ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.42
Committed: Mon Nov 14 21:16:43 2016 UTC (7 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.41: +2 -1 lines
Log Message:
8169679: ArrayList.subList().iterator().forEachRemaining() off-by-one-error

File Contents

# Content
1 /*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31
32 /**
33 * Resizable-array implementation of the {@code List} interface. Implements
34 * all optional list operations, and permits all elements, including
35 * {@code null}. In addition to implementing the {@code List} interface,
36 * this class provides methods to manipulate the size of the array that is
37 * used internally to store the list. (This class is roughly equivalent to
38 * {@code Vector}, except that it is unsynchronized.)
39 *
40 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 * {@code iterator}, and {@code listIterator} operations run in constant
42 * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 * that is, adding n elements requires O(n) time. All of the other operations
44 * run in linear time (roughly speaking). The constant factor is low compared
45 * to that for the {@code LinkedList} implementation.
46 *
47 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 * the size of the array used to store the elements in the list. It is always
49 * at least as large as the list size. As elements are added to an ArrayList,
50 * its capacity grows automatically. The details of the growth policy are not
51 * specified beyond the fact that adding an element has constant amortized
52 * time cost.
53 *
54 * <p>An application can increase the capacity of an {@code ArrayList} instance
55 * before adding a large number of elements using the {@code ensureCapacity}
56 * operation. This may reduce the amount of incremental reallocation.
57 *
58 * <p><strong>Note that this implementation is not synchronized.</strong>
59 * If multiple threads access an {@code ArrayList} instance concurrently,
60 * and at least one of the threads modifies the list structurally, it
61 * <i>must</i> be synchronized externally. (A structural modification is
62 * any operation that adds or deletes one or more elements, or explicitly
63 * resizes the backing array; merely setting the value of an element is not
64 * a structural modification.) This is typically accomplished by
65 * synchronizing on some object that naturally encapsulates the list.
66 *
67 * If no such object exists, the list should be "wrapped" using the
68 * {@link Collections#synchronizedList Collections.synchronizedList}
69 * method. This is best done at creation time, to prevent accidental
70 * unsynchronized access to the list:<pre>
71 * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72 *
73 * <p id="fail-fast">
74 * The iterators returned by this class's {@link #iterator() iterator} and
75 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 * if the list is structurally modified at any time after the iterator is
77 * created, in any way except through the iterator's own
78 * {@link ListIterator#remove() remove} or
79 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 * {@link ConcurrentModificationException}. Thus, in the face of
81 * concurrent modification, the iterator fails quickly and cleanly, rather
82 * than risking arbitrary, non-deterministic behavior at an undetermined
83 * time in the future.
84 *
85 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 * as it is, generally speaking, impossible to make any hard guarantees in the
87 * presence of unsynchronized concurrent modification. Fail-fast iterators
88 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 * Therefore, it would be wrong to write a program that depended on this
90 * exception for its correctness: <i>the fail-fast behavior of iterators
91 * should be used only to detect bugs.</i>
92 *
93 * <p>This class is a member of the
94 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 * Java Collections Framework</a>.
96 *
97 * @param <E> the type of elements in this list
98 *
99 * @author Josh Bloch
100 * @author Neal Gafter
101 * @see Collection
102 * @see List
103 * @see LinkedList
104 * @see Vector
105 * @since 1.2
106 */
107 public class ArrayList<E> extends AbstractList<E>
108 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109 {
110 private static final long serialVersionUID = 8683452581122892189L;
111
112 /**
113 * Default initial capacity.
114 */
115 private static final int DEFAULT_CAPACITY = 10;
116
117 /**
118 * Shared empty array instance used for empty instances.
119 */
120 private static final Object[] EMPTY_ELEMENTDATA = {};
121
122 /**
123 * Shared empty array instance used for default sized empty instances. We
124 * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 * first element is added.
126 */
127 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128
129 /**
130 * The array buffer into which the elements of the ArrayList are stored.
131 * The capacity of the ArrayList is the length of this array buffer. Any
132 * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 * will be expanded to DEFAULT_CAPACITY when the first element is added.
134 */
135 transient Object[] elementData; // non-private to simplify nested class access
136
137 /**
138 * The size of the ArrayList (the number of elements it contains).
139 *
140 * @serial
141 */
142 private int size;
143
144 /**
145 * Constructs an empty list with the specified initial capacity.
146 *
147 * @param initialCapacity the initial capacity of the list
148 * @throws IllegalArgumentException if the specified initial capacity
149 * is negative
150 */
151 public ArrayList(int initialCapacity) {
152 if (initialCapacity > 0) {
153 this.elementData = new Object[initialCapacity];
154 } else if (initialCapacity == 0) {
155 this.elementData = EMPTY_ELEMENTDATA;
156 } else {
157 throw new IllegalArgumentException("Illegal Capacity: "+
158 initialCapacity);
159 }
160 }
161
162 /**
163 * Constructs an empty list with an initial capacity of ten.
164 */
165 public ArrayList() {
166 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167 }
168
169 /**
170 * Constructs a list containing the elements of the specified
171 * collection, in the order they are returned by the collection's
172 * iterator.
173 *
174 * @param c the collection whose elements are to be placed into this list
175 * @throws NullPointerException if the specified collection is null
176 */
177 public ArrayList(Collection<? extends E> c) {
178 elementData = c.toArray();
179 if ((size = elementData.length) != 0) {
180 // defend against c.toArray (incorrectly) not returning Object[]
181 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 if (elementData.getClass() != Object[].class)
183 elementData = Arrays.copyOf(elementData, size, Object[].class);
184 } else {
185 // replace with empty array.
186 this.elementData = EMPTY_ELEMENTDATA;
187 }
188 }
189
190 /**
191 * Trims the capacity of this {@code ArrayList} instance to be the
192 * list's current size. An application can use this operation to minimize
193 * the storage of an {@code ArrayList} instance.
194 */
195 public void trimToSize() {
196 modCount++;
197 if (size < elementData.length) {
198 elementData = (size == 0)
199 ? EMPTY_ELEMENTDATA
200 : Arrays.copyOf(elementData, size);
201 }
202 }
203
204 /**
205 * Increases the capacity of this {@code ArrayList} instance, if
206 * necessary, to ensure that it can hold at least the number of elements
207 * specified by the minimum capacity argument.
208 *
209 * @param minCapacity the desired minimum capacity
210 */
211 public void ensureCapacity(int minCapacity) {
212 if (minCapacity > elementData.length
213 && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 && minCapacity <= DEFAULT_CAPACITY)) {
215 modCount++;
216 grow(minCapacity);
217 }
218 }
219
220 /**
221 * The maximum size of array to allocate (unless necessary).
222 * Some VMs reserve some header words in an array.
223 * Attempts to allocate larger arrays may result in
224 * OutOfMemoryError: Requested array size exceeds VM limit
225 */
226 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227
228 /**
229 * Increases the capacity to ensure that it can hold at least the
230 * number of elements specified by the minimum capacity argument.
231 *
232 * @param minCapacity the desired minimum capacity
233 * @throws OutOfMemoryError if minCapacity is less than zero
234 */
235 private Object[] grow(int minCapacity) {
236 return elementData = Arrays.copyOf(elementData,
237 newCapacity(minCapacity));
238 }
239
240 private Object[] grow() {
241 return grow(size + 1);
242 }
243
244 /**
245 * Returns a capacity at least as large as the given minimum capacity.
246 * Returns the current capacity increased by 50% if that suffices.
247 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249 *
250 * @param minCapacity the desired minimum capacity
251 * @throws OutOfMemoryError if minCapacity is less than zero
252 */
253 private int newCapacity(int minCapacity) {
254 // overflow-conscious code
255 int oldCapacity = elementData.length;
256 int newCapacity = oldCapacity + (oldCapacity >> 1);
257 if (newCapacity - minCapacity <= 0) {
258 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 return Math.max(DEFAULT_CAPACITY, minCapacity);
260 if (minCapacity < 0) // overflow
261 throw new OutOfMemoryError();
262 return minCapacity;
263 }
264 return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 ? newCapacity
266 : hugeCapacity(minCapacity);
267 }
268
269 private static int hugeCapacity(int minCapacity) {
270 if (minCapacity < 0) // overflow
271 throw new OutOfMemoryError();
272 return (minCapacity > MAX_ARRAY_SIZE)
273 ? Integer.MAX_VALUE
274 : MAX_ARRAY_SIZE;
275 }
276
277 /**
278 * Returns the number of elements in this list.
279 *
280 * @return the number of elements in this list
281 */
282 public int size() {
283 return size;
284 }
285
286 /**
287 * Returns {@code true} if this list contains no elements.
288 *
289 * @return {@code true} if this list contains no elements
290 */
291 public boolean isEmpty() {
292 return size == 0;
293 }
294
295 /**
296 * Returns {@code true} if this list contains the specified element.
297 * More formally, returns {@code true} if and only if this list contains
298 * at least one element {@code e} such that
299 * {@code Objects.equals(o, e)}.
300 *
301 * @param o element whose presence in this list is to be tested
302 * @return {@code true} if this list contains the specified element
303 */
304 public boolean contains(Object o) {
305 return indexOf(o) >= 0;
306 }
307
308 /**
309 * Returns the index of the first occurrence of the specified element
310 * in this list, or -1 if this list does not contain the element.
311 * More formally, returns the lowest index {@code i} such that
312 * {@code Objects.equals(o, get(i))},
313 * or -1 if there is no such index.
314 */
315 public int indexOf(Object o) {
316 if (o == null) {
317 for (int i = 0; i < size; i++)
318 if (elementData[i]==null)
319 return i;
320 } else {
321 for (int i = 0; i < size; i++)
322 if (o.equals(elementData[i]))
323 return i;
324 }
325 return -1;
326 }
327
328 /**
329 * Returns the index of the last occurrence of the specified element
330 * in this list, or -1 if this list does not contain the element.
331 * More formally, returns the highest index {@code i} such that
332 * {@code Objects.equals(o, get(i))},
333 * or -1 if there is no such index.
334 */
335 public int lastIndexOf(Object o) {
336 if (o == null) {
337 for (int i = size-1; i >= 0; i--)
338 if (elementData[i]==null)
339 return i;
340 } else {
341 for (int i = size-1; i >= 0; i--)
342 if (o.equals(elementData[i]))
343 return i;
344 }
345 return -1;
346 }
347
348 /**
349 * Returns a shallow copy of this {@code ArrayList} instance. (The
350 * elements themselves are not copied.)
351 *
352 * @return a clone of this {@code ArrayList} instance
353 */
354 public Object clone() {
355 try {
356 ArrayList<?> v = (ArrayList<?>) super.clone();
357 v.elementData = Arrays.copyOf(elementData, size);
358 v.modCount = 0;
359 return v;
360 } catch (CloneNotSupportedException e) {
361 // this shouldn't happen, since we are Cloneable
362 throw new InternalError(e);
363 }
364 }
365
366 /**
367 * Returns an array containing all of the elements in this list
368 * in proper sequence (from first to last element).
369 *
370 * <p>The returned array will be "safe" in that no references to it are
371 * maintained by this list. (In other words, this method must allocate
372 * a new array). The caller is thus free to modify the returned array.
373 *
374 * <p>This method acts as bridge between array-based and collection-based
375 * APIs.
376 *
377 * @return an array containing all of the elements in this list in
378 * proper sequence
379 */
380 public Object[] toArray() {
381 return Arrays.copyOf(elementData, size);
382 }
383
384 /**
385 * Returns an array containing all of the elements in this list in proper
386 * sequence (from first to last element); the runtime type of the returned
387 * array is that of the specified array. If the list fits in the
388 * specified array, it is returned therein. Otherwise, a new array is
389 * allocated with the runtime type of the specified array and the size of
390 * this list.
391 *
392 * <p>If the list fits in the specified array with room to spare
393 * (i.e., the array has more elements than the list), the element in
394 * the array immediately following the end of the collection is set to
395 * {@code null}. (This is useful in determining the length of the
396 * list <i>only</i> if the caller knows that the list does not contain
397 * any null elements.)
398 *
399 * @param a the array into which the elements of the list are to
400 * be stored, if it is big enough; otherwise, a new array of the
401 * same runtime type is allocated for this purpose.
402 * @return an array containing the elements of the list
403 * @throws ArrayStoreException if the runtime type of the specified array
404 * is not a supertype of the runtime type of every element in
405 * this list
406 * @throws NullPointerException if the specified array is null
407 */
408 @SuppressWarnings("unchecked")
409 public <T> T[] toArray(T[] a) {
410 if (a.length < size)
411 // Make a new array of a's runtime type, but my contents:
412 return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 System.arraycopy(elementData, 0, a, 0, size);
414 if (a.length > size)
415 a[size] = null;
416 return a;
417 }
418
419 // Positional Access Operations
420
421 @SuppressWarnings("unchecked")
422 E elementData(int index) {
423 return (E) elementData[index];
424 }
425
426 @SuppressWarnings("unchecked")
427 static <E> E elementAt(Object[] es, int index) {
428 return (E) es[index];
429 }
430
431 /**
432 * Returns the element at the specified position in this list.
433 *
434 * @param index index of the element to return
435 * @return the element at the specified position in this list
436 * @throws IndexOutOfBoundsException {@inheritDoc}
437 */
438 public E get(int index) {
439 Objects.checkIndex(index, size);
440 return elementData(index);
441 }
442
443 /**
444 * Replaces the element at the specified position in this list with
445 * the specified element.
446 *
447 * @param index index of the element to replace
448 * @param element element to be stored at the specified position
449 * @return the element previously at the specified position
450 * @throws IndexOutOfBoundsException {@inheritDoc}
451 */
452 public E set(int index, E element) {
453 Objects.checkIndex(index, size);
454 E oldValue = elementData(index);
455 elementData[index] = element;
456 return oldValue;
457 }
458
459 /**
460 * This helper method split out from add(E) to keep method
461 * bytecode size under 35 (the -XX:MaxInlineSize default value),
462 * which helps when add(E) is called in a C1-compiled loop.
463 */
464 private void add(E e, Object[] elementData, int s) {
465 if (s == elementData.length)
466 elementData = grow();
467 elementData[s] = e;
468 size = s + 1;
469 }
470
471 /**
472 * Appends the specified element to the end of this list.
473 *
474 * @param e element to be appended to this list
475 * @return {@code true} (as specified by {@link Collection#add})
476 */
477 public boolean add(E e) {
478 modCount++;
479 add(e, elementData, size);
480 return true;
481 }
482
483 /**
484 * Inserts the specified element at the specified position in this
485 * list. Shifts the element currently at that position (if any) and
486 * any subsequent elements to the right (adds one to their indices).
487 *
488 * @param index index at which the specified element is to be inserted
489 * @param element element to be inserted
490 * @throws IndexOutOfBoundsException {@inheritDoc}
491 */
492 public void add(int index, E element) {
493 rangeCheckForAdd(index);
494 modCount++;
495 final int s;
496 Object[] elementData;
497 if ((s = size) == (elementData = this.elementData).length)
498 elementData = grow();
499 System.arraycopy(elementData, index,
500 elementData, index + 1,
501 s - index);
502 elementData[index] = element;
503 size = s + 1;
504 // checkInvariants();
505 }
506
507 /**
508 * Removes the element at the specified position in this list.
509 * Shifts any subsequent elements to the left (subtracts one from their
510 * indices).
511 *
512 * @param index the index of the element to be removed
513 * @return the element that was removed from the list
514 * @throws IndexOutOfBoundsException {@inheritDoc}
515 */
516 public E remove(int index) {
517 Objects.checkIndex(index, size);
518
519 modCount++;
520 E oldValue = elementData(index);
521
522 int numMoved = size - index - 1;
523 if (numMoved > 0)
524 System.arraycopy(elementData, index+1, elementData, index,
525 numMoved);
526 elementData[--size] = null; // clear to let GC do its work
527
528 // checkInvariants();
529 return oldValue;
530 }
531
532 /**
533 * Removes the first occurrence of the specified element from this list,
534 * if it is present. If the list does not contain the element, it is
535 * unchanged. More formally, removes the element with the lowest index
536 * {@code i} such that
537 * {@code Objects.equals(o, get(i))}
538 * (if such an element exists). Returns {@code true} if this list
539 * contained the specified element (or equivalently, if this list
540 * changed as a result of the call).
541 *
542 * @param o element to be removed from this list, if present
543 * @return {@code true} if this list contained the specified element
544 */
545 public boolean remove(Object o) {
546 if (o == null) {
547 for (int index = 0; index < size; index++)
548 if (elementData[index] == null) {
549 fastRemove(index);
550 return true;
551 }
552 } else {
553 for (int index = 0; index < size; index++)
554 if (o.equals(elementData[index])) {
555 fastRemove(index);
556 return true;
557 }
558 }
559 return false;
560 }
561
562 /**
563 * Private remove method that skips bounds checking and does not
564 * return the value removed.
565 */
566 private void fastRemove(int index) {
567 modCount++;
568 int numMoved = size - index - 1;
569 if (numMoved > 0)
570 System.arraycopy(elementData, index+1, elementData, index,
571 numMoved);
572 elementData[--size] = null; // clear to let GC do its work
573 }
574
575 /**
576 * Removes all of the elements from this list. The list will
577 * be empty after this call returns.
578 */
579 public void clear() {
580 modCount++;
581 Arrays.fill(elementData, 0, size, null);
582 size = 0;
583 }
584
585 /**
586 * Appends all of the elements in the specified collection to the end of
587 * this list, in the order that they are returned by the
588 * specified collection's Iterator. The behavior of this operation is
589 * undefined if the specified collection is modified while the operation
590 * is in progress. (This implies that the behavior of this call is
591 * undefined if the specified collection is this list, and this
592 * list is nonempty.)
593 *
594 * @param c collection containing elements to be added to this list
595 * @return {@code true} if this list changed as a result of the call
596 * @throws NullPointerException if the specified collection is null
597 */
598 public boolean addAll(Collection<? extends E> c) {
599 Object[] a = c.toArray();
600 modCount++;
601 int numNew = a.length;
602 if (numNew == 0)
603 return false;
604 Object[] elementData;
605 final int s;
606 if (numNew > (elementData = this.elementData).length - (s = size))
607 elementData = grow(s + numNew);
608 System.arraycopy(a, 0, elementData, s, numNew);
609 size = s + numNew;
610 // checkInvariants();
611 return true;
612 }
613
614 /**
615 * Inserts all of the elements in the specified collection into this
616 * list, starting at the specified position. Shifts the element
617 * currently at that position (if any) and any subsequent elements to
618 * the right (increases their indices). The new elements will appear
619 * in the list in the order that they are returned by the
620 * specified collection's iterator.
621 *
622 * @param index index at which to insert the first element from the
623 * specified collection
624 * @param c collection containing elements to be added to this list
625 * @return {@code true} if this list changed as a result of the call
626 * @throws IndexOutOfBoundsException {@inheritDoc}
627 * @throws NullPointerException if the specified collection is null
628 */
629 public boolean addAll(int index, Collection<? extends E> c) {
630 rangeCheckForAdd(index);
631
632 Object[] a = c.toArray();
633 modCount++;
634 int numNew = a.length;
635 if (numNew == 0)
636 return false;
637 Object[] elementData;
638 final int s;
639 if (numNew > (elementData = this.elementData).length - (s = size))
640 elementData = grow(s + numNew);
641
642 int numMoved = s - index;
643 if (numMoved > 0)
644 System.arraycopy(elementData, index,
645 elementData, index + numNew,
646 numMoved);
647 System.arraycopy(a, 0, elementData, index, numNew);
648 size = s + numNew;
649 // checkInvariants();
650 return true;
651 }
652
653 /**
654 * Removes from this list all of the elements whose index is between
655 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
656 * Shifts any succeeding elements to the left (reduces their index).
657 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
658 * (If {@code toIndex==fromIndex}, this operation has no effect.)
659 *
660 * @throws IndexOutOfBoundsException if {@code fromIndex} or
661 * {@code toIndex} is out of range
662 * ({@code fromIndex < 0 ||
663 * toIndex > size() ||
664 * toIndex < fromIndex})
665 */
666 protected void removeRange(int fromIndex, int toIndex) {
667 if (fromIndex > toIndex) {
668 throw new IndexOutOfBoundsException(
669 outOfBoundsMsg(fromIndex, toIndex));
670 }
671 modCount++;
672 final Object[] es = elementData;
673 final int oldSize = size;
674 System.arraycopy(es, toIndex, es, fromIndex, oldSize - toIndex);
675 Arrays.fill(es, size -= (toIndex - fromIndex), oldSize, null);
676 // checkInvariants();
677 }
678
679 /**
680 * A version of rangeCheck used by add and addAll.
681 */
682 private void rangeCheckForAdd(int index) {
683 if (index > size || index < 0)
684 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
685 }
686
687 /**
688 * Constructs an IndexOutOfBoundsException detail message.
689 * Of the many possible refactorings of the error handling code,
690 * this "outlining" performs best with both server and client VMs.
691 */
692 private String outOfBoundsMsg(int index) {
693 return "Index: "+index+", Size: "+size;
694 }
695
696 /**
697 * A version used in checking (fromIndex > toIndex) condition
698 */
699 private static String outOfBoundsMsg(int fromIndex, int toIndex) {
700 return "From Index: " + fromIndex + " > To Index: " + toIndex;
701 }
702
703 /**
704 * Removes from this list all of its elements that are contained in the
705 * specified collection.
706 *
707 * @param c collection containing elements to be removed from this list
708 * @return {@code true} if this list changed as a result of the call
709 * @throws ClassCastException if the class of an element of this list
710 * is incompatible with the specified collection
711 * (<a href="Collection.html#optional-restrictions">optional</a>)
712 * @throws NullPointerException if this list contains a null element and the
713 * specified collection does not permit null elements
714 * (<a href="Collection.html#optional-restrictions">optional</a>),
715 * or if the specified collection is null
716 * @see Collection#contains(Object)
717 */
718 public boolean removeAll(Collection<?> c) {
719 return batchRemove(c, false, 0, size);
720 }
721
722 /**
723 * Retains only the elements in this list that are contained in the
724 * specified collection. In other words, removes from this list all
725 * of its elements that are not contained in the specified collection.
726 *
727 * @param c collection containing elements to be retained in this list
728 * @return {@code true} if this list changed as a result of the call
729 * @throws ClassCastException if the class of an element of this list
730 * is incompatible with the specified collection
731 * (<a href="Collection.html#optional-restrictions">optional</a>)
732 * @throws NullPointerException if this list contains a null element and the
733 * specified collection does not permit null elements
734 * (<a href="Collection.html#optional-restrictions">optional</a>),
735 * or if the specified collection is null
736 * @see Collection#contains(Object)
737 */
738 public boolean retainAll(Collection<?> c) {
739 return batchRemove(c, true, 0, size);
740 }
741
742 boolean batchRemove(Collection<?> c, boolean complement,
743 final int from, final int end) {
744 Objects.requireNonNull(c);
745 final Object[] es = elementData;
746 final boolean modified;
747 int r;
748 // Optimize for initial run of survivors
749 for (r = from; r < end && c.contains(es[r]) == complement; r++)
750 ;
751 if (modified = (r < end)) {
752 int w = r++;
753 try {
754 for (Object e; r < end; r++)
755 if (c.contains(e = es[r]) == complement)
756 es[w++] = e;
757 } catch (Throwable ex) {
758 // Preserve behavioral compatibility with AbstractCollection,
759 // even if c.contains() throws.
760 System.arraycopy(es, r, es, w, end - r);
761 w += end - r;
762 throw ex;
763 } finally {
764 final int oldSize = size, deleted = end - w;
765 modCount += deleted;
766 System.arraycopy(es, end, es, w, oldSize - end);
767 Arrays.fill(es, size -= deleted, oldSize, null);
768 }
769 }
770 // checkInvariants();
771 return modified;
772 }
773
774 /**
775 * Save the state of the {@code ArrayList} instance to a stream (that
776 * is, serialize it).
777 *
778 * @serialData The length of the array backing the {@code ArrayList}
779 * instance is emitted (int), followed by all of its elements
780 * (each an {@code Object}) in the proper order.
781 */
782 private void writeObject(java.io.ObjectOutputStream s)
783 throws java.io.IOException{
784 // Write out element count, and any hidden stuff
785 int expectedModCount = modCount;
786 s.defaultWriteObject();
787
788 // Write out size as capacity for behavioural compatibility with clone()
789 s.writeInt(size);
790
791 // Write out all elements in the proper order.
792 for (int i=0; i<size; i++) {
793 s.writeObject(elementData[i]);
794 }
795
796 if (modCount != expectedModCount) {
797 throw new ConcurrentModificationException();
798 }
799 }
800
801 /**
802 * Reconstitute the {@code ArrayList} instance from a stream (that is,
803 * deserialize it).
804 */
805 private void readObject(java.io.ObjectInputStream s)
806 throws java.io.IOException, ClassNotFoundException {
807
808 // Read in size, and any hidden stuff
809 s.defaultReadObject();
810
811 // Read in capacity
812 s.readInt(); // ignored
813
814 if (size > 0) {
815 // like clone(), allocate array based upon size not capacity
816 Object[] elements = new Object[size];
817
818 // Read in all elements in the proper order.
819 for (int i = 0; i < size; i++) {
820 elements[i] = s.readObject();
821 }
822
823 elementData = elements;
824 } else if (size == 0) {
825 elementData = EMPTY_ELEMENTDATA;
826 } else {
827 throw new java.io.InvalidObjectException("Invalid size: " + size);
828 }
829 }
830
831 /**
832 * Returns a list iterator over the elements in this list (in proper
833 * sequence), starting at the specified position in the list.
834 * The specified index indicates the first element that would be
835 * returned by an initial call to {@link ListIterator#next next}.
836 * An initial call to {@link ListIterator#previous previous} would
837 * return the element with the specified index minus one.
838 *
839 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
840 *
841 * @throws IndexOutOfBoundsException {@inheritDoc}
842 */
843 public ListIterator<E> listIterator(int index) {
844 rangeCheckForAdd(index);
845 return new ListItr(index);
846 }
847
848 /**
849 * Returns a list iterator over the elements in this list (in proper
850 * sequence).
851 *
852 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
853 *
854 * @see #listIterator(int)
855 */
856 public ListIterator<E> listIterator() {
857 return new ListItr(0);
858 }
859
860 /**
861 * Returns an iterator over the elements in this list in proper sequence.
862 *
863 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
864 *
865 * @return an iterator over the elements in this list in proper sequence
866 */
867 public Iterator<E> iterator() {
868 return new Itr();
869 }
870
871 /**
872 * An optimized version of AbstractList.Itr
873 */
874 private class Itr implements Iterator<E> {
875 int cursor; // index of next element to return
876 int lastRet = -1; // index of last element returned; -1 if no such
877 int expectedModCount = modCount;
878
879 // prevent creating a synthetic constructor
880 Itr() {}
881
882 public boolean hasNext() {
883 return cursor != size;
884 }
885
886 @SuppressWarnings("unchecked")
887 public E next() {
888 checkForComodification();
889 int i = cursor;
890 if (i >= size)
891 throw new NoSuchElementException();
892 Object[] elementData = ArrayList.this.elementData;
893 if (i >= elementData.length)
894 throw new ConcurrentModificationException();
895 cursor = i + 1;
896 return (E) elementData[lastRet = i];
897 }
898
899 public void remove() {
900 if (lastRet < 0)
901 throw new IllegalStateException();
902 checkForComodification();
903
904 try {
905 ArrayList.this.remove(lastRet);
906 cursor = lastRet;
907 lastRet = -1;
908 expectedModCount = modCount;
909 } catch (IndexOutOfBoundsException ex) {
910 throw new ConcurrentModificationException();
911 }
912 }
913
914 @Override
915 @SuppressWarnings("unchecked")
916 public void forEachRemaining(Consumer<? super E> consumer) {
917 Objects.requireNonNull(consumer);
918 final int size = ArrayList.this.size;
919 int i = cursor;
920 if (i >= size) {
921 return;
922 }
923 final Object[] elementData = ArrayList.this.elementData;
924 if (i >= elementData.length) {
925 throw new ConcurrentModificationException();
926 }
927 while (i != size && modCount == expectedModCount) {
928 consumer.accept((E) elementData[i++]);
929 }
930 // update once at end of iteration to reduce heap write traffic
931 cursor = i;
932 lastRet = i - 1;
933 checkForComodification();
934 }
935
936 final void checkForComodification() {
937 if (modCount != expectedModCount)
938 throw new ConcurrentModificationException();
939 }
940 }
941
942 /**
943 * An optimized version of AbstractList.ListItr
944 */
945 private class ListItr extends Itr implements ListIterator<E> {
946 ListItr(int index) {
947 super();
948 cursor = index;
949 }
950
951 public boolean hasPrevious() {
952 return cursor != 0;
953 }
954
955 public int nextIndex() {
956 return cursor;
957 }
958
959 public int previousIndex() {
960 return cursor - 1;
961 }
962
963 @SuppressWarnings("unchecked")
964 public E previous() {
965 checkForComodification();
966 int i = cursor - 1;
967 if (i < 0)
968 throw new NoSuchElementException();
969 Object[] elementData = ArrayList.this.elementData;
970 if (i >= elementData.length)
971 throw new ConcurrentModificationException();
972 cursor = i;
973 return (E) elementData[lastRet = i];
974 }
975
976 public void set(E e) {
977 if (lastRet < 0)
978 throw new IllegalStateException();
979 checkForComodification();
980
981 try {
982 ArrayList.this.set(lastRet, e);
983 } catch (IndexOutOfBoundsException ex) {
984 throw new ConcurrentModificationException();
985 }
986 }
987
988 public void add(E e) {
989 checkForComodification();
990
991 try {
992 int i = cursor;
993 ArrayList.this.add(i, e);
994 cursor = i + 1;
995 lastRet = -1;
996 expectedModCount = modCount;
997 } catch (IndexOutOfBoundsException ex) {
998 throw new ConcurrentModificationException();
999 }
1000 }
1001 }
1002
1003 /**
1004 * Returns a view of the portion of this list between the specified
1005 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1006 * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1007 * empty.) The returned list is backed by this list, so non-structural
1008 * changes in the returned list are reflected in this list, and vice-versa.
1009 * The returned list supports all of the optional list operations.
1010 *
1011 * <p>This method eliminates the need for explicit range operations (of
1012 * the sort that commonly exist for arrays). Any operation that expects
1013 * a list can be used as a range operation by passing a subList view
1014 * instead of a whole list. For example, the following idiom
1015 * removes a range of elements from a list:
1016 * <pre>
1017 * list.subList(from, to).clear();
1018 * </pre>
1019 * Similar idioms may be constructed for {@link #indexOf(Object)} and
1020 * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1021 * {@link Collections} class can be applied to a subList.
1022 *
1023 * <p>The semantics of the list returned by this method become undefined if
1024 * the backing list (i.e., this list) is <i>structurally modified</i> in
1025 * any way other than via the returned list. (Structural modifications are
1026 * those that change the size of this list, or otherwise perturb it in such
1027 * a fashion that iterations in progress may yield incorrect results.)
1028 *
1029 * @throws IndexOutOfBoundsException {@inheritDoc}
1030 * @throws IllegalArgumentException {@inheritDoc}
1031 */
1032 public List<E> subList(int fromIndex, int toIndex) {
1033 subListRangeCheck(fromIndex, toIndex, size);
1034 return new SubList<>(this, fromIndex, toIndex);
1035 }
1036
1037 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1038 private final ArrayList<E> root;
1039 private final SubList<E> parent;
1040 private final int offset;
1041 private int size;
1042
1043 /**
1044 * Constructs a sublist of an arbitrary ArrayList.
1045 */
1046 public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1047 this.root = root;
1048 this.parent = null;
1049 this.offset = fromIndex;
1050 this.size = toIndex - fromIndex;
1051 this.modCount = root.modCount;
1052 }
1053
1054 /**
1055 * Constructs a sublist of another SubList.
1056 */
1057 private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1058 this.root = parent.root;
1059 this.parent = parent;
1060 this.offset = parent.offset + fromIndex;
1061 this.size = toIndex - fromIndex;
1062 this.modCount = root.modCount;
1063 }
1064
1065 public E set(int index, E element) {
1066 Objects.checkIndex(index, size);
1067 checkForComodification();
1068 E oldValue = root.elementData(offset + index);
1069 root.elementData[offset + index] = element;
1070 return oldValue;
1071 }
1072
1073 public E get(int index) {
1074 Objects.checkIndex(index, size);
1075 checkForComodification();
1076 return root.elementData(offset + index);
1077 }
1078
1079 public int size() {
1080 checkForComodification();
1081 return size;
1082 }
1083
1084 public void add(int index, E element) {
1085 rangeCheckForAdd(index);
1086 checkForComodification();
1087 root.add(offset + index, element);
1088 updateSizeAndModCount(1);
1089 }
1090
1091 public E remove(int index) {
1092 Objects.checkIndex(index, size);
1093 checkForComodification();
1094 E result = root.remove(offset + index);
1095 updateSizeAndModCount(-1);
1096 return result;
1097 }
1098
1099 protected void removeRange(int fromIndex, int toIndex) {
1100 checkForComodification();
1101 root.removeRange(offset + fromIndex, offset + toIndex);
1102 updateSizeAndModCount(fromIndex - toIndex);
1103 }
1104
1105 public boolean addAll(Collection<? extends E> c) {
1106 return addAll(this.size, c);
1107 }
1108
1109 public boolean addAll(int index, Collection<? extends E> c) {
1110 rangeCheckForAdd(index);
1111 int cSize = c.size();
1112 if (cSize==0)
1113 return false;
1114 checkForComodification();
1115 root.addAll(offset + index, c);
1116 updateSizeAndModCount(cSize);
1117 return true;
1118 }
1119
1120 public boolean removeAll(Collection<?> c) {
1121 return batchRemove(c, false);
1122 }
1123
1124 public boolean retainAll(Collection<?> c) {
1125 return batchRemove(c, true);
1126 }
1127
1128 private boolean batchRemove(Collection<?> c, boolean complement) {
1129 checkForComodification();
1130 int oldSize = root.size;
1131 boolean modified =
1132 root.batchRemove(c, complement, offset, offset + size);
1133 if (modified)
1134 updateSizeAndModCount(root.size - oldSize);
1135 return modified;
1136 }
1137
1138 public boolean removeIf(Predicate<? super E> filter) {
1139 checkForComodification();
1140 int oldSize = root.size;
1141 boolean modified = root.removeIf(filter, offset, offset + size);
1142 if (modified)
1143 updateSizeAndModCount(root.size - oldSize);
1144 return modified;
1145 }
1146
1147 public Iterator<E> iterator() {
1148 return listIterator();
1149 }
1150
1151 public ListIterator<E> listIterator(int index) {
1152 checkForComodification();
1153 rangeCheckForAdd(index);
1154
1155 return new ListIterator<E>() {
1156 int cursor = index;
1157 int lastRet = -1;
1158 int expectedModCount = root.modCount;
1159
1160 public boolean hasNext() {
1161 return cursor != SubList.this.size;
1162 }
1163
1164 @SuppressWarnings("unchecked")
1165 public E next() {
1166 checkForComodification();
1167 int i = cursor;
1168 if (i >= SubList.this.size)
1169 throw new NoSuchElementException();
1170 Object[] elementData = root.elementData;
1171 if (offset + i >= elementData.length)
1172 throw new ConcurrentModificationException();
1173 cursor = i + 1;
1174 return (E) elementData[offset + (lastRet = i)];
1175 }
1176
1177 public boolean hasPrevious() {
1178 return cursor != 0;
1179 }
1180
1181 @SuppressWarnings("unchecked")
1182 public E previous() {
1183 checkForComodification();
1184 int i = cursor - 1;
1185 if (i < 0)
1186 throw new NoSuchElementException();
1187 Object[] elementData = root.elementData;
1188 if (offset + i >= elementData.length)
1189 throw new ConcurrentModificationException();
1190 cursor = i;
1191 return (E) elementData[offset + (lastRet = i)];
1192 }
1193
1194 @SuppressWarnings("unchecked")
1195 public void forEachRemaining(Consumer<? super E> consumer) {
1196 Objects.requireNonNull(consumer);
1197 final int size = SubList.this.size;
1198 int i = cursor;
1199 if (i >= size) {
1200 return;
1201 }
1202 final Object[] elementData = root.elementData;
1203 if (offset + i >= elementData.length) {
1204 throw new ConcurrentModificationException();
1205 }
1206 while (i != size && modCount == expectedModCount) {
1207 consumer.accept((E) elementData[offset + (i++)]);
1208 }
1209 // update once at end of iteration to reduce heap write traffic
1210 cursor = i;
1211 lastRet = i - 1;
1212 checkForComodification();
1213 }
1214
1215 public int nextIndex() {
1216 return cursor;
1217 }
1218
1219 public int previousIndex() {
1220 return cursor - 1;
1221 }
1222
1223 public void remove() {
1224 if (lastRet < 0)
1225 throw new IllegalStateException();
1226 checkForComodification();
1227
1228 try {
1229 SubList.this.remove(lastRet);
1230 cursor = lastRet;
1231 lastRet = -1;
1232 expectedModCount = root.modCount;
1233 } catch (IndexOutOfBoundsException ex) {
1234 throw new ConcurrentModificationException();
1235 }
1236 }
1237
1238 public void set(E e) {
1239 if (lastRet < 0)
1240 throw new IllegalStateException();
1241 checkForComodification();
1242
1243 try {
1244 root.set(offset + lastRet, e);
1245 } catch (IndexOutOfBoundsException ex) {
1246 throw new ConcurrentModificationException();
1247 }
1248 }
1249
1250 public void add(E e) {
1251 checkForComodification();
1252
1253 try {
1254 int i = cursor;
1255 SubList.this.add(i, e);
1256 cursor = i + 1;
1257 lastRet = -1;
1258 expectedModCount = root.modCount;
1259 } catch (IndexOutOfBoundsException ex) {
1260 throw new ConcurrentModificationException();
1261 }
1262 }
1263
1264 final void checkForComodification() {
1265 if (root.modCount != expectedModCount)
1266 throw new ConcurrentModificationException();
1267 }
1268 };
1269 }
1270
1271 public List<E> subList(int fromIndex, int toIndex) {
1272 subListRangeCheck(fromIndex, toIndex, size);
1273 return new SubList<>(this, fromIndex, toIndex);
1274 }
1275
1276 private void rangeCheckForAdd(int index) {
1277 if (index < 0 || index > this.size)
1278 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1279 }
1280
1281 private String outOfBoundsMsg(int index) {
1282 return "Index: "+index+", Size: "+this.size;
1283 }
1284
1285 private void checkForComodification() {
1286 if (root.modCount != modCount)
1287 throw new ConcurrentModificationException();
1288 }
1289
1290 private void updateSizeAndModCount(int sizeChange) {
1291 SubList<E> slist = this;
1292 do {
1293 slist.size += sizeChange;
1294 slist.modCount = root.modCount;
1295 slist = slist.parent;
1296 } while (slist != null);
1297 }
1298
1299 public Spliterator<E> spliterator() {
1300 checkForComodification();
1301
1302 // ArrayListSpliterator is not used because late-binding logic
1303 // is different here
1304 return new Spliterator<>() {
1305 private int index = offset; // current index, modified on advance/split
1306 private int fence = -1; // -1 until used; then one past last index
1307 private int expectedModCount; // initialized when fence set
1308
1309 private int getFence() { // initialize fence to size on first use
1310 int hi; // (a specialized variant appears in method forEach)
1311 if ((hi = fence) < 0) {
1312 expectedModCount = modCount;
1313 hi = fence = offset + size;
1314 }
1315 return hi;
1316 }
1317
1318 public ArrayListSpliterator<E> trySplit() {
1319 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1320 // ArrayListSpliterator could be used here as the source is already bound
1321 return (lo >= mid) ? null : // divide range in half unless too small
1322 new ArrayListSpliterator<>(root, lo, index = mid,
1323 expectedModCount);
1324 }
1325
1326 public boolean tryAdvance(Consumer<? super E> action) {
1327 Objects.requireNonNull(action);
1328 int hi = getFence(), i = index;
1329 if (i < hi) {
1330 index = i + 1;
1331 @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1332 action.accept(e);
1333 if (root.modCount != expectedModCount)
1334 throw new ConcurrentModificationException();
1335 return true;
1336 }
1337 return false;
1338 }
1339
1340 public void forEachRemaining(Consumer<? super E> action) {
1341 Objects.requireNonNull(action);
1342 int i, hi, mc; // hoist accesses and checks from loop
1343 ArrayList<E> lst = root;
1344 Object[] a;
1345 if ((a = lst.elementData) != null) {
1346 if ((hi = fence) < 0) {
1347 mc = modCount;
1348 hi = offset + size;
1349 }
1350 else
1351 mc = expectedModCount;
1352 if ((i = index) >= 0 && (index = hi) <= a.length) {
1353 for (; i < hi; ++i) {
1354 @SuppressWarnings("unchecked") E e = (E) a[i];
1355 action.accept(e);
1356 }
1357 if (lst.modCount == mc)
1358 return;
1359 }
1360 }
1361 throw new ConcurrentModificationException();
1362 }
1363
1364 public long estimateSize() {
1365 return (long) (getFence() - index);
1366 }
1367
1368 public int characteristics() {
1369 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1370 }
1371 };
1372 }
1373 }
1374
1375 @Override
1376 public void forEach(Consumer<? super E> action) {
1377 Objects.requireNonNull(action);
1378 final int expectedModCount = modCount;
1379 final Object[] es = elementData;
1380 final int size = this.size;
1381 for (int i = 0; modCount == expectedModCount && i < size; i++)
1382 action.accept(elementAt(es, i));
1383 if (modCount != expectedModCount)
1384 throw new ConcurrentModificationException();
1385 }
1386
1387 /**
1388 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1389 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1390 * list.
1391 *
1392 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1393 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1394 * Overriding implementations should document the reporting of additional
1395 * characteristic values.
1396 *
1397 * @return a {@code Spliterator} over the elements in this list
1398 * @since 1.8
1399 */
1400 @Override
1401 public Spliterator<E> spliterator() {
1402 return new ArrayListSpliterator<>(this, 0, -1, 0);
1403 }
1404
1405 /** Index-based split-by-two, lazily initialized Spliterator */
1406 static final class ArrayListSpliterator<E> implements Spliterator<E> {
1407
1408 /*
1409 * If ArrayLists were immutable, or structurally immutable (no
1410 * adds, removes, etc), we could implement their spliterators
1411 * with Arrays.spliterator. Instead we detect as much
1412 * interference during traversal as practical without
1413 * sacrificing much performance. We rely primarily on
1414 * modCounts. These are not guaranteed to detect concurrency
1415 * violations, and are sometimes overly conservative about
1416 * within-thread interference, but detect enough problems to
1417 * be worthwhile in practice. To carry this out, we (1) lazily
1418 * initialize fence and expectedModCount until the latest
1419 * point that we need to commit to the state we are checking
1420 * against; thus improving precision. (This doesn't apply to
1421 * SubLists, that create spliterators with current non-lazy
1422 * values). (2) We perform only a single
1423 * ConcurrentModificationException check at the end of forEach
1424 * (the most performance-sensitive method). When using forEach
1425 * (as opposed to iterators), we can normally only detect
1426 * interference after actions, not before. Further
1427 * CME-triggering checks apply to all other possible
1428 * violations of assumptions for example null or too-small
1429 * elementData array given its size(), that could only have
1430 * occurred due to interference. This allows the inner loop
1431 * of forEach to run without any further checks, and
1432 * simplifies lambda-resolution. While this does entail a
1433 * number of checks, note that in the common case of
1434 * list.stream().forEach(a), no checks or other computation
1435 * occur anywhere other than inside forEach itself. The other
1436 * less-often-used methods cannot take advantage of most of
1437 * these streamlinings.
1438 */
1439
1440 private final ArrayList<E> list;
1441 private int index; // current index, modified on advance/split
1442 private int fence; // -1 until used; then one past last index
1443 private int expectedModCount; // initialized when fence set
1444
1445 /** Create new spliterator covering the given range */
1446 ArrayListSpliterator(ArrayList<E> list, int origin, int fence,
1447 int expectedModCount) {
1448 this.list = list; // OK if null unless traversed
1449 this.index = origin;
1450 this.fence = fence;
1451 this.expectedModCount = expectedModCount;
1452 }
1453
1454 private int getFence() { // initialize fence to size on first use
1455 int hi; // (a specialized variant appears in method forEach)
1456 ArrayList<E> lst;
1457 if ((hi = fence) < 0) {
1458 if ((lst = list) == null)
1459 hi = fence = 0;
1460 else {
1461 expectedModCount = lst.modCount;
1462 hi = fence = lst.size;
1463 }
1464 }
1465 return hi;
1466 }
1467
1468 public ArrayListSpliterator<E> trySplit() {
1469 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1470 return (lo >= mid) ? null : // divide range in half unless too small
1471 new ArrayListSpliterator<>(list, lo, index = mid,
1472 expectedModCount);
1473 }
1474
1475 public boolean tryAdvance(Consumer<? super E> action) {
1476 if (action == null)
1477 throw new NullPointerException();
1478 int hi = getFence(), i = index;
1479 if (i < hi) {
1480 index = i + 1;
1481 @SuppressWarnings("unchecked") E e = (E)list.elementData[i];
1482 action.accept(e);
1483 if (list.modCount != expectedModCount)
1484 throw new ConcurrentModificationException();
1485 return true;
1486 }
1487 return false;
1488 }
1489
1490 public void forEachRemaining(Consumer<? super E> action) {
1491 int i, hi, mc; // hoist accesses and checks from loop
1492 ArrayList<E> lst; Object[] a;
1493 if (action == null)
1494 throw new NullPointerException();
1495 if ((lst = list) != null && (a = lst.elementData) != null) {
1496 if ((hi = fence) < 0) {
1497 mc = lst.modCount;
1498 hi = lst.size;
1499 }
1500 else
1501 mc = expectedModCount;
1502 if ((i = index) >= 0 && (index = hi) <= a.length) {
1503 for (; i < hi; ++i) {
1504 @SuppressWarnings("unchecked") E e = (E) a[i];
1505 action.accept(e);
1506 }
1507 if (lst.modCount == mc)
1508 return;
1509 }
1510 }
1511 throw new ConcurrentModificationException();
1512 }
1513
1514 public long estimateSize() {
1515 return (long) (getFence() - index);
1516 }
1517
1518 public int characteristics() {
1519 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1520 }
1521 }
1522
1523 // A tiny bit set implementation
1524
1525 private static long[] nBits(int n) {
1526 return new long[((n - 1) >> 6) + 1];
1527 }
1528 private static void setBit(long[] bits, int i) {
1529 bits[i >> 6] |= 1L << i;
1530 }
1531 private static boolean isClear(long[] bits, int i) {
1532 return (bits[i >> 6] & (1L << i)) == 0;
1533 }
1534
1535 @Override
1536 public boolean removeIf(Predicate<? super E> filter) {
1537 return removeIf(filter, 0, size);
1538 }
1539
1540 boolean removeIf(Predicate<? super E> filter,
1541 final int from, final int end) {
1542 Objects.requireNonNull(filter);
1543 int expectedModCount = modCount;
1544 final Object[] es = elementData;
1545 final boolean modified;
1546 int i;
1547 // Optimize for initial run of survivors
1548 for (i = from; i < end && !filter.test(elementAt(es, i)); i++)
1549 ;
1550 // Tolerate predicates that reentrantly access the collection for
1551 // read (but writers still get CME), so traverse once to find
1552 // elements to delete, a second pass to physically expunge.
1553 if (modified = (i < end)) {
1554 expectedModCount++;
1555 modCount++;
1556 final int beg = i;
1557 final long[] deathRow = nBits(end - beg);
1558 deathRow[0] = 1L; // set bit 0
1559 for (i = beg + 1; i < end; i++)
1560 if (filter.test(elementAt(es, i)))
1561 setBit(deathRow, i - beg);
1562 if (modCount != expectedModCount)
1563 throw new ConcurrentModificationException();
1564 int w = beg;
1565 for (i = beg; i < end; i++)
1566 if (isClear(deathRow, i - beg))
1567 es[w++] = es[i];
1568 final int oldSize = size;
1569 System.arraycopy(es, end, es, w, oldSize - end);
1570 Arrays.fill(es, size -= (end - w), oldSize, null);
1571 }
1572 if (modCount != expectedModCount)
1573 throw new ConcurrentModificationException();
1574 // checkInvariants();
1575 return modified;
1576 }
1577
1578 @Override
1579 public void replaceAll(UnaryOperator<E> operator) {
1580 Objects.requireNonNull(operator);
1581 final int expectedModCount = modCount;
1582 final Object[] es = elementData;
1583 final int size = this.size;
1584 for (int i = 0; modCount == expectedModCount && i < size; i++)
1585 es[i] = operator.apply(elementAt(es, i));
1586 if (modCount != expectedModCount)
1587 throw new ConcurrentModificationException();
1588 modCount++;
1589 // checkInvariants();
1590 }
1591
1592 @Override
1593 @SuppressWarnings("unchecked")
1594 public void sort(Comparator<? super E> c) {
1595 final int expectedModCount = modCount;
1596 Arrays.sort((E[]) elementData, 0, size, c);
1597 if (modCount != expectedModCount)
1598 throw new ConcurrentModificationException();
1599 modCount++;
1600 // checkInvariants();
1601 }
1602
1603 void checkInvariants() {
1604 // assert size >= 0;
1605 // assert size == elementData.length || elementData[size] == null;
1606 }
1607 }