPointerException if the specified collection is null
624 */
625 public boolean addAll(int index, Collection<? extends E> c) {
626 rangeCheckForAdd(index);
627
628 Object[] a = c.toArray();
629 modCount++;
630 int numNew = a.length;
631 if (numNew == 0)
632 return false;
633 Object[] elementData;
634 final int s;
635 if (numNew > (elementData = this.elementData).length - (s = size))
636 elementData = grow(s + numNew);
637
638 int numMoved = s - index;
639 if (numMoved > 0)
640 System.arraycopy(elementData, index,
641 elementData, index + numNew,
642 numMoved);
643 System.arraycopy(a, 0, elementData, index, numNew);
644 size = s + numNew;
645 return true;
646 }
647
648 /**
649 * Removes from this list all of the elements whose index is between
650 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
651 * Shifts any succeeding elements to the left (reduces their index).
652 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
653 * (If {@code toIndex==fromIndex}, this operation has no effect.)
654 *
655 * @throws IndexOutOfBoundsException if {@code fromIndex} or
656 * {@code toIndex} is out of range
657 * ({@code fromIndex < 0 ||
658 * toIndex > size() ||
659 * toIndex < fromIndex})
660 */
661 protected void removeRange(int fromIndex, int toIndex) {
662 if (fromIndex > toIndex) {
663 throw new IndexOutOfBoundsException(
664 outOfBoundsMsg(fromIndex, toIndex));
665 }
666 modCount++;
667 int numMoved = size - toIndex;
668 System.arraycopy(elementData, toIndex, elementData, fromIndex,
669 numMoved);
670
671 // clear to let GC do its work
672 int newSize = size - (toIndex-fromIndex);
673 for (int i = newSize; i < size; i++) {
674 elementData[i] = null;
675 }
676 size = newSize;
677 }
678
679 /**
680 * A version of rangeCheck used by add and addAll.
681 */
682 private void rangeCheckForAdd(int index) {
683 if (index > size || index < 0)
684 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
685 }
686
687 /**
688 * Constructs an IndexOutOfBoundsException detail message.
689 * Of the many possible refactorings of the error handling code,
690 * this "outlining" performs best with both server and client VMs.
691 */
692 private String outOfBoundsMsg(int index) {
693 return "Index: "+index+", Size: "+size;
694 }
695
696 /**
697 * A version used in checking (fromIndex > toIndex) condition
698 */
699 private static String outOfBoundsMsg(int fromIndex, int toIndex) {
700 return "From Index: " + fromIndex + " > To Index: " + toIndex;
701 }
702
703 /**
704 * Removes from this list all of its elements that are contained in the
705 * specified collection.
706 *
707 * @param c collection containing elements to be removed from this list
708 * @return {@code true} if this list changed as a result of the call
709 * @throws ClassCastException if the class of an element of this list
710 * is incompatible with the specified collection
711 * (<a href="Collection.html#optional-restrictions">optional</a>)
712 * @throws NullPointerException if this list contains a null element and the
713 * specified collection does not permit null elements
714 * (<a href="Collection.html#optional-restrictions">optional</a>),
715 * or if the specified collection is null
716 * @see Collection#contains(Object)
717 */
718 public boolean removeAll(Collection<?> c) {
719 return batchRemove(c, false);
720 }
721
722 /**
723 * Retains only the elements in this list that are contained in the
724 * specified collection. In other words, removes from this list all
725 * of its elements that are not contained in the specified collection.
726 *
727 * @param c collection containing elements to be retained in this list
728 * @return {@code true} if this list changed as a result of the call
729 * @throws ClassCastException if the class of an element of this list
730 * is incompatible with the specified collection
731 * (<a href="Collection.html#optional-restrictions">optional</a>)
732 * @throws NullPointerException if this list contains a null element and the
733 * specified collection does not permit null elements
734 * (<a href="Collection.html#optional-restrictions">optional</a>),
735 * or if the specified collection is null
736 * @see Collection#contains(Object)
737 */
738 public boolean retainAll(Collection<?> c) {
739 return batchRemove(c, true);
740 }
741
742 private boolean batchRemove(Collection<?> c, boolean complement) {
743 Objects.requireNonNull(c);
744 final Object[] es = elementData;
745 final int size = this.size;
746 final boolean modified;
747 int r;
748 // Optimize for initial run of survivors
749 for (r = 0; r < size && c.contains(es[r]) == complement; r++)
750 ;
751 if (modified = (r < size)) {
752 int w = r++;
753 try {
754 for (Object e; r < size; r++)
755 if (c.contains(e = es[r]) == complement)
756 es[w++] = e;
757 } catch (Throwable ex) {
758 // Preserve behavioral compatibility with AbstractCollection,
759 // even if c.contains() throws.
760 System.arraycopy(es, r, es, w, size - r);
761 w += size - r;
762 throw ex;
763 } finally {
764 modCount += size - w;
765 Arrays.fill(es, (this.size = w), size, null);
766 }
767 }
768 return modified;
769 }
770
771 /**
772 * Save the state of the {@code ArrayList} instance to a stream (that
773 * is, serialize it).
774 *
775 * @serialData The length of the array backing the {@code ArrayList}
776 * instance is emitted (int), followed by all of its elements
777 * (each an {@code Object}) in the proper order.
778 */
779 private void writeObject(java.io.ObjectOutputStream s)
780 throws java.io.IOException{
781 // Write out element count, and any hidden stuff
782 int expectedModCount = modCount;
783 s.defaultWriteObject();
784
785 // Write out size as capacity for behavioural compatibility with clone()
786 s.writeInt(size);
787
788 // Write out all elements in the proper order.
789 for (int i=0; i<size; i++) {
790 s.writeObject(elementData[i]);
791 }
792
793 if (modCount != expectedModCount) {
794 throw new ConcurrentModificationException();
795 }
796 }
797
798 /**
799 * Reconstitute the {@code ArrayList} instance from a stream (that is,
800 * deserialize it).
801 */
802 private void readObject(java.io.ObjectInputStream s)
803 throws java.io.IOException, ClassNotFoundException {
804
805 // Read in size, and any hidden stuff
806 s.defaultReadObject();
807
808 // Read in capacity
809 s.readInt(); // ignored
810
811 if (size > 0) {
812 // like clone(), allocate array based upon size not capacity
813 Object[] elements = new Object[size];
814
815 // Read in all elements in the proper order.
816 for (int i = 0; i < size; i++) {
817 elements[i] = s.readObject();
818 }
819
820 elementData = elements;
821 } else if (size == 0) {
822 elementData = EMPTY_ELEMENTDATA;
823 } else {
824 throw new java.io.InvalidObjectException("Invalid size: " + size);
825 }
826 }
827
828 /**
829 * Returns a list iterator over the elements in this list (in proper
830 * sequence), starting at the specified position in the list.
831 * The specified index indicates the first element that would be
832 * returned by an initial call to {@link ListIterator#next next}.
833 * An initial call to {@link ListIterator#previous previous} would
834 * return the element with the specified index minus one.
835 *
836 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
837 *
838 * @throws IndexOutOfBoundsException {@inheritDoc}
839 */
840 public ListIterator<E> listIterator(int index) {
841 rangeCheckForAdd(index);
842 return new ListItr(index);
843 }
844
845 /**
846 * Returns a list iterator over the elements in this list (in proper
847 * sequence).
848 *
849 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
850 *
851 * @see #listIterator(int)
852 */
853 public ListIterator<E> listIterator() {
854 return new ListItr(0);
855 }
856
857 /**
858 * Returns an iterator over the elements in this list in proper sequence.
859 *
860 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
861 *
862 * @return an iterator over the elements in this list in proper sequence
863 */
864 public Iterator<E> iterator() {
865 return new Itr();
866 }
867
868 /**
869 * An optimized version of AbstractList.Itr
870 */
871 private class Itr implements Iterator<E> {
872 int cursor; // index of next element to return
873 int lastRet = -1; // index of last element returned; -1 if no such
874 int expectedModCount = modCount;
875
876 // prevent creating a synthetic constructor
877 Itr() {}
878
879 public boolean hasNext() {
880 return cursor != size;
881 }
882
883 @SuppressWarnings("unchecked")
884 public E next() {
885 checkForComodification();
886 int i = cursor;
887 if (i >= size)
888 throw new NoSuchElementException();
889 Object[] elementData = ArrayList.this.elementData;
890 if (i >= elementData.length)
891 throw new ConcurrentModificationException();
892 cursor = i + 1;
893 return (E) elementData[lastRet = i];
894 }
895
896 public void remove() {
897 if (lastRet < 0)
898 throw new IllegalStateException();
899 checkForComodification();
900
901 try {
902 ArrayList.this.remove(lastRet);
903 cursor = lastRet;
904 lastRet = -1;
905 expectedModCount = modCount;
906 } catch (IndexOutOfBoundsException ex) {
907 throw new ConcurrentModificationException();
908 }
909 }
910
911 @Override
912 @SuppressWarnings("unchecked")
913 public void forEachRemaining(Consumer<? super E> consumer) {
914 Objects.requireNonNull(consumer);
915 final int size = ArrayList.this.size;
916 int i = cursor;
917 if (i >= size) {
918 return;
919 }
920 final Object[] elementData = ArrayList.this.elementData;
921 if (i >= elementData.length) {
922 throw new ConcurrentModificationException();
923 }
924 while (i != size && modCount == expectedModCount) {
925 consumer.accept((E) elementData[i++]);
926 }
927 // update once at end of iteration to reduce heap write traffic
928 cursor = i;
929 lastRet = i - 1;
930 checkForComodification();
931 }
932
933 final void checkForComodification() {
934 if (modCount != expectedModCount)
935 throw new ConcurrentModificationException();
936 }
937 }
938
939 /**
940 * An optimized version of AbstractList.ListItr
941 */
942 private class ListItr extends Itr implements ListIterator<E> {
943 ListItr(int index) {
944 super();
945 cursor = index;
946 }
947
948 public boolean hasPrevious() {
949 return cursor != 0;
950 }
951
952 public int nextIndex() {
953 return cursor;
954 }
955
956 public int previousIndex() {
957 return cursor - 1;
958 }
959
960 @SuppressWarnings("unchecked")
961 public E previous() {
962 checkForComodification();
963 int i = cursor - 1;
964 if (i < 0)
965 throw new NoSuchElementException();
966 Object[] elementData = ArrayList.this.elementData;
967 if (i >= elementData.length)
968 throw new ConcurrentModificationException();
969 cursor = i;
970 return (E) elementData[lastRet = i];
971 }
972
973 public void set(E e) {
974 if (lastRet < 0)
975 throw new IllegalStateException();
976 checkForComodification();
977
978 try {
979 ArrayList.this.set(lastRet, e);
980 } catch (IndexOutOfBoundsException ex) {
981 throw new ConcurrentModificationException();
982 }
983 }
984
985 public void add(E e) {
986 checkForComodification();
987
988 try {
989 int i = cursor;
990 ArrayList.this.add(i, e);
991 cursor = i + 1;
992 lastRet = -1;
993 expectedModCount = modCount;
994 } catch (IndexOutOfBoundsException ex) {
995 throw new ConcurrentModificationException();
996 }
997 }
998 }
999
1000 /**
1001 * Returns a view of the portion of this list between the specified
1002 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1003 * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1004 * empty.) The returned list is backed by this list, so non-structural
1005 * changes in the returned list are reflected in this list, and vice-versa.
1006 * The returned list supports all of the optional list operations.
1007 *
1008 * <p>This method eliminates the need for explicit range operations (of
1009 * the sort that commonly exist for arrays). Any operation that expects
1010 * a list can be used as a range operation by passing a subList view
1011 * instead of a whole list. For example, the following idiom
1012 * removes a range of elements from a list:
1013 * <pre>
1014 * list.subList(from, to).clear();
1015 * </pre>
1016 * Similar idioms may be constructed for {@link #indexOf(Object)} and
1017 * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1018 * {@link Collections} class can be applied to a subList.
1019 *
1020 * <p>The semantics of the list returned by this method become undefined if
1021 * the backing list (i.e., this list) is <i>structurally modified</i> in
1022 * any way other than via the returned list. (Structural modifications are
1023 * those that change the size of this list, or otherwise perturb it in such
1024 * a fashion that iterations in progress may yield incorrect results.)
1025 *
1026 * @throws IndexOutOfBoundsException {@inheritDoc}
1027 * @throws IllegalArgumentException {@inheritDoc}
1028 */
1029 public List<E> subList(int fromIndex, int toIndex) {
1030 subListRangeCheck(fromIndex, toIndex, size);
1031 return new SubList<>(this, fromIndex, toIndex);
1032 }
1033
1034 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1035 private final ArrayList<E> root;
1036 private final SubList<E> parent;
1037 private final int offset;
1038 private int size;
1039
1040 /**
1041 * Constructs a sublist of an arbitrary ArrayList.
1042 */
1043 public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1044 this.root = root;
1045 this.parent = null;
1046 this.offset = fromIndex;
1047 this.size = toIndex - fromIndex;
1048 this.modCount = root.modCount;
1049 }
1050
1051 /**
1052 * Constructs a sublist of another SubList.
1053 */
1054 private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1055 this.root = parent.root;
1056 this.parent = parent;
1057 this.offset = parent.offset + fromIndex;
1058 this.size = toIndex - fromIndex;
1059 this.modCount = root.modCount;
1060 }
1061
1062 public E set(int index, E element) {
1063 Objects.checkIndex(index, size);
1064 checkForComodification();
1065 E oldValue = root.elementData(offset + index);
1066 root.elementData[offset + index] = element;
1067 return oldValue;
1068 }
1069
1070 public E get(int index) {
1071 Objects.checkIndex(index, size);
1072 checkForComodification();
1073 return root.elementData(offset + index);
1074 }
1075
1076 public int size() {
1077 checkForComodification();
1078 return size;
1079 }
1080
1081 public void add(int index, E element) {
1082 rangeCheckForAdd(index);
1083 checkForComodification();
1084 root.add(offset + index, element);
1085 updateSizeAndModCount(1);
1086 }
1087
1088 public E remove(int index) {
1089 Objects.checkIndex(index, size);
1090 checkForComodification();
1091 E result = root.remove(offset + index);
1092 updateSizeAndModCount(-1);
1093 return result;
1094 }
1095
1096 protected void removeRange(int fromIndex, int toIndex) {
1097 checkForComodification();
1098 root.removeRange(offset + fromIndex, offset + toIndex);
1099 updateSizeAndModCount(fromIndex - toIndex);
1100 }
1101
1102 public boolean addAll(Collection<? extends E> c) {
1103 return addAll(this.size, c);
1104 }
1105
1106 public boolean addAll(int index, Collection<? extends E> c) {
1107 rangeCheckForAdd(index);
1108 int cSize = c.size();
1109 if (cSize==0)
1110 return false;
1111 checkForComodification();
1112 root.addAll(offset + index, c);
1113 updateSizeAndModCount(cSize);
1114 return true;
1115 }
1116
1117 public Iterator<E> iterator() {
1118 return listIterator();
1119 }
1120
1121 public ListIterator<E> listIterator(int index) {
1122 checkForComodification();
1123 rangeCheckForAdd(index);
1124
1125 return new ListIterator<E>() {
1126 int cursor = index;
1127 int lastRet = -1;
1128 int expectedModCount = root.modCount;
1129
1130 public boolean hasNext() {
1131 return cursor != SubList.this.size;
1132 }
1133
1134 @SuppressWarnings("unchecked")
1135 public E next() {
1136 checkForComodification();
1137 int i = cursor;
1138 if (i >= SubList.this.size)
1139 throw new NoSuchElementException();
1140 Object[] elementData = root.elementData;
1141 if (offset + i >= elementData.length)
1142 throw new ConcurrentModificationException();
1143 cursor = i + 1;
1144 return (E) elementData[offset + (lastRet = i)];
1145 }
1146
1147 public boolean hasPrevious() {
1148 return cursor != 0;
1149 }
1150
1151 @SuppressWarnings("unchecked")
1152 public E previous() {
1153 checkForComodification();
1154 int i = cursor - 1;
1155 if (i < 0)
1156 throw new NoSuchElementException();
1157 Object[] elementData = root.elementData;
1158 if (offset + i >= elementData.length)
1159 throw new ConcurrentModificationException();
1160 cursor = i;
1161 return (E) elementData[offset + (lastRet = i)];
1162 }
1163
1164 @SuppressWarnings("unchecked")
1165 public void forEachRemaining(Consumer<? super E> consumer) {
1166 Objects.requireNonNull(consumer);
1167 final int size = SubList.this.size;
1168 int i = cursor;
1169 if (i >= size) {
1170 return;
1171 }
1172 final Object[] elementData = root.elementData;
1173 if (offset + i >= elementData.length) {
1174 throw new ConcurrentModificationException();
1175 }
1176 while (i != size && modCount == expectedModCount) {
1177 consumer.accept((E) elementData[offset + (i++)]);
1178 }
1179 // update once at end of iteration to reduce heap write traffic
1180 lastRet = cursor = i;
1181 checkForComodification();
1182 }
1183
1184 public int nextIndex() {
1185 return cursor;
1186 }
1187
1188 public int previousIndex() {
1189 return cursor - 1;
1190 }
1191
1192 public void remove() {
1193 if (lastRet < 0)
1194 throw new IllegalStateException();
1195 checkForComodification();
1196
1197 try {
1198 SubList.this.remove(lastRet);
1199 cursor = lastRet;
1200 lastRet = -1;
1201 expectedModCount = root.modCount;
1202 } catch (IndexOutOfBoundsException ex) {
1203 throw new ConcurrentModificationException();
1204 }
1205 }
1206
1207 public void set(E e) {
1208 if (lastRet < 0)
1209 throw new IllegalStateException();
1210 checkForComodification();
1211
1212 try {
1213 root.set(offset + lastRet, e);
1214 } catch (IndexOutOfBoundsException ex) {
1215 throw new ConcurrentModificationException();
1216 }
1217 }
1218
1219 public void add(E e) {
1220 checkForComodification();
1221
1222 try {
1223 int i = cursor;
1224 SubList.this.add(i, e);
1225 cursor = i + 1;
1226 lastRet = -1;
1227 expectedModCount = root.modCount;
1228 } catch (IndexOutOfBoundsException ex) {
1229 throw new ConcurrentModificationException();
1230 }
1231 }
1232
1233 final void checkForComodification() {
1234 if (root.modCount != expectedModCount)
1235 throw new ConcurrentModificationException();
1236 }
1237 };
1238 }
1239
1240 public List<E> subList(int fromIndex, int toIndex) {
1241 subListRangeCheck(fromIndex, toIndex, size);
1242 return new SubList<>(this, fromIndex, toIndex);
1243 }
1244
1245 private void rangeCheckForAdd(int index) {
1246 if (index < 0 || index > this.size)
1247 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1248 }
1249
1250 private String outOfBoundsMsg(int index) {
1251 return "Index: "+index+", Size: "+this.size;
1252 }
1253
1254 private void checkForComodification() {
1255 if (root.modCount != modCount)
1256 throw new ConcurrentModificationException();
1257 }
1258
1259 private void updateSizeAndModCount(int sizeChange) {
1260 SubList<E> slist = this;
1261 do {
1262 slist.size += sizeChange;
1263 slist.modCount = root.modCount;
1264 slist = slist.parent;
1265 } while (slist != null);
1266 }
1267
1268 public Spliterator<E> spliterator() {
1269 checkForComodification();
1270
1271 // ArrayListSpliterator is not used because late-binding logic
1272 // is different here
1273 return new Spliterator<>() {
1274 private int index = offset; // current index, modified on advance/split
1275 private int fence = -1; // -1 until used; then one past last index
1276 private int expectedModCount; // initialized when fence set
1277
1278 private int getFence() { // initialize fence to size on first use
1279 int hi; // (a specialized variant appears in method forEach)
1280 if ((hi = fence) < 0) {
1281 expectedModCount = modCount;
1282 hi = fence = offset + size;
1283 }
1284 return hi;
1285 }
1286
1287 public ArrayListSpliterator<E> trySplit() {
1288 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1289 // ArrayListSpliterator could be used here as the source is already bound
1290 return (lo >= mid) ? null : // divide range in half unless too small
1291 new ArrayListSpliterator<>(root, lo, index = mid,
1292 expectedModCount);
1293 }
1294
1295 public boolean tryAdvance(Consumer<? super E> action) {
1296 Objects.requireNonNull(action);
1297 int hi = getFence(), i = index;
1298 if (i < hi) {
1299 index = i + 1;
1300 @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1301 action.accept(e);
1302 if (root.modCount != expectedModCount)
1303 throw new ConcurrentModificationException();
1304 return true;
1305 }
1306 return false;
1307 }
1308
1309 public void forEachRemaining(Consumer<? super E> action) {
1310 Objects.requireNonNull(action);
1311 int i, hi, mc; // hoist accesses and checks from loop
1312 ArrayList<E> lst = root;
1313 Object[] a;
1314 if ((a = lst.elementData) != null) {
1315 if ((hi = fence) < 0) {
1316 mc = modCount;
1317 hi = offset + size;
1318 }
1319 else
1320 mc = expectedModCount;
1321 if ((i = index) >= 0 && (index = hi) <= a.length) {
1322 for (; i < hi; ++i) {
1323 @SuppressWarnings("unchecked") E e = (E) a[i];
1324 action.accept(e);
1325 }
1326 if (lst.modCount == mc)
1327 return;
1328 }
1329 }
1330 throw new ConcurrentModificationException();
1331 }
1332
1333 public long estimateSize() {
1334 return (long) (getFence() - index);
1335 }
1336
1337 public int characteristics() {
1338 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1339 }
1340 };
1341 }
1342 }
1343
1344 @Override
1345 public void forEach(Consumer<? super E> action) {
1346 Objects.requireNonNull(action);
1347 final int expectedModCount = modCount;
1348 @SuppressWarnings("unchecked")
1349 final E[] elementData = (E[]) this.elementData;
1350 final int size = this.size;
1351 for (int i=0; modCount == expectedModCount && i < size; i++) {
1352 action.accept(elementData[i]);
1353 }
1354 if (modCount != expectedModCount) {
1355 throw new ConcurrentModificationException();
1356 }
1357 }
1358
1359 /**
1360 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1361 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1362 * list.
1363 *
1364 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1365 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1366 * Overriding implementations should document the reporting of additional
1367 * characteristic values.
1368 *
1369 * @return a {@code Spliterator} over the elements in this list
1370 * @since 1.8
1371 */
1372 @Override
1373 public Spliterator<E> spliterator() {
1374 return new ArrayListSpliterator<>(this, 0, -1, 0);
1375 }
1376
1377 /** Index-based split-by-two, lazily initialized Spliterator */
1378 static final class ArrayListSpliterator<E> implements Spliterator<E> {
1379
1380 /*
1381 * If ArrayLists were immutable, or structurally immutable (no
1382 * adds, removes, etc), we could implement their spliterators
1383 * with Arrays.spliterator. Instead we detect as much
1384 * interference during traversal as practical without
1385 * sacrificing much performance. We rely primarily on
1386 * modCounts. These are not guaranteed to detect concurrency
1387 * violations, and are sometimes overly conservative about
1388 * within-thread interference, but detect enough problems to
1389 * be worthwhile in practice. To carry this out, we (1) lazily
1390 * initialize fence and expectedModCount until the latest
1391 * point that we need to commit to the state we are checking
1392 * against; thus improving precision. (This doesn't apply to
1393 * SubLists, that create spliterators with current non-lazy
1394 * values). (2) We perform only a single
1395 * ConcurrentModificationException check at the end of forEach
1396 * (the most performance-sensitive method). When using forEach
1397 * (as opposed to iterators), we can normally only detect
1398 * interference after actions, not before. Further
1399 * CME-triggering checks apply to all other possible
1400 * violations of assumptions for example null or too-small
1401 * elementData array given its size(), that could only have
1402 * occurred due to interference. This allows the inner loop
1403 * of forEach to run without any further checks, and
1404 * simplifies lambda-resolution. While this does entail a
1405 * number of checks, note that in the common case of
1406 * list.stream().forEach(a), no checks or other computation
1407 * occur anywhere other than inside forEach itself. The other
1408 * less-often-used methods cannot take advantage of most of
1409 * these streamlinings.
1410 */
1411
1412 private final ArrayList<E> list;
1413 private int index; // current index, modified on advance/split
1414 private int fence; // -1 until used; then one past last index
1415 private int expectedModCount; // initialized when fence set
1416
1417 /** Create new spliterator covering the given range */
1418 ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1419 int expectedModCount) {
1420 this.list = list; // OK if null unless traversed
1421 this.index = origin;
1422 this.fence = fence;
1423 this.expectedModCount = expectedModCount;
1424 }
1425
1426 private int getFence() { // initialize fence to size on first use
1427 int hi; // (a specialized variant appears in method forEach)
1428 ArrayList<E> lst;
1429 if ((hi = fence) < 0) {
1430 if ((lst = list) == null)
1431 hi = fence = 0;
1432 else {
1433 expectedModCount = lst.modCount;
1434 hi = fence = lst.size;
1435 }
1436 }
1437 return hi;
1438 }
1439
1440 public ArrayListSpliterator<E> trySplit() {
1441 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1442 return (lo >= mid) ? null : // divide range in half unless too small
1443 new ArrayListSpliterator<>(list, lo, index = mid,
1444 expectedModCount);
1445 }
1446
1447 public boolean tryAdvance(Consumer<? super E> action) {
1448 if (action == null)
1449 throw new NullPointerException();
1450 int hi = getFence(), i = index;
1451 if (i < hi) {
1452 index = i + 1;
1453 @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1454 action.accept(e);
1455 if (list.modCount != expectedModCount)
1456 throw new ConcurrentModificationException();
1457 return true;
1458 }
1459 return false;
1460 }
1461
1462 public void forEachRemaining(Consumer<? super E> action) {
1463 int i, hi, mc; // hoist accesses and checks from loop
1464 ArrayList<E> lst; Object[] a;
1465 if (action == null)
1466 throw new NullPointerException();
1467 if ((lst = list) != null && (a = lst.elementData) != null) {
1468 if ((hi = fence) < 0) {
1469 mc = lst.modCount;
1470 hi = lst.size;
1471 }
1472 else
1473 mc = expectedModCount;
1474 if ((i = index) >= 0 && (index = hi) <= a.length) {
1475 for (; i < hi; ++i) {
1476 @SuppressWarnings("unchecked") E e = (E) a[i];
1477 action.accept(e);
1478 }
1479 if (lst.modCount == mc)
1480 return;
1481 }
1482 }
1483 throw new ConcurrentModificationException();
1484 }
1485
1486 public long estimateSize() {
1487 return (long) (getFence() - index);
1488 }
1489
1490 public int characteristics() {
1491 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1492 }
1493 }
1494
1495 @SuppressWarnings("unchecked")
1496 @Override
1497 public boolean removeIf(Predicate<? super E> filter) {
1498 Objects.requireNonNull(filter);
1499 int expectedModCount = modCount;
1500 final Object[] es = elementData;
1501 final int size = this.size;
1502 final boolean modified;
1503 int r;
1504 // Optimize for initial run of survivors
1505 for (r = 0; r < size && !filter.test((E) es[r]); r++)
1506 ;
1507 if (modified = (r < size)) {
1508 expectedModCount++;
1509 modCount++;
1510 int w = r++;
1511 try {
1512 for (E e; r < size; r++)
1513 if (!filter.test(e = (E) es[r]))
1514 es[w++] = e;
1515 } catch (Throwable ex) {
1516 // copy remaining elements
1517 System.arraycopy(es, r, es, w, size - r);
1518 w += size - r;
1519 throw ex;
1520 } finally {
1521 Arrays.fill(es, (this.size = w), size, null);
1522 }
1523 }
1524 if (modCount != expectedModCount)
1525 throw new ConcurrentModificationException();
1526 return modified;
1527 }
1528
1529 @Override
1530 @SuppressWarnings("unchecked")
1531 public void replaceAll(UnaryOperator<E> operator) {
1532 Objects.requireNonNull(operator);
1533 final int expectedModCount = modCount;
1534 final int size = this.size;
1535 for (int i=0; modCount == expectedModCount && i < size; i++) {
1536 elementData[i] = operator.apply((E) elementData[i]);
1537 }
1538 if (modCount != expectedModCount) {
1539 throw new ConcurrentModificationException();
1540 }
1541 modCount++;
1542 }
1543
1544 @Override
1545 @SuppressWarnings("unchecked")
1546 public void sort(Comparator<? super E> c) {
1547 final int expectedModCount = modCount;
1548 Arrays.sort((E[]) elementData, 0, size, c);
1549 if (modCount != expectedModCount) {
1550 throw new ConcurrentModificationException();
1551 }
1552 modCount++;
1553 }
1554 }