ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.49
Committed: Wed Dec 21 05:15:36 2016 UTC (7 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.48: +1 -1 lines
Log Message:
javadoc style

File Contents

# Content
1 /*
2 * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31
32 /**
33 * Resizable-array implementation of the {@code List} interface. Implements
34 * all optional list operations, and permits all elements, including
35 * {@code null}. In addition to implementing the {@code List} interface,
36 * this class provides methods to manipulate the size of the array that is
37 * used internally to store the list. (This class is roughly equivalent to
38 * {@code Vector}, except that it is unsynchronized.)
39 *
40 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
41 * {@code iterator}, and {@code listIterator} operations run in constant
42 * time. The {@code add} operation runs in <i>amortized constant time</i>,
43 * that is, adding n elements requires O(n) time. All of the other operations
44 * run in linear time (roughly speaking). The constant factor is low compared
45 * to that for the {@code LinkedList} implementation.
46 *
47 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
48 * the size of the array used to store the elements in the list. It is always
49 * at least as large as the list size. As elements are added to an ArrayList,
50 * its capacity grows automatically. The details of the growth policy are not
51 * specified beyond the fact that adding an element has constant amortized
52 * time cost.
53 *
54 * <p>An application can increase the capacity of an {@code ArrayList} instance
55 * before adding a large number of elements using the {@code ensureCapacity}
56 * operation. This may reduce the amount of incremental reallocation.
57 *
58 * <p><strong>Note that this implementation is not synchronized.</strong>
59 * If multiple threads access an {@code ArrayList} instance concurrently,
60 * and at least one of the threads modifies the list structurally, it
61 * <i>must</i> be synchronized externally. (A structural modification is
62 * any operation that adds or deletes one or more elements, or explicitly
63 * resizes the backing array; merely setting the value of an element is not
64 * a structural modification.) This is typically accomplished by
65 * synchronizing on some object that naturally encapsulates the list.
66 *
67 * If no such object exists, the list should be "wrapped" using the
68 * {@link Collections#synchronizedList Collections.synchronizedList}
69 * method. This is best done at creation time, to prevent accidental
70 * unsynchronized access to the list:<pre>
71 * List list = Collections.synchronizedList(new ArrayList(...));</pre>
72 *
73 * <p id="fail-fast">
74 * The iterators returned by this class's {@link #iterator() iterator} and
75 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
76 * if the list is structurally modified at any time after the iterator is
77 * created, in any way except through the iterator's own
78 * {@link ListIterator#remove() remove} or
79 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
80 * {@link ConcurrentModificationException}. Thus, in the face of
81 * concurrent modification, the iterator fails quickly and cleanly, rather
82 * than risking arbitrary, non-deterministic behavior at an undetermined
83 * time in the future.
84 *
85 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
86 * as it is, generally speaking, impossible to make any hard guarantees in the
87 * presence of unsynchronized concurrent modification. Fail-fast iterators
88 * throw {@code ConcurrentModificationException} on a best-effort basis.
89 * Therefore, it would be wrong to write a program that depended on this
90 * exception for its correctness: <i>the fail-fast behavior of iterators
91 * should be used only to detect bugs.</i>
92 *
93 * <p>This class is a member of the
94 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
95 * Java Collections Framework</a>.
96 *
97 * @param <E> the type of elements in this list
98 *
99 * @author Josh Bloch
100 * @author Neal Gafter
101 * @see Collection
102 * @see List
103 * @see LinkedList
104 * @see Vector
105 * @since 1.2
106 */
107 public class ArrayList<E> extends AbstractList<E>
108 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
109 {
110 private static final long serialVersionUID = 8683452581122892189L;
111
112 /**
113 * Default initial capacity.
114 */
115 private static final int DEFAULT_CAPACITY = 10;
116
117 /**
118 * Shared empty array instance used for empty instances.
119 */
120 private static final Object[] EMPTY_ELEMENTDATA = {};
121
122 /**
123 * Shared empty array instance used for default sized empty instances. We
124 * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
125 * first element is added.
126 */
127 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
128
129 /**
130 * The array buffer into which the elements of the ArrayList are stored.
131 * The capacity of the ArrayList is the length of this array buffer. Any
132 * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
133 * will be expanded to DEFAULT_CAPACITY when the first element is added.
134 */
135 transient Object[] elementData; // non-private to simplify nested class access
136
137 /**
138 * The size of the ArrayList (the number of elements it contains).
139 *
140 * @serial
141 */
142 private int size;
143
144 /**
145 * Constructs an empty list with the specified initial capacity.
146 *
147 * @param initialCapacity the initial capacity of the list
148 * @throws IllegalArgumentException if the specified initial capacity
149 * is negative
150 */
151 public ArrayList(int initialCapacity) {
152 if (initialCapacity > 0) {
153 this.elementData = new Object[initialCapacity];
154 } else if (initialCapacity == 0) {
155 this.elementData = EMPTY_ELEMENTDATA;
156 } else {
157 throw new IllegalArgumentException("Illegal Capacity: "+
158 initialCapacity);
159 }
160 }
161
162 /**
163 * Constructs an empty list with an initial capacity of ten.
164 */
165 public ArrayList() {
166 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
167 }
168
169 /**
170 * Constructs a list containing the elements of the specified
171 * collection, in the order they are returned by the collection's
172 * iterator.
173 *
174 * @param c the collection whose elements are to be placed into this list
175 * @throws NullPointerException if the specified collection is null
176 */
177 public ArrayList(Collection<? extends E> c) {
178 elementData = c.toArray();
179 if ((size = elementData.length) != 0) {
180 // defend against c.toArray (incorrectly) not returning Object[]
181 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
182 if (elementData.getClass() != Object[].class)
183 elementData = Arrays.copyOf(elementData, size, Object[].class);
184 } else {
185 // replace with empty array.
186 this.elementData = EMPTY_ELEMENTDATA;
187 }
188 }
189
190 /**
191 * Trims the capacity of this {@code ArrayList} instance to be the
192 * list's current size. An application can use this operation to minimize
193 * the storage of an {@code ArrayList} instance.
194 */
195 public void trimToSize() {
196 modCount++;
197 if (size < elementData.length) {
198 elementData = (size == 0)
199 ? EMPTY_ELEMENTDATA
200 : Arrays.copyOf(elementData, size);
201 }
202 }
203
204 /**
205 * Increases the capacity of this {@code ArrayList} instance, if
206 * necessary, to ensure that it can hold at least the number of elements
207 * specified by the minimum capacity argument.
208 *
209 * @param minCapacity the desired minimum capacity
210 */
211 public void ensureCapacity(int minCapacity) {
212 if (minCapacity > elementData.length
213 && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
214 && minCapacity <= DEFAULT_CAPACITY)) {
215 modCount++;
216 grow(minCapacity);
217 }
218 }
219
220 /**
221 * The maximum size of array to allocate (unless necessary).
222 * Some VMs reserve some header words in an array.
223 * Attempts to allocate larger arrays may result in
224 * OutOfMemoryError: Requested array size exceeds VM limit
225 */
226 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
227
228 /**
229 * Increases the capacity to ensure that it can hold at least the
230 * number of elements specified by the minimum capacity argument.
231 *
232 * @param minCapacity the desired minimum capacity
233 * @throws OutOfMemoryError if minCapacity is less than zero
234 */
235 private Object[] grow(int minCapacity) {
236 return elementData = Arrays.copyOf(elementData,
237 newCapacity(minCapacity));
238 }
239
240 private Object[] grow() {
241 return grow(size + 1);
242 }
243
244 /**
245 * Returns a capacity at least as large as the given minimum capacity.
246 * Returns the current capacity increased by 50% if that suffices.
247 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
248 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
249 *
250 * @param minCapacity the desired minimum capacity
251 * @throws OutOfMemoryError if minCapacity is less than zero
252 */
253 private int newCapacity(int minCapacity) {
254 // overflow-conscious code
255 int oldCapacity = elementData.length;
256 int newCapacity = oldCapacity + (oldCapacity >> 1);
257 if (newCapacity - minCapacity <= 0) {
258 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
259 return Math.max(DEFAULT_CAPACITY, minCapacity);
260 if (minCapacity < 0) // overflow
261 throw new OutOfMemoryError();
262 return minCapacity;
263 }
264 return (newCapacity - MAX_ARRAY_SIZE <= 0)
265 ? newCapacity
266 : hugeCapacity(minCapacity);
267 }
268
269 private static int hugeCapacity(int minCapacity) {
270 if (minCapacity < 0) // overflow
271 throw new OutOfMemoryError();
272 return (minCapacity > MAX_ARRAY_SIZE)
273 ? Integer.MAX_VALUE
274 : MAX_ARRAY_SIZE;
275 }
276
277 /**
278 * Returns the number of elements in this list.
279 *
280 * @return the number of elements in this list
281 */
282 public int size() {
283 return size;
284 }
285
286 /**
287 * Returns {@code true} if this list contains no elements.
288 *
289 * @return {@code true} if this list contains no elements
290 */
291 public boolean isEmpty() {
292 return size == 0;
293 }
294
295 /**
296 * Returns {@code true} if this list contains the specified element.
297 * More formally, returns {@code true} if and only if this list contains
298 * at least one element {@code e} such that
299 * {@code Objects.equals(o, e)}.
300 *
301 * @param o element whose presence in this list is to be tested
302 * @return {@code true} if this list contains the specified element
303 */
304 public boolean contains(Object o) {
305 return indexOf(o) >= 0;
306 }
307
308 /**
309 * Returns the index of the first occurrence of the specified element
310 * in this list, or -1 if this list does not contain the element.
311 * More formally, returns the lowest index {@code i} such that
312 * {@code Objects.equals(o, get(i))},
313 * or -1 if there is no such index.
314 */
315 public int indexOf(Object o) {
316 if (o == null) {
317 for (int i = 0; i < size; i++)
318 if (elementData[i]==null)
319 return i;
320 } else {
321 for (int i = 0; i < size; i++)
322 if (o.equals(elementData[i]))
323 return i;
324 }
325 return -1;
326 }
327
328 /**
329 * Returns the index of the last occurrence of the specified element
330 * in this list, or -1 if this list does not contain the element.
331 * More formally, returns the highest index {@code i} such that
332 * {@code Objects.equals(o, get(i))},
333 * or -1 if there is no such index.
334 */
335 public int lastIndexOf(Object o) {
336 if (o == null) {
337 for (int i = size-1; i >= 0; i--)
338 if (elementData[i]==null)
339 return i;
340 } else {
341 for (int i = size-1; i >= 0; i--)
342 if (o.equals(elementData[i]))
343 return i;
344 }
345 return -1;
346 }
347
348 /**
349 * Returns a shallow copy of this {@code ArrayList} instance. (The
350 * elements themselves are not copied.)
351 *
352 * @return a clone of this {@code ArrayList} instance
353 */
354 public Object clone() {
355 try {
356 ArrayList<?> v = (ArrayList<?>) super.clone();
357 v.elementData = Arrays.copyOf(elementData, size);
358 v.modCount = 0;
359 return v;
360 } catch (CloneNotSupportedException e) {
361 // this shouldn't happen, since we are Cloneable
362 throw new InternalError(e);
363 }
364 }
365
366 /**
367 * Returns an array containing all of the elements in this list
368 * in proper sequence (from first to last element).
369 *
370 * <p>The returned array will be "safe" in that no references to it are
371 * maintained by this list. (In other words, this method must allocate
372 * a new array). The caller is thus free to modify the returned array.
373 *
374 * <p>This method acts as bridge between array-based and collection-based
375 * APIs.
376 *
377 * @return an array containing all of the elements in this list in
378 * proper sequence
379 */
380 public Object[] toArray() {
381 return Arrays.copyOf(elementData, size);
382 }
383
384 /**
385 * Returns an array containing all of the elements in this list in proper
386 * sequence (from first to last element); the runtime type of the returned
387 * array is that of the specified array. If the list fits in the
388 * specified array, it is returned therein. Otherwise, a new array is
389 * allocated with the runtime type of the specified array and the size of
390 * this list.
391 *
392 * <p>If the list fits in the specified array with room to spare
393 * (i.e., the array has more elements than the list), the element in
394 * the array immediately following the end of the collection is set to
395 * {@code null}. (This is useful in determining the length of the
396 * list <i>only</i> if the caller knows that the list does not contain
397 * any null elements.)
398 *
399 * @param a the array into which the elements of the list are to
400 * be stored, if it is big enough; otherwise, a new array of the
401 * same runtime type is allocated for this purpose.
402 * @return an array containing the elements of the list
403 * @throws ArrayStoreException if the runtime type of the specified array
404 * is not a supertype of the runtime type of every element in
405 * this list
406 * @throws NullPointerException if the specified array is null
407 */
408 @SuppressWarnings("unchecked")
409 public <T> T[] toArray(T[] a) {
410 if (a.length < size)
411 // Make a new array of a's runtime type, but my contents:
412 return (T[]) Arrays.copyOf(elementData, size, a.getClass());
413 System.arraycopy(elementData, 0, a, 0, size);
414 if (a.length > size)
415 a[size] = null;
416 return a;
417 }
418
419 // Positional Access Operations
420
421 @SuppressWarnings("unchecked")
422 E elementData(int index) {
423 return (E) elementData[index];
424 }
425
426 @SuppressWarnings("unchecked")
427 static <E> E elementAt(Object[] es, int index) {
428 return (E) es[index];
429 }
430
431 /**
432 * Returns the element at the specified position in this list.
433 *
434 * @param index index of the element to return
435 * @return the element at the specified position in this list
436 * @throws IndexOutOfBoundsException {@inheritDoc}
437 */
438 public E get(int index) {
439 Objects.checkIndex(index, size);
440 return elementData(index);
441 }
442
443 /**
444 * Replaces the element at the specified position in this list with
445 * the specified element.
446 *
447 * @param index index of the element to replace
448 * @param element element to be stored at the specified position
449 * @return the element previously at the specified position
450 * @throws IndexOutOfBoundsException {@inheritDoc}
451 */
452 public E set(int index, E element) {
453 Objects.checkIndex(index, size);
454 E oldValue = elementData(index);
455 elementData[index] = element;
456 return oldValue;
457 }
458
459 /**
460 * This helper method split out from add(E) to keep method
461 * bytecode size under 35 (the -XX:MaxInlineSize default value),
462 * which helps when add(E) is called in a C1-compiled loop.
463 */
464 private void add(E e, Object[] elementData, int s) {
465 if (s == elementData.length)
466 elementData = grow();
467 elementData[s] = e;
468 size = s + 1;
469 }
470
471 /**
472 * Appends the specified element to the end of this list.
473 *
474 * @param e element to be appended to this list
475 * @return {@code true} (as specified by {@link Collection#add})
476 */
477 public boolean add(E e) {
478 modCount++;
479 add(e, elementData, size);
480 return true;
481 }
482
483 /**
484 * Inserts the specified element at the specified position in this
485 * list. Shifts the element currently at that position (if any) and
486 * any subsequent elements to the right (adds one to their indices).
487 *
488 * @param index index at which the specified element is to be inserted
489 * @param element element to be inserted
490 * @throws IndexOutOfBoundsException {@inheritDoc}
491 */
492 public void add(int index, E element) {
493 rangeCheckForAdd(index);
494 modCount++;
495 final int s;
496 Object[] elementData;
497 if ((s = size) == (elementData = this.elementData).length)
498 elementData = grow();
499 System.arraycopy(elementData, index,
500 elementData, index + 1,
501 s - index);
502 elementData[index] = element;
503 size = s + 1;
504 // checkInvariants();
505 }
506
507 /**
508 * Removes the element at the specified position in this list.
509 * Shifts any subsequent elements to the left (subtracts one from their
510 * indices).
511 *
512 * @param index the index of the element to be removed
513 * @return the element that was removed from the list
514 * @throws IndexOutOfBoundsException {@inheritDoc}
515 */
516 public E remove(int index) {
517 Objects.checkIndex(index, size);
518
519 modCount++;
520 E oldValue = elementData(index);
521
522 int numMoved = size - index - 1;
523 if (numMoved > 0)
524 System.arraycopy(elementData, index+1, elementData, index,
525 numMoved);
526 elementData[--size] = null; // clear to let GC do its work
527
528 // checkInvariants();
529 return oldValue;
530 }
531
532 /**
533 * Removes the first occurrence of the specified element from this list,
534 * if it is present. If the list does not contain the element, it is
535 * unchanged. More formally, removes the element with the lowest index
536 * {@code i} such that
537 * {@code Objects.equals(o, get(i))}
538 * (if such an element exists). Returns {@code true} if this list
539 * contained the specified element (or equivalently, if this list
540 * changed as a result of the call).
541 *
542 * @param o element to be removed from this list, if present
543 * @return {@code true} if this list contained the specified element
544 */
545 public boolean remove(Object o) {
546 if (o == null) {
547 for (int index = 0; index < size; index++)
548 if (elementData[index] == null) {
549 fastRemove(index);
550 return true;
551 }
552 } else {
553 for (int index = 0; index < size; index++)
554 if (o.equals(elementData[index])) {
555 fastRemove(index);
556 return true;
557 }
558 }
559 return false;
560 }
561
562 /**
563 * Private remove method that skips bounds checking and does not
564 * return the value removed.
565 */
566 private void fastRemove(int index) {
567 modCount++;
568 int numMoved = size - index - 1;
569 if (numMoved > 0)
570 System.arraycopy(elementData, index+1, elementData, index,
571 numMoved);
572 elementData[--size] = null; // clear to let GC do its work
573 }
574
575 /**
576 * Removes all of the elements from this list. The list will
577 * be empty after this call returns.
578 */
579 public void clear() {
580 modCount++;
581 final Object[] es = elementData;
582 for (int to = size, i = size = 0; i < to; i++)
583 es[i] = null;
584 }
585
586 /**
587 * Appends all of the elements in the specified collection to the end of
588 * this list, in the order that they are returned by the
589 * specified collection's Iterator. The behavior of this operation is
590 * undefined if the specified collection is modified while the operation
591 * is in progress. (This implies that the behavior of this call is
592 * undefined if the specified collection is this list, and this
593 * list is nonempty.)
594 *
595 * @param c collection containing elements to be added to this list
596 * @return {@code true} if this list changed as a result of the call
597 * @throws NullPointerException if the specified collection is null
598 */
599 public boolean addAll(Collection<? extends E> c) {
600 Object[] a = c.toArray();
601 modCount++;
602 int numNew = a.length;
603 if (numNew == 0)
604 return false;
605 Object[] elementData;
606 final int s;
607 if (numNew > (elementData = this.elementData).length - (s = size))
608 elementData = grow(s + numNew);
609 System.arraycopy(a, 0, elementData, s, numNew);
610 size = s + numNew;
611 // checkInvariants();
612 return true;
613 }
614
615 /**
616 * Inserts all of the elements in the specified collection into this
617 * list, starting at the specified position. Shifts the element
618 * currently at that position (if any) and any subsequent elements to
619 * the right (increases their indices). The new elements will appear
620 * in the list in the order that they are returned by the
621 * specified collection's iterator.
622 *
623 * @param index index at which to insert the first element from the
624 * specified collection
625 * @param c collection containing elements to be added to this list
626 * @return {@code true} if this list changed as a result of the call
627 * @throws IndexOutOfBoundsException {@inheritDoc}
628 * @throws NullPointerException if the specified collection is null
629 */
630 public boolean addAll(int index, Collection<? extends E> c) {
631 rangeCheckForAdd(index);
632
633 Object[] a = c.toArray();
634 modCount++;
635 int numNew = a.length;
636 if (numNew == 0)
637 return false;
638 Object[] elementData;
639 final int s;
640 if (numNew > (elementData = this.elementData).length - (s = size))
641 elementData = grow(s + numNew);
642
643 int numMoved = s - index;
644 if (numMoved > 0)
645 System.arraycopy(elementData, index,
646 elementData, index + numNew,
647 numMoved);
648 System.arraycopy(a, 0, elementData, index, numNew);
649 size = s + numNew;
650 // checkInvariants();
651 return true;
652 }
653
654 /**
655 * Removes from this list all of the elements whose index is between
656 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
657 * Shifts any succeeding elements to the left (reduces their index).
658 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
659 * (If {@code toIndex==fromIndex}, this operation has no effect.)
660 *
661 * @throws IndexOutOfBoundsException if {@code fromIndex} or
662 * {@code toIndex} is out of range
663 * ({@code fromIndex < 0 ||
664 * toIndex > size() ||
665 * toIndex < fromIndex})
666 */
667 protected void removeRange(int fromIndex, int toIndex) {
668 if (fromIndex > toIndex) {
669 throw new IndexOutOfBoundsException(
670 outOfBoundsMsg(fromIndex, toIndex));
671 }
672 modCount++;
673 shiftTailOverGap(elementData, fromIndex, toIndex);
674 // checkInvariants();
675 }
676
677 /** Erases the gap from lo to hi, by sliding down following elements. */
678 private void shiftTailOverGap(Object[] es, int lo, int hi) {
679 System.arraycopy(es, hi, es, lo, size - hi);
680 for (int to = size, i = (size -= hi - lo); i < to; i++)
681 es[i] = null;
682 }
683
684 /**
685 * A version of rangeCheck used by add and addAll.
686 */
687 private void rangeCheckForAdd(int index) {
688 if (index > size || index < 0)
689 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
690 }
691
692 /**
693 * Constructs an IndexOutOfBoundsException detail message.
694 * Of the many possible refactorings of the error handling code,
695 * this "outlining" performs best with both server and client VMs.
696 */
697 private String outOfBoundsMsg(int index) {
698 return "Index: "+index+", Size: "+size;
699 }
700
701 /**
702 * A version used in checking (fromIndex > toIndex) condition
703 */
704 private static String outOfBoundsMsg(int fromIndex, int toIndex) {
705 return "From Index: " + fromIndex + " > To Index: " + toIndex;
706 }
707
708 /**
709 * Removes from this list all of its elements that are contained in the
710 * specified collection.
711 *
712 * @param c collection containing elements to be removed from this list
713 * @return {@code true} if this list changed as a result of the call
714 * @throws ClassCastException if the class of an element of this list
715 * is incompatible with the specified collection
716 * (<a href="Collection.html#optional-restrictions">optional</a>)
717 * @throws NullPointerException if this list contains a null element and the
718 * specified collection does not permit null elements
719 * (<a href="Collection.html#optional-restrictions">optional</a>),
720 * or if the specified collection is null
721 * @see Collection#contains(Object)
722 */
723 public boolean removeAll(Collection<?> c) {
724 return batchRemove(c, false, 0, size);
725 }
726
727 /**
728 * Retains only the elements in this list that are contained in the
729 * specified collection. In other words, removes from this list all
730 * of its elements that are not contained in the specified collection.
731 *
732 * @param c collection containing elements to be retained in this list
733 * @return {@code true} if this list changed as a result of the call
734 * @throws ClassCastException if the class of an element of this list
735 * is incompatible with the specified collection
736 * (<a href="Collection.html#optional-restrictions">optional</a>)
737 * @throws NullPointerException if this list contains a null element and the
738 * specified collection does not permit null elements
739 * (<a href="Collection.html#optional-restrictions">optional</a>),
740 * or if the specified collection is null
741 * @see Collection#contains(Object)
742 */
743 public boolean retainAll(Collection<?> c) {
744 return batchRemove(c, true, 0, size);
745 }
746
747 boolean batchRemove(Collection<?> c, boolean complement,
748 final int from, final int end) {
749 Objects.requireNonNull(c);
750 final Object[] es = elementData;
751 final boolean modified;
752 int r;
753 // Optimize for initial run of survivors
754 for (r = from; r < end && c.contains(es[r]) == complement; r++)
755 ;
756 if (modified = (r < end)) {
757 int w = r++;
758 try {
759 for (Object e; r < end; r++)
760 if (c.contains(e = es[r]) == complement)
761 es[w++] = e;
762 } catch (Throwable ex) {
763 // Preserve behavioral compatibility with AbstractCollection,
764 // even if c.contains() throws.
765 System.arraycopy(es, r, es, w, end - r);
766 w += end - r;
767 throw ex;
768 } finally {
769 modCount += end - w;
770 shiftTailOverGap(es, w, end);
771 }
772 }
773 // checkInvariants();
774 return modified;
775 }
776
777 /**
778 * Saves the state of the {@code ArrayList} instance to a stream
779 * (that is, serializes it).
780 *
781 * @param s the stream
782 * @throws java.io.IOException if an I/O error occurs
783 * @serialData The length of the array backing the {@code ArrayList}
784 * instance is emitted (int), followed by all of its elements
785 * (each an {@code Object}) in the proper order.
786 */
787 private void writeObject(java.io.ObjectOutputStream s)
788 throws java.io.IOException {
789 // Write out element count, and any hidden stuff
790 int expectedModCount = modCount;
791 s.defaultWriteObject();
792
793 // Write out size as capacity for behavioural compatibility with clone()
794 s.writeInt(size);
795
796 // Write out all elements in the proper order.
797 for (int i=0; i<size; i++) {
798 s.writeObject(elementData[i]);
799 }
800
801 if (modCount != expectedModCount) {
802 throw new ConcurrentModificationException();
803 }
804 }
805
806 /**
807 * Reconstitutes the {@code ArrayList} instance from a stream (that is,
808 * deserializes it).
809 * @param s the stream
810 * @throws ClassNotFoundException if the class of a serialized object
811 * could not be found
812 * @throws java.io.IOException if an I/O error occurs
813 */
814 private void readObject(java.io.ObjectInputStream s)
815 throws java.io.IOException, ClassNotFoundException {
816
817 // Read in size, and any hidden stuff
818 s.defaultReadObject();
819
820 // Read in capacity
821 s.readInt(); // ignored
822
823 if (size > 0) {
824 // like clone(), allocate array based upon size not capacity
825 Object[] elements = new Object[size];
826
827 // Read in all elements in the proper order.
828 for (int i = 0; i < size; i++) {
829 elements[i] = s.readObject();
830 }
831
832 elementData = elements;
833 } else if (size == 0) {
834 elementData = EMPTY_ELEMENTDATA;
835 } else {
836 throw new java.io.InvalidObjectException("Invalid size: " + size);
837 }
838 }
839
840 /**
841 * Returns a list iterator over the elements in this list (in proper
842 * sequence), starting at the specified position in the list.
843 * The specified index indicates the first element that would be
844 * returned by an initial call to {@link ListIterator#next next}.
845 * An initial call to {@link ListIterator#previous previous} would
846 * return the element with the specified index minus one.
847 *
848 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
849 *
850 * @throws IndexOutOfBoundsException {@inheritDoc}
851 */
852 public ListIterator<E> listIterator(int index) {
853 rangeCheckForAdd(index);
854 return new ListItr(index);
855 }
856
857 /**
858 * Returns a list iterator over the elements in this list (in proper
859 * sequence).
860 *
861 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
862 *
863 * @see #listIterator(int)
864 */
865 public ListIterator<E> listIterator() {
866 return new ListItr(0);
867 }
868
869 /**
870 * Returns an iterator over the elements in this list in proper sequence.
871 *
872 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
873 *
874 * @return an iterator over the elements in this list in proper sequence
875 */
876 public Iterator<E> iterator() {
877 return new Itr();
878 }
879
880 /**
881 * An optimized version of AbstractList.Itr
882 */
883 private class Itr implements Iterator<E> {
884 int cursor; // index of next element to return
885 int lastRet = -1; // index of last element returned; -1 if no such
886 int expectedModCount = modCount;
887
888 // prevent creating a synthetic constructor
889 Itr() {}
890
891 public boolean hasNext() {
892 return cursor != size;
893 }
894
895 @SuppressWarnings("unchecked")
896 public E next() {
897 checkForComodification();
898 int i = cursor;
899 if (i >= size)
900 throw new NoSuchElementException();
901 Object[] elementData = ArrayList.this.elementData;
902 if (i >= elementData.length)
903 throw new ConcurrentModificationException();
904 cursor = i + 1;
905 return (E) elementData[lastRet = i];
906 }
907
908 public void remove() {
909 if (lastRet < 0)
910 throw new IllegalStateException();
911 checkForComodification();
912
913 try {
914 ArrayList.this.remove(lastRet);
915 cursor = lastRet;
916 lastRet = -1;
917 expectedModCount = modCount;
918 } catch (IndexOutOfBoundsException ex) {
919 throw new ConcurrentModificationException();
920 }
921 }
922
923 @Override
924 public void forEachRemaining(Consumer<? super E> action) {
925 Objects.requireNonNull(action);
926 final int size = ArrayList.this.size;
927 int i = cursor;
928 if (i < size) {
929 final Object[] es = elementData;
930 if (i >= es.length)
931 throw new ConcurrentModificationException();
932 for (; i < size && modCount == expectedModCount; i++)
933 action.accept(elementAt(es, i));
934 // update once at end to reduce heap write traffic
935 cursor = i;
936 lastRet = i - 1;
937 checkForComodification();
938 }
939 }
940
941 final void checkForComodification() {
942 if (modCount != expectedModCount)
943 throw new ConcurrentModificationException();
944 }
945 }
946
947 /**
948 * An optimized version of AbstractList.ListItr
949 */
950 private class ListItr extends Itr implements ListIterator<E> {
951 ListItr(int index) {
952 super();
953 cursor = index;
954 }
955
956 public boolean hasPrevious() {
957 return cursor != 0;
958 }
959
960 public int nextIndex() {
961 return cursor;
962 }
963
964 public int previousIndex() {
965 return cursor - 1;
966 }
967
968 @SuppressWarnings("unchecked")
969 public E previous() {
970 checkForComodification();
971 int i = cursor - 1;
972 if (i < 0)
973 throw new NoSuchElementException();
974 Object[] elementData = ArrayList.this.elementData;
975 if (i >= elementData.length)
976 throw new ConcurrentModificationException();
977 cursor = i;
978 return (E) elementData[lastRet = i];
979 }
980
981 public void set(E e) {
982 if (lastRet < 0)
983 throw new IllegalStateException();
984 checkForComodification();
985
986 try {
987 ArrayList.this.set(lastRet, e);
988 } catch (IndexOutOfBoundsException ex) {
989 throw new ConcurrentModificationException();
990 }
991 }
992
993 public void add(E e) {
994 checkForComodification();
995
996 try {
997 int i = cursor;
998 ArrayList.this.add(i, e);
999 cursor = i + 1;
1000 lastRet = -1;
1001 expectedModCount = modCount;
1002 } catch (IndexOutOfBoundsException ex) {
1003 throw new ConcurrentModificationException();
1004 }
1005 }
1006 }
1007
1008 /**
1009 * Returns a view of the portion of this list between the specified
1010 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1011 * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1012 * empty.) The returned list is backed by this list, so non-structural
1013 * changes in the returned list are reflected in this list, and vice-versa.
1014 * The returned list supports all of the optional list operations.
1015 *
1016 * <p>This method eliminates the need for explicit range operations (of
1017 * the sort that commonly exist for arrays). Any operation that expects
1018 * a list can be used as a range operation by passing a subList view
1019 * instead of a whole list. For example, the following idiom
1020 * removes a range of elements from a list:
1021 * <pre>
1022 * list.subList(from, to).clear();
1023 * </pre>
1024 * Similar idioms may be constructed for {@link #indexOf(Object)} and
1025 * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1026 * {@link Collections} class can be applied to a subList.
1027 *
1028 * <p>The semantics of the list returned by this method become undefined if
1029 * the backing list (i.e., this list) is <i>structurally modified</i> in
1030 * any way other than via the returned list. (Structural modifications are
1031 * those that change the size of this list, or otherwise perturb it in such
1032 * a fashion that iterations in progress may yield incorrect results.)
1033 *
1034 * @throws IndexOutOfBoundsException {@inheritDoc}
1035 * @throws IllegalArgumentException {@inheritDoc}
1036 */
1037 public List<E> subList(int fromIndex, int toIndex) {
1038 subListRangeCheck(fromIndex, toIndex, size);
1039 return new SubList<>(this, fromIndex, toIndex);
1040 }
1041
1042 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1043 private final ArrayList<E> root;
1044 private final SubList<E> parent;
1045 private final int offset;
1046 private int size;
1047
1048 /**
1049 * Constructs a sublist of an arbitrary ArrayList.
1050 */
1051 public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1052 this.root = root;
1053 this.parent = null;
1054 this.offset = fromIndex;
1055 this.size = toIndex - fromIndex;
1056 this.modCount = root.modCount;
1057 }
1058
1059 /**
1060 * Constructs a sublist of another SubList.
1061 */
1062 private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1063 this.root = parent.root;
1064 this.parent = parent;
1065 this.offset = parent.offset + fromIndex;
1066 this.size = toIndex - fromIndex;
1067 this.modCount = root.modCount;
1068 }
1069
1070 public E set(int index, E element) {
1071 Objects.checkIndex(index, size);
1072 checkForComodification();
1073 E oldValue = root.elementData(offset + index);
1074 root.elementData[offset + index] = element;
1075 return oldValue;
1076 }
1077
1078 public E get(int index) {
1079 Objects.checkIndex(index, size);
1080 checkForComodification();
1081 return root.elementData(offset + index);
1082 }
1083
1084 public int size() {
1085 checkForComodification();
1086 return size;
1087 }
1088
1089 public void add(int index, E element) {
1090 rangeCheckForAdd(index);
1091 checkForComodification();
1092 root.add(offset + index, element);
1093 updateSizeAndModCount(1);
1094 }
1095
1096 public E remove(int index) {
1097 Objects.checkIndex(index, size);
1098 checkForComodification();
1099 E result = root.remove(offset + index);
1100 updateSizeAndModCount(-1);
1101 return result;
1102 }
1103
1104 protected void removeRange(int fromIndex, int toIndex) {
1105 checkForComodification();
1106 root.removeRange(offset + fromIndex, offset + toIndex);
1107 updateSizeAndModCount(fromIndex - toIndex);
1108 }
1109
1110 public boolean addAll(Collection<? extends E> c) {
1111 return addAll(this.size, c);
1112 }
1113
1114 public boolean addAll(int index, Collection<? extends E> c) {
1115 rangeCheckForAdd(index);
1116 int cSize = c.size();
1117 if (cSize==0)
1118 return false;
1119 checkForComodification();
1120 root.addAll(offset + index, c);
1121 updateSizeAndModCount(cSize);
1122 return true;
1123 }
1124
1125 public boolean removeAll(Collection<?> c) {
1126 return batchRemove(c, false);
1127 }
1128
1129 public boolean retainAll(Collection<?> c) {
1130 return batchRemove(c, true);
1131 }
1132
1133 private boolean batchRemove(Collection<?> c, boolean complement) {
1134 checkForComodification();
1135 int oldSize = root.size;
1136 boolean modified =
1137 root.batchRemove(c, complement, offset, offset + size);
1138 if (modified)
1139 updateSizeAndModCount(root.size - oldSize);
1140 return modified;
1141 }
1142
1143 public boolean removeIf(Predicate<? super E> filter) {
1144 checkForComodification();
1145 int oldSize = root.size;
1146 boolean modified = root.removeIf(filter, offset, offset + size);
1147 if (modified)
1148 updateSizeAndModCount(root.size - oldSize);
1149 return modified;
1150 }
1151
1152 public Iterator<E> iterator() {
1153 return listIterator();
1154 }
1155
1156 public ListIterator<E> listIterator(int index) {
1157 checkForComodification();
1158 rangeCheckForAdd(index);
1159
1160 return new ListIterator<E>() {
1161 int cursor = index;
1162 int lastRet = -1;
1163 int expectedModCount = root.modCount;
1164
1165 public boolean hasNext() {
1166 return cursor != SubList.this.size;
1167 }
1168
1169 @SuppressWarnings("unchecked")
1170 public E next() {
1171 checkForComodification();
1172 int i = cursor;
1173 if (i >= SubList.this.size)
1174 throw new NoSuchElementException();
1175 Object[] elementData = root.elementData;
1176 if (offset + i >= elementData.length)
1177 throw new ConcurrentModificationException();
1178 cursor = i + 1;
1179 return (E) elementData[offset + (lastRet = i)];
1180 }
1181
1182 public boolean hasPrevious() {
1183 return cursor != 0;
1184 }
1185
1186 @SuppressWarnings("unchecked")
1187 public E previous() {
1188 checkForComodification();
1189 int i = cursor - 1;
1190 if (i < 0)
1191 throw new NoSuchElementException();
1192 Object[] elementData = root.elementData;
1193 if (offset + i >= elementData.length)
1194 throw new ConcurrentModificationException();
1195 cursor = i;
1196 return (E) elementData[offset + (lastRet = i)];
1197 }
1198
1199 public void forEachRemaining(Consumer<? super E> action) {
1200 Objects.requireNonNull(action);
1201 final int size = SubList.this.size;
1202 int i = cursor;
1203 if (i < size) {
1204 final Object[] es = root.elementData;
1205 if (offset + i >= es.length)
1206 throw new ConcurrentModificationException();
1207 for (; i < size && modCount == expectedModCount; i++)
1208 action.accept(elementAt(es, offset + i));
1209 // update once at end to reduce heap write traffic
1210 cursor = i;
1211 lastRet = i - 1;
1212 checkForComodification();
1213 }
1214 }
1215
1216 public int nextIndex() {
1217 return cursor;
1218 }
1219
1220 public int previousIndex() {
1221 return cursor - 1;
1222 }
1223
1224 public void remove() {
1225 if (lastRet < 0)
1226 throw new IllegalStateException();
1227 checkForComodification();
1228
1229 try {
1230 SubList.this.remove(lastRet);
1231 cursor = lastRet;
1232 lastRet = -1;
1233 expectedModCount = root.modCount;
1234 } catch (IndexOutOfBoundsException ex) {
1235 throw new ConcurrentModificationException();
1236 }
1237 }
1238
1239 public void set(E e) {
1240 if (lastRet < 0)
1241 throw new IllegalStateException();
1242 checkForComodification();
1243
1244 try {
1245 root.set(offset + lastRet, e);
1246 } catch (IndexOutOfBoundsException ex) {
1247 throw new ConcurrentModificationException();
1248 }
1249 }
1250
1251 public void add(E e) {
1252 checkForComodification();
1253
1254 try {
1255 int i = cursor;
1256 SubList.this.add(i, e);
1257 cursor = i + 1;
1258 lastRet = -1;
1259 expectedModCount = root.modCount;
1260 } catch (IndexOutOfBoundsException ex) {
1261 throw new ConcurrentModificationException();
1262 }
1263 }
1264
1265 final void checkForComodification() {
1266 if (root.modCount != expectedModCount)
1267 throw new ConcurrentModificationException();
1268 }
1269 };
1270 }
1271
1272 public List<E> subList(int fromIndex, int toIndex) {
1273 subListRangeCheck(fromIndex, toIndex, size);
1274 return new SubList<>(this, fromIndex, toIndex);
1275 }
1276
1277 private void rangeCheckForAdd(int index) {
1278 if (index < 0 || index > this.size)
1279 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1280 }
1281
1282 private String outOfBoundsMsg(int index) {
1283 return "Index: "+index+", Size: "+this.size;
1284 }
1285
1286 private void checkForComodification() {
1287 if (root.modCount != modCount)
1288 throw new ConcurrentModificationException();
1289 }
1290
1291 private void updateSizeAndModCount(int sizeChange) {
1292 SubList<E> slist = this;
1293 do {
1294 slist.size += sizeChange;
1295 slist.modCount = root.modCount;
1296 slist = slist.parent;
1297 } while (slist != null);
1298 }
1299
1300 public Spliterator<E> spliterator() {
1301 checkForComodification();
1302
1303 // ArrayListSpliterator not used here due to late-binding
1304 return new Spliterator<E>() {
1305 private int index = offset; // current index, modified on advance/split
1306 private int fence = -1; // -1 until used; then one past last index
1307 private int expectedModCount; // initialized when fence set
1308
1309 private int getFence() { // initialize fence to size on first use
1310 int hi; // (a specialized variant appears in method forEach)
1311 if ((hi = fence) < 0) {
1312 expectedModCount = modCount;
1313 hi = fence = offset + size;
1314 }
1315 return hi;
1316 }
1317
1318 public ArrayList<E>.ArrayListSpliterator trySplit() {
1319 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1320 // ArrayListSpliterator can be used here as the source is already bound
1321 return (lo >= mid) ? null : // divide range in half unless too small
1322 root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1323 }
1324
1325 public boolean tryAdvance(Consumer<? super E> action) {
1326 Objects.requireNonNull(action);
1327 int hi = getFence(), i = index;
1328 if (i < hi) {
1329 index = i + 1;
1330 @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1331 action.accept(e);
1332 if (root.modCount != expectedModCount)
1333 throw new ConcurrentModificationException();
1334 return true;
1335 }
1336 return false;
1337 }
1338
1339 public void forEachRemaining(Consumer<? super E> action) {
1340 Objects.requireNonNull(action);
1341 int i, hi, mc; // hoist accesses and checks from loop
1342 ArrayList<E> lst = root;
1343 Object[] a;
1344 if ((a = lst.elementData) != null) {
1345 if ((hi = fence) < 0) {
1346 mc = modCount;
1347 hi = offset + size;
1348 }
1349 else
1350 mc = expectedModCount;
1351 if ((i = index) >= 0 && (index = hi) <= a.length) {
1352 for (; i < hi; ++i) {
1353 @SuppressWarnings("unchecked") E e = (E) a[i];
1354 action.accept(e);
1355 }
1356 if (lst.modCount == mc)
1357 return;
1358 }
1359 }
1360 throw new ConcurrentModificationException();
1361 }
1362
1363 public long estimateSize() {
1364 return getFence() - index;
1365 }
1366
1367 public int characteristics() {
1368 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1369 }
1370 };
1371 }
1372 }
1373
1374 /**
1375 * @throws NullPointerException {@inheritDoc}
1376 */
1377 @Override
1378 public void forEach(Consumer<? super E> action) {
1379 Objects.requireNonNull(action);
1380 final int expectedModCount = modCount;
1381 final Object[] es = elementData;
1382 final int size = this.size;
1383 for (int i = 0; modCount == expectedModCount && i < size; i++)
1384 action.accept(elementAt(es, i));
1385 if (modCount != expectedModCount)
1386 throw new ConcurrentModificationException();
1387 }
1388
1389 /**
1390 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1391 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1392 * list.
1393 *
1394 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1395 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1396 * Overriding implementations should document the reporting of additional
1397 * characteristic values.
1398 *
1399 * @return a {@code Spliterator} over the elements in this list
1400 * @since 1.8
1401 */
1402 @Override
1403 public Spliterator<E> spliterator() {
1404 return new ArrayListSpliterator(0, -1, 0);
1405 }
1406
1407 /** Index-based split-by-two, lazily initialized Spliterator */
1408 final class ArrayListSpliterator implements Spliterator<E> {
1409
1410 /*
1411 * If ArrayLists were immutable, or structurally immutable (no
1412 * adds, removes, etc), we could implement their spliterators
1413 * with Arrays.spliterator. Instead we detect as much
1414 * interference during traversal as practical without
1415 * sacrificing much performance. We rely primarily on
1416 * modCounts. These are not guaranteed to detect concurrency
1417 * violations, and are sometimes overly conservative about
1418 * within-thread interference, but detect enough problems to
1419 * be worthwhile in practice. To carry this out, we (1) lazily
1420 * initialize fence and expectedModCount until the latest
1421 * point that we need to commit to the state we are checking
1422 * against; thus improving precision. (This doesn't apply to
1423 * SubLists, that create spliterators with current non-lazy
1424 * values). (2) We perform only a single
1425 * ConcurrentModificationException check at the end of forEach
1426 * (the most performance-sensitive method). When using forEach
1427 * (as opposed to iterators), we can normally only detect
1428 * interference after actions, not before. Further
1429 * CME-triggering checks apply to all other possible
1430 * violations of assumptions for example null or too-small
1431 * elementData array given its size(), that could only have
1432 * occurred due to interference. This allows the inner loop
1433 * of forEach to run without any further checks, and
1434 * simplifies lambda-resolution. While this does entail a
1435 * number of checks, note that in the common case of
1436 * list.stream().forEach(a), no checks or other computation
1437 * occur anywhere other than inside forEach itself. The other
1438 * less-often-used methods cannot take advantage of most of
1439 * these streamlinings.
1440 */
1441
1442 private int index; // current index, modified on advance/split
1443 private int fence; // -1 until used; then one past last index
1444 private int expectedModCount; // initialized when fence set
1445
1446 /** Creates new spliterator covering the given range. */
1447 ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1448 this.index = origin;
1449 this.fence = fence;
1450 this.expectedModCount = expectedModCount;
1451 }
1452
1453 private int getFence() { // initialize fence to size on first use
1454 int hi; // (a specialized variant appears in method forEach)
1455 if ((hi = fence) < 0) {
1456 expectedModCount = modCount;
1457 hi = fence = size;
1458 }
1459 return hi;
1460 }
1461
1462 public ArrayListSpliterator trySplit() {
1463 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1464 return (lo >= mid) ? null : // divide range in half unless too small
1465 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1466 }
1467
1468 public boolean tryAdvance(Consumer<? super E> action) {
1469 if (action == null)
1470 throw new NullPointerException();
1471 int hi = getFence(), i = index;
1472 if (i < hi) {
1473 index = i + 1;
1474 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1475 action.accept(e);
1476 if (modCount != expectedModCount)
1477 throw new ConcurrentModificationException();
1478 return true;
1479 }
1480 return false;
1481 }
1482
1483 public void forEachRemaining(Consumer<? super E> action) {
1484 int i, hi, mc; // hoist accesses and checks from loop
1485 Object[] a;
1486 if (action == null)
1487 throw new NullPointerException();
1488 if ((a = elementData) != null) {
1489 if ((hi = fence) < 0) {
1490 mc = modCount;
1491 hi = size;
1492 }
1493 else
1494 mc = expectedModCount;
1495 if ((i = index) >= 0 && (index = hi) <= a.length) {
1496 for (; i < hi; ++i) {
1497 @SuppressWarnings("unchecked") E e = (E) a[i];
1498 action.accept(e);
1499 }
1500 if (modCount == mc)
1501 return;
1502 }
1503 }
1504 throw new ConcurrentModificationException();
1505 }
1506
1507 public long estimateSize() {
1508 return getFence() - index;
1509 }
1510
1511 public int characteristics() {
1512 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1513 }
1514 }
1515
1516 // A tiny bit set implementation
1517
1518 private static long[] nBits(int n) {
1519 return new long[((n - 1) >> 6) + 1];
1520 }
1521 private static void setBit(long[] bits, int i) {
1522 bits[i >> 6] |= 1L << i;
1523 }
1524 private static boolean isClear(long[] bits, int i) {
1525 return (bits[i >> 6] & (1L << i)) == 0;
1526 }
1527
1528 /**
1529 * @throws NullPointerException {@inheritDoc}
1530 */
1531 @Override
1532 public boolean removeIf(Predicate<? super E> filter) {
1533 return removeIf(filter, 0, size);
1534 }
1535
1536 /**
1537 * Removes all elements satisfying the given predicate, from index
1538 * i (inclusive) to index end (exclusive).
1539 */
1540 boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1541 Objects.requireNonNull(filter);
1542 int expectedModCount = modCount;
1543 final Object[] es = elementData;
1544 // Optimize for initial run of survivors
1545 for (; i < end && !filter.test(elementAt(es, i)); i++)
1546 ;
1547 // Tolerate predicates that reentrantly access the collection for
1548 // read (but writers still get CME), so traverse once to find
1549 // elements to delete, a second pass to physically expunge.
1550 if (i < end) {
1551 final int beg = i;
1552 final long[] deathRow = nBits(end - beg);
1553 deathRow[0] = 1L; // set bit 0
1554 for (i = beg + 1; i < end; i++)
1555 if (filter.test(elementAt(es, i)))
1556 setBit(deathRow, i - beg);
1557 if (modCount != expectedModCount)
1558 throw new ConcurrentModificationException();
1559 expectedModCount++;
1560 modCount++;
1561 int w = beg;
1562 for (i = beg; i < end; i++)
1563 if (isClear(deathRow, i - beg))
1564 es[w++] = es[i];
1565 shiftTailOverGap(es, w, end);
1566 // checkInvariants();
1567 return true;
1568 } else {
1569 if (modCount != expectedModCount)
1570 throw new ConcurrentModificationException();
1571 // checkInvariants();
1572 return false;
1573 }
1574 }
1575
1576 @Override
1577 public void replaceAll(UnaryOperator<E> operator) {
1578 Objects.requireNonNull(operator);
1579 final int expectedModCount = modCount;
1580 final Object[] es = elementData;
1581 final int size = this.size;
1582 for (int i = 0; modCount == expectedModCount && i < size; i++)
1583 es[i] = operator.apply(elementAt(es, i));
1584 if (modCount != expectedModCount)
1585 throw new ConcurrentModificationException();
1586 modCount++;
1587 // checkInvariants();
1588 }
1589
1590 @Override
1591 @SuppressWarnings("unchecked")
1592 public void sort(Comparator<? super E> c) {
1593 final int expectedModCount = modCount;
1594 Arrays.sort((E[]) elementData, 0, size, c);
1595 if (modCount != expectedModCount)
1596 throw new ConcurrentModificationException();
1597 modCount++;
1598 // checkInvariants();
1599 }
1600
1601 void checkInvariants() {
1602 // assert size >= 0;
1603 // assert size == elementData.length || elementData[size] == null;
1604 }
1605 }