ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.59
Committed: Sun May 6 01:14:25 2018 UTC (6 years ago) by jsr166
Branch: MAIN
Changes since 1.58: +2 -2 lines
Log Message:
replaceAllRange: copy removeIf parameter names

File Contents

# Content
1 /*
2 * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31 import jdk.internal.misc.SharedSecrets;
32
33 /**
34 * Resizable-array implementation of the {@code List} interface. Implements
35 * all optional list operations, and permits all elements, including
36 * {@code null}. In addition to implementing the {@code List} interface,
37 * this class provides methods to manipulate the size of the array that is
38 * used internally to store the list. (This class is roughly equivalent to
39 * {@code Vector}, except that it is unsynchronized.)
40 *
41 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
42 * {@code iterator}, and {@code listIterator} operations run in constant
43 * time. The {@code add} operation runs in <i>amortized constant time</i>,
44 * that is, adding n elements requires O(n) time. All of the other operations
45 * run in linear time (roughly speaking). The constant factor is low compared
46 * to that for the {@code LinkedList} implementation.
47 *
48 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
49 * the size of the array used to store the elements in the list. It is always
50 * at least as large as the list size. As elements are added to an ArrayList,
51 * its capacity grows automatically. The details of the growth policy are not
52 * specified beyond the fact that adding an element has constant amortized
53 * time cost.
54 *
55 * <p>An application can increase the capacity of an {@code ArrayList} instance
56 * before adding a large number of elements using the {@code ensureCapacity}
57 * operation. This may reduce the amount of incremental reallocation.
58 *
59 * <p><strong>Note that this implementation is not synchronized.</strong>
60 * If multiple threads access an {@code ArrayList} instance concurrently,
61 * and at least one of the threads modifies the list structurally, it
62 * <i>must</i> be synchronized externally. (A structural modification is
63 * any operation that adds or deletes one or more elements, or explicitly
64 * resizes the backing array; merely setting the value of an element is not
65 * a structural modification.) This is typically accomplished by
66 * synchronizing on some object that naturally encapsulates the list.
67 *
68 * If no such object exists, the list should be "wrapped" using the
69 * {@link Collections#synchronizedList Collections.synchronizedList}
70 * method. This is best done at creation time, to prevent accidental
71 * unsynchronized access to the list:<pre>
72 * List list = Collections.synchronizedList(new ArrayList(...));</pre>
73 *
74 * <p id="fail-fast">
75 * The iterators returned by this class's {@link #iterator() iterator} and
76 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
77 * if the list is structurally modified at any time after the iterator is
78 * created, in any way except through the iterator's own
79 * {@link ListIterator#remove() remove} or
80 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
81 * {@link ConcurrentModificationException}. Thus, in the face of
82 * concurrent modification, the iterator fails quickly and cleanly, rather
83 * than risking arbitrary, non-deterministic behavior at an undetermined
84 * time in the future.
85 *
86 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
87 * as it is, generally speaking, impossible to make any hard guarantees in the
88 * presence of unsynchronized concurrent modification. Fail-fast iterators
89 * throw {@code ConcurrentModificationException} on a best-effort basis.
90 * Therefore, it would be wrong to write a program that depended on this
91 * exception for its correctness: <i>the fail-fast behavior of iterators
92 * should be used only to detect bugs.</i>
93 *
94 * <p>This class is a member of the
95 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
96 * Java Collections Framework</a>.
97 *
98 * @param <E> the type of elements in this list
99 *
100 * @author Josh Bloch
101 * @author Neal Gafter
102 * @see Collection
103 * @see List
104 * @see LinkedList
105 * @see Vector
106 * @since 1.2
107 */
108 public class ArrayList<E> extends AbstractList<E>
109 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
110 {
111 private static final long serialVersionUID = 8683452581122892189L;
112
113 /**
114 * Default initial capacity.
115 */
116 private static final int DEFAULT_CAPACITY = 10;
117
118 /**
119 * Shared empty array instance used for empty instances.
120 */
121 private static final Object[] EMPTY_ELEMENTDATA = {};
122
123 /**
124 * Shared empty array instance used for default sized empty instances. We
125 * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
126 * first element is added.
127 */
128 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
129
130 /**
131 * The array buffer into which the elements of the ArrayList are stored.
132 * The capacity of the ArrayList is the length of this array buffer. Any
133 * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
134 * will be expanded to DEFAULT_CAPACITY when the first element is added.
135 */
136 transient Object[] elementData; // non-private to simplify nested class access
137
138 /**
139 * The size of the ArrayList (the number of elements it contains).
140 *
141 * @serial
142 */
143 private int size;
144
145 /**
146 * Constructs an empty list with the specified initial capacity.
147 *
148 * @param initialCapacity the initial capacity of the list
149 * @throws IllegalArgumentException if the specified initial capacity
150 * is negative
151 */
152 public ArrayList(int initialCapacity) {
153 if (initialCapacity > 0) {
154 this.elementData = new Object[initialCapacity];
155 } else if (initialCapacity == 0) {
156 this.elementData = EMPTY_ELEMENTDATA;
157 } else {
158 throw new IllegalArgumentException("Illegal Capacity: "+
159 initialCapacity);
160 }
161 }
162
163 /**
164 * Constructs an empty list with an initial capacity of ten.
165 */
166 public ArrayList() {
167 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
168 }
169
170 /**
171 * Constructs a list containing the elements of the specified
172 * collection, in the order they are returned by the collection's
173 * iterator.
174 *
175 * @param c the collection whose elements are to be placed into this list
176 * @throws NullPointerException if the specified collection is null
177 */
178 public ArrayList(Collection<? extends E> c) {
179 elementData = c.toArray();
180 if ((size = elementData.length) != 0) {
181 // defend against c.toArray (incorrectly) not returning Object[]
182 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
183 if (elementData.getClass() != Object[].class)
184 elementData = Arrays.copyOf(elementData, size, Object[].class);
185 } else {
186 // replace with empty array.
187 this.elementData = EMPTY_ELEMENTDATA;
188 }
189 }
190
191 /**
192 * Trims the capacity of this {@code ArrayList} instance to be the
193 * list's current size. An application can use this operation to minimize
194 * the storage of an {@code ArrayList} instance.
195 */
196 public void trimToSize() {
197 modCount++;
198 if (size < elementData.length) {
199 elementData = (size == 0)
200 ? EMPTY_ELEMENTDATA
201 : Arrays.copyOf(elementData, size);
202 }
203 }
204
205 /**
206 * Increases the capacity of this {@code ArrayList} instance, if
207 * necessary, to ensure that it can hold at least the number of elements
208 * specified by the minimum capacity argument.
209 *
210 * @param minCapacity the desired minimum capacity
211 */
212 public void ensureCapacity(int minCapacity) {
213 if (minCapacity > elementData.length
214 && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
215 && minCapacity <= DEFAULT_CAPACITY)) {
216 modCount++;
217 grow(minCapacity);
218 }
219 }
220
221 /**
222 * The maximum size of array to allocate (unless necessary).
223 * Some VMs reserve some header words in an array.
224 * Attempts to allocate larger arrays may result in
225 * OutOfMemoryError: Requested array size exceeds VM limit
226 */
227 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
228
229 /**
230 * Increases the capacity to ensure that it can hold at least the
231 * number of elements specified by the minimum capacity argument.
232 *
233 * @param minCapacity the desired minimum capacity
234 * @throws OutOfMemoryError if minCapacity is less than zero
235 */
236 private Object[] grow(int minCapacity) {
237 return elementData = Arrays.copyOf(elementData,
238 newCapacity(minCapacity));
239 }
240
241 private Object[] grow() {
242 return grow(size + 1);
243 }
244
245 /**
246 * Returns a capacity at least as large as the given minimum capacity.
247 * Returns the current capacity increased by 50% if that suffices.
248 * Will not return a capacity greater than MAX_ARRAY_SIZE unless
249 * the given minimum capacity is greater than MAX_ARRAY_SIZE.
250 *
251 * @param minCapacity the desired minimum capacity
252 * @throws OutOfMemoryError if minCapacity is less than zero
253 */
254 private int newCapacity(int minCapacity) {
255 // overflow-conscious code
256 int oldCapacity = elementData.length;
257 int newCapacity = oldCapacity + (oldCapacity >> 1);
258 if (newCapacity - minCapacity <= 0) {
259 if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
260 return Math.max(DEFAULT_CAPACITY, minCapacity);
261 if (minCapacity < 0) // overflow
262 throw new OutOfMemoryError();
263 return minCapacity;
264 }
265 return (newCapacity - MAX_ARRAY_SIZE <= 0)
266 ? newCapacity
267 : hugeCapacity(minCapacity);
268 }
269
270 private static int hugeCapacity(int minCapacity) {
271 if (minCapacity < 0) // overflow
272 throw new OutOfMemoryError();
273 return (minCapacity > MAX_ARRAY_SIZE)
274 ? Integer.MAX_VALUE
275 : MAX_ARRAY_SIZE;
276 }
277
278 /**
279 * Returns the number of elements in this list.
280 *
281 * @return the number of elements in this list
282 */
283 public int size() {
284 return size;
285 }
286
287 /**
288 * Returns {@code true} if this list contains no elements.
289 *
290 * @return {@code true} if this list contains no elements
291 */
292 public boolean isEmpty() {
293 return size == 0;
294 }
295
296 /**
297 * Returns {@code true} if this list contains the specified element.
298 * More formally, returns {@code true} if and only if this list contains
299 * at least one element {@code e} such that
300 * {@code Objects.equals(o, e)}.
301 *
302 * @param o element whose presence in this list is to be tested
303 * @return {@code true} if this list contains the specified element
304 */
305 public boolean contains(Object o) {
306 return indexOf(o) >= 0;
307 }
308
309 /**
310 * Returns the index of the first occurrence of the specified element
311 * in this list, or -1 if this list does not contain the element.
312 * More formally, returns the lowest index {@code i} such that
313 * {@code Objects.equals(o, get(i))},
314 * or -1 if there is no such index.
315 */
316 public int indexOf(Object o) {
317 if (o == null) {
318 for (int i = 0; i < size; i++)
319 if (elementData[i]==null)
320 return i;
321 } else {
322 for (int i = 0; i < size; i++)
323 if (o.equals(elementData[i]))
324 return i;
325 }
326 return -1;
327 }
328
329 /**
330 * Returns the index of the last occurrence of the specified element
331 * in this list, or -1 if this list does not contain the element.
332 * More formally, returns the highest index {@code i} such that
333 * {@code Objects.equals(o, get(i))},
334 * or -1 if there is no such index.
335 */
336 public int lastIndexOf(Object o) {
337 if (o == null) {
338 for (int i = size-1; i >= 0; i--)
339 if (elementData[i]==null)
340 return i;
341 } else {
342 for (int i = size-1; i >= 0; i--)
343 if (o.equals(elementData[i]))
344 return i;
345 }
346 return -1;
347 }
348
349 /**
350 * Returns a shallow copy of this {@code ArrayList} instance. (The
351 * elements themselves are not copied.)
352 *
353 * @return a clone of this {@code ArrayList} instance
354 */
355 public Object clone() {
356 try {
357 ArrayList<?> v = (ArrayList<?>) super.clone();
358 v.elementData = Arrays.copyOf(elementData, size);
359 v.modCount = 0;
360 return v;
361 } catch (CloneNotSupportedException e) {
362 // this shouldn't happen, since we are Cloneable
363 throw new InternalError(e);
364 }
365 }
366
367 /**
368 * Returns an array containing all of the elements in this list
369 * in proper sequence (from first to last element).
370 *
371 * <p>The returned array will be "safe" in that no references to it are
372 * maintained by this list. (In other words, this method must allocate
373 * a new array). The caller is thus free to modify the returned array.
374 *
375 * <p>This method acts as bridge between array-based and collection-based
376 * APIs.
377 *
378 * @return an array containing all of the elements in this list in
379 * proper sequence
380 */
381 public Object[] toArray() {
382 return Arrays.copyOf(elementData, size);
383 }
384
385 /**
386 * Returns an array containing all of the elements in this list in proper
387 * sequence (from first to last element); the runtime type of the returned
388 * array is that of the specified array. If the list fits in the
389 * specified array, it is returned therein. Otherwise, a new array is
390 * allocated with the runtime type of the specified array and the size of
391 * this list.
392 *
393 * <p>If the list fits in the specified array with room to spare
394 * (i.e., the array has more elements than the list), the element in
395 * the array immediately following the end of the collection is set to
396 * {@code null}. (This is useful in determining the length of the
397 * list <i>only</i> if the caller knows that the list does not contain
398 * any null elements.)
399 *
400 * @param a the array into which the elements of the list are to
401 * be stored, if it is big enough; otherwise, a new array of the
402 * same runtime type is allocated for this purpose.
403 * @return an array containing the elements of the list
404 * @throws ArrayStoreException if the runtime type of the specified array
405 * is not a supertype of the runtime type of every element in
406 * this list
407 * @throws NullPointerException if the specified array is null
408 */
409 @SuppressWarnings("unchecked")
410 public <T> T[] toArray(T[] a) {
411 if (a.length < size)
412 // Make a new array of a's runtime type, but my contents:
413 return (T[]) Arrays.copyOf(elementData, size, a.getClass());
414 System.arraycopy(elementData, 0, a, 0, size);
415 if (a.length > size)
416 a[size] = null;
417 return a;
418 }
419
420 // Positional Access Operations
421
422 @SuppressWarnings("unchecked")
423 E elementData(int index) {
424 return (E) elementData[index];
425 }
426
427 @SuppressWarnings("unchecked")
428 static <E> E elementAt(Object[] es, int index) {
429 return (E) es[index];
430 }
431
432 /**
433 * Returns the element at the specified position in this list.
434 *
435 * @param index index of the element to return
436 * @return the element at the specified position in this list
437 * @throws IndexOutOfBoundsException {@inheritDoc}
438 */
439 public E get(int index) {
440 Objects.checkIndex(index, size);
441 return elementData(index);
442 }
443
444 /**
445 * Replaces the element at the specified position in this list with
446 * the specified element.
447 *
448 * @param index index of the element to replace
449 * @param element element to be stored at the specified position
450 * @return the element previously at the specified position
451 * @throws IndexOutOfBoundsException {@inheritDoc}
452 */
453 public E set(int index, E element) {
454 Objects.checkIndex(index, size);
455 E oldValue = elementData(index);
456 elementData[index] = element;
457 return oldValue;
458 }
459
460 /**
461 * This helper method split out from add(E) to keep method
462 * bytecode size under 35 (the -XX:MaxInlineSize default value),
463 * which helps when add(E) is called in a C1-compiled loop.
464 */
465 private void add(E e, Object[] elementData, int s) {
466 if (s == elementData.length)
467 elementData = grow();
468 elementData[s] = e;
469 size = s + 1;
470 }
471
472 /**
473 * Appends the specified element to the end of this list.
474 *
475 * @param e element to be appended to this list
476 * @return {@code true} (as specified by {@link Collection#add})
477 */
478 public boolean add(E e) {
479 modCount++;
480 add(e, elementData, size);
481 return true;
482 }
483
484 /**
485 * Inserts the specified element at the specified position in this
486 * list. Shifts the element currently at that position (if any) and
487 * any subsequent elements to the right (adds one to their indices).
488 *
489 * @param index index at which the specified element is to be inserted
490 * @param element element to be inserted
491 * @throws IndexOutOfBoundsException {@inheritDoc}
492 */
493 public void add(int index, E element) {
494 rangeCheckForAdd(index);
495 modCount++;
496 final int s;
497 Object[] elementData;
498 if ((s = size) == (elementData = this.elementData).length)
499 elementData = grow();
500 System.arraycopy(elementData, index,
501 elementData, index + 1,
502 s - index);
503 elementData[index] = element;
504 size = s + 1;
505 // checkInvariants();
506 }
507
508 /**
509 * Removes the element at the specified position in this list.
510 * Shifts any subsequent elements to the left (subtracts one from their
511 * indices).
512 *
513 * @param index the index of the element to be removed
514 * @return the element that was removed from the list
515 * @throws IndexOutOfBoundsException {@inheritDoc}
516 */
517 public E remove(int index) {
518 Objects.checkIndex(index, size);
519 final Object[] es = elementData;
520
521 @SuppressWarnings("unchecked") E oldValue = (E) es[index];
522 fastRemove(es, index);
523
524 // checkInvariants();
525 return oldValue;
526 }
527
528 /**
529 * Removes the first occurrence of the specified element from this list,
530 * if it is present. If the list does not contain the element, it is
531 * unchanged. More formally, removes the element with the lowest index
532 * {@code i} such that
533 * {@code Objects.equals(o, get(i))}
534 * (if such an element exists). Returns {@code true} if this list
535 * contained the specified element (or equivalently, if this list
536 * changed as a result of the call).
537 *
538 * @param o element to be removed from this list, if present
539 * @return {@code true} if this list contained the specified element
540 */
541 public boolean remove(Object o) {
542 final Object[] es = elementData;
543 final int size = this.size;
544 int i = 0;
545 found: {
546 if (o == null) {
547 for (; i < size; i++)
548 if (es[i] == null)
549 break found;
550 } else {
551 for (; i < size; i++)
552 if (o.equals(es[i]))
553 break found;
554 }
555 return false;
556 }
557 fastRemove(es, i);
558 return true;
559 }
560
561 /**
562 * Private remove method that skips bounds checking and does not
563 * return the value removed.
564 */
565 private void fastRemove(Object[] es, int i) {
566 modCount++;
567 final int newSize;
568 if ((newSize = size - 1) > i)
569 System.arraycopy(es, i + 1, es, i, newSize - i);
570 es[size = newSize] = null;
571 }
572
573 /**
574 * Removes all of the elements from this list. The list will
575 * be empty after this call returns.
576 */
577 public void clear() {
578 modCount++;
579 final Object[] es = elementData;
580 for (int to = size, i = size = 0; i < to; i++)
581 es[i] = null;
582 }
583
584 /**
585 * Appends all of the elements in the specified collection to the end of
586 * this list, in the order that they are returned by the
587 * specified collection's Iterator. The behavior of this operation is
588 * undefined if the specified collection is modified while the operation
589 * is in progress. (This implies that the behavior of this call is
590 * undefined if the specified collection is this list, and this
591 * list is nonempty.)
592 *
593 * @param c collection containing elements to be added to this list
594 * @return {@code true} if this list changed as a result of the call
595 * @throws NullPointerException if the specified collection is null
596 */
597 public boolean addAll(Collection<? extends E> c) {
598 Object[] a = c.toArray();
599 modCount++;
600 int numNew = a.length;
601 if (numNew == 0)
602 return false;
603 Object[] elementData;
604 final int s;
605 if (numNew > (elementData = this.elementData).length - (s = size))
606 elementData = grow(s + numNew);
607 System.arraycopy(a, 0, elementData, s, numNew);
608 size = s + numNew;
609 // checkInvariants();
610 return true;
611 }
612
613 /**
614 * Inserts all of the elements in the specified collection into this
615 * list, starting at the specified position. Shifts the element
616 * currently at that position (if any) and any subsequent elements to
617 * the right (increases their indices). The new elements will appear
618 * in the list in the order that they are returned by the
619 * specified collection's iterator.
620 *
621 * @param index index at which to insert the first element from the
622 * specified collection
623 * @param c collection containing elements to be added to this list
624 * @return {@code true} if this list changed as a result of the call
625 * @throws IndexOutOfBoundsException {@inheritDoc}
626 * @throws NullPointerException if the specified collection is null
627 */
628 public boolean addAll(int index, Collection<? extends E> c) {
629 rangeCheckForAdd(index);
630
631 Object[] a = c.toArray();
632 modCount++;
633 int numNew = a.length;
634 if (numNew == 0)
635 return false;
636 Object[] elementData;
637 final int s;
638 if (numNew > (elementData = this.elementData).length - (s = size))
639 elementData = grow(s + numNew);
640
641 int numMoved = s - index;
642 if (numMoved > 0)
643 System.arraycopy(elementData, index,
644 elementData, index + numNew,
645 numMoved);
646 System.arraycopy(a, 0, elementData, index, numNew);
647 size = s + numNew;
648 // checkInvariants();
649 return true;
650 }
651
652 /**
653 * Removes from this list all of the elements whose index is between
654 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
655 * Shifts any succeeding elements to the left (reduces their index).
656 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
657 * (If {@code toIndex==fromIndex}, this operation has no effect.)
658 *
659 * @throws IndexOutOfBoundsException if {@code fromIndex} or
660 * {@code toIndex} is out of range
661 * ({@code fromIndex < 0 ||
662 * toIndex > size() ||
663 * toIndex < fromIndex})
664 */
665 protected void removeRange(int fromIndex, int toIndex) {
666 if (fromIndex > toIndex) {
667 throw new IndexOutOfBoundsException(
668 outOfBoundsMsg(fromIndex, toIndex));
669 }
670 modCount++;
671 shiftTailOverGap(elementData, fromIndex, toIndex);
672 // checkInvariants();
673 }
674
675 /** Erases the gap from lo to hi, by sliding down following elements. */
676 private void shiftTailOverGap(Object[] es, int lo, int hi) {
677 System.arraycopy(es, hi, es, lo, size - hi);
678 for (int to = size, i = (size -= hi - lo); i < to; i++)
679 es[i] = null;
680 }
681
682 /**
683 * A version of rangeCheck used by add and addAll.
684 */
685 private void rangeCheckForAdd(int index) {
686 if (index > size || index < 0)
687 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
688 }
689
690 /**
691 * Constructs an IndexOutOfBoundsException detail message.
692 * Of the many possible refactorings of the error handling code,
693 * this "outlining" performs best with both server and client VMs.
694 */
695 private String outOfBoundsMsg(int index) {
696 return "Index: "+index+", Size: "+size;
697 }
698
699 /**
700 * A version used in checking (fromIndex > toIndex) condition
701 */
702 private static String outOfBoundsMsg(int fromIndex, int toIndex) {
703 return "From Index: " + fromIndex + " > To Index: " + toIndex;
704 }
705
706 /**
707 * Removes from this list all of its elements that are contained in the
708 * specified collection.
709 *
710 * @param c collection containing elements to be removed from this list
711 * @return {@code true} if this list changed as a result of the call
712 * @throws ClassCastException if the class of an element of this list
713 * is incompatible with the specified collection
714 * (<a href="Collection.html#optional-restrictions">optional</a>)
715 * @throws NullPointerException if this list contains a null element and the
716 * specified collection does not permit null elements
717 * (<a href="Collection.html#optional-restrictions">optional</a>),
718 * or if the specified collection is null
719 * @see Collection#contains(Object)
720 */
721 public boolean removeAll(Collection<?> c) {
722 return batchRemove(c, false, 0, size);
723 }
724
725 /**
726 * Retains only the elements in this list that are contained in the
727 * specified collection. In other words, removes from this list all
728 * of its elements that are not contained in the specified collection.
729 *
730 * @param c collection containing elements to be retained in this list
731 * @return {@code true} if this list changed as a result of the call
732 * @throws ClassCastException if the class of an element of this list
733 * is incompatible with the specified collection
734 * (<a href="Collection.html#optional-restrictions">optional</a>)
735 * @throws NullPointerException if this list contains a null element and the
736 * specified collection does not permit null elements
737 * (<a href="Collection.html#optional-restrictions">optional</a>),
738 * or if the specified collection is null
739 * @see Collection#contains(Object)
740 */
741 public boolean retainAll(Collection<?> c) {
742 return batchRemove(c, true, 0, size);
743 }
744
745 boolean batchRemove(Collection<?> c, boolean complement,
746 final int from, final int end) {
747 Objects.requireNonNull(c);
748 final Object[] es = elementData;
749 int r;
750 // Optimize for initial run of survivors
751 for (r = from;; r++) {
752 if (r == end)
753 return false;
754 if (c.contains(es[r]) != complement)
755 break;
756 }
757 int w = r++;
758 try {
759 for (Object e; r < end; r++)
760 if (c.contains(e = es[r]) == complement)
761 es[w++] = e;
762 } catch (Throwable ex) {
763 // Preserve behavioral compatibility with AbstractCollection,
764 // even if c.contains() throws.
765 System.arraycopy(es, r, es, w, end - r);
766 w += end - r;
767 throw ex;
768 } finally {
769 modCount += end - w;
770 shiftTailOverGap(es, w, end);
771 }
772 // checkInvariants();
773 return true;
774 }
775
776 /**
777 * Saves the state of the {@code ArrayList} instance to a stream
778 * (that is, serializes it).
779 *
780 * @param s the stream
781 * @throws java.io.IOException if an I/O error occurs
782 * @serialData The length of the array backing the {@code ArrayList}
783 * instance is emitted (int), followed by all of its elements
784 * (each an {@code Object}) in the proper order.
785 */
786 private void writeObject(java.io.ObjectOutputStream s)
787 throws java.io.IOException {
788 // Write out element count, and any hidden stuff
789 int expectedModCount = modCount;
790 s.defaultWriteObject();
791
792 // Write out size as capacity for behavioral compatibility with clone()
793 s.writeInt(size);
794
795 // Write out all elements in the proper order.
796 for (int i=0; i<size; i++) {
797 s.writeObject(elementData[i]);
798 }
799
800 if (modCount != expectedModCount) {
801 throw new ConcurrentModificationException();
802 }
803 }
804
805 /**
806 * Reconstitutes the {@code ArrayList} instance from a stream (that is,
807 * deserializes it).
808 * @param s the stream
809 * @throws ClassNotFoundException if the class of a serialized object
810 * could not be found
811 * @throws java.io.IOException if an I/O error occurs
812 */
813 private void readObject(java.io.ObjectInputStream s)
814 throws java.io.IOException, ClassNotFoundException {
815
816 // Read in size, and any hidden stuff
817 s.defaultReadObject();
818
819 // Read in capacity
820 s.readInt(); // ignored
821
822 if (size > 0) {
823 // like clone(), allocate array based upon size not capacity
824 SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
825 Object[] elements = new Object[size];
826
827 // Read in all elements in the proper order.
828 for (int i = 0; i < size; i++) {
829 elements[i] = s.readObject();
830 }
831
832 elementData = elements;
833 } else if (size == 0) {
834 elementData = EMPTY_ELEMENTDATA;
835 } else {
836 throw new java.io.InvalidObjectException("Invalid size: " + size);
837 }
838 }
839
840 /**
841 * Returns a list iterator over the elements in this list (in proper
842 * sequence), starting at the specified position in the list.
843 * The specified index indicates the first element that would be
844 * returned by an initial call to {@link ListIterator#next next}.
845 * An initial call to {@link ListIterator#previous previous} would
846 * return the element with the specified index minus one.
847 *
848 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
849 *
850 * @throws IndexOutOfBoundsException {@inheritDoc}
851 */
852 public ListIterator<E> listIterator(int index) {
853 rangeCheckForAdd(index);
854 return new ListItr(index);
855 }
856
857 /**
858 * Returns a list iterator over the elements in this list (in proper
859 * sequence).
860 *
861 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
862 *
863 * @see #listIterator(int)
864 */
865 public ListIterator<E> listIterator() {
866 return new ListItr(0);
867 }
868
869 /**
870 * Returns an iterator over the elements in this list in proper sequence.
871 *
872 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
873 *
874 * @return an iterator over the elements in this list in proper sequence
875 */
876 public Iterator<E> iterator() {
877 return new Itr();
878 }
879
880 /**
881 * An optimized version of AbstractList.Itr
882 */
883 private class Itr implements Iterator<E> {
884 int cursor; // index of next element to return
885 int lastRet = -1; // index of last element returned; -1 if no such
886 int expectedModCount = modCount;
887
888 // prevent creating a synthetic constructor
889 Itr() {}
890
891 public boolean hasNext() {
892 return cursor != size;
893 }
894
895 @SuppressWarnings("unchecked")
896 public E next() {
897 checkForComodification();
898 int i = cursor;
899 if (i >= size)
900 throw new NoSuchElementException();
901 Object[] elementData = ArrayList.this.elementData;
902 if (i >= elementData.length)
903 throw new ConcurrentModificationException();
904 cursor = i + 1;
905 return (E) elementData[lastRet = i];
906 }
907
908 public void remove() {
909 if (lastRet < 0)
910 throw new IllegalStateException();
911 checkForComodification();
912
913 try {
914 ArrayList.this.remove(lastRet);
915 cursor = lastRet;
916 lastRet = -1;
917 expectedModCount = modCount;
918 } catch (IndexOutOfBoundsException ex) {
919 throw new ConcurrentModificationException();
920 }
921 }
922
923 @Override
924 public void forEachRemaining(Consumer<? super E> action) {
925 Objects.requireNonNull(action);
926 final int size = ArrayList.this.size;
927 int i = cursor;
928 if (i < size) {
929 final Object[] es = elementData;
930 if (i >= es.length)
931 throw new ConcurrentModificationException();
932 for (; i < size && modCount == expectedModCount; i++)
933 action.accept(elementAt(es, i));
934 // update once at end to reduce heap write traffic
935 cursor = i;
936 lastRet = i - 1;
937 checkForComodification();
938 }
939 }
940
941 final void checkForComodification() {
942 if (modCount != expectedModCount)
943 throw new ConcurrentModificationException();
944 }
945 }
946
947 /**
948 * An optimized version of AbstractList.ListItr
949 */
950 private class ListItr extends Itr implements ListIterator<E> {
951 ListItr(int index) {
952 super();
953 cursor = index;
954 }
955
956 public boolean hasPrevious() {
957 return cursor != 0;
958 }
959
960 public int nextIndex() {
961 return cursor;
962 }
963
964 public int previousIndex() {
965 return cursor - 1;
966 }
967
968 @SuppressWarnings("unchecked")
969 public E previous() {
970 checkForComodification();
971 int i = cursor - 1;
972 if (i < 0)
973 throw new NoSuchElementException();
974 Object[] elementData = ArrayList.this.elementData;
975 if (i >= elementData.length)
976 throw new ConcurrentModificationException();
977 cursor = i;
978 return (E) elementData[lastRet = i];
979 }
980
981 public void set(E e) {
982 if (lastRet < 0)
983 throw new IllegalStateException();
984 checkForComodification();
985
986 try {
987 ArrayList.this.set(lastRet, e);
988 } catch (IndexOutOfBoundsException ex) {
989 throw new ConcurrentModificationException();
990 }
991 }
992
993 public void add(E e) {
994 checkForComodification();
995
996 try {
997 int i = cursor;
998 ArrayList.this.add(i, e);
999 cursor = i + 1;
1000 lastRet = -1;
1001 expectedModCount = modCount;
1002 } catch (IndexOutOfBoundsException ex) {
1003 throw new ConcurrentModificationException();
1004 }
1005 }
1006 }
1007
1008 /**
1009 * Returns a view of the portion of this list between the specified
1010 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1011 * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1012 * empty.) The returned list is backed by this list, so non-structural
1013 * changes in the returned list are reflected in this list, and vice-versa.
1014 * The returned list supports all of the optional list operations.
1015 *
1016 * <p>This method eliminates the need for explicit range operations (of
1017 * the sort that commonly exist for arrays). Any operation that expects
1018 * a list can be used as a range operation by passing a subList view
1019 * instead of a whole list. For example, the following idiom
1020 * removes a range of elements from a list:
1021 * <pre>
1022 * list.subList(from, to).clear();
1023 * </pre>
1024 * Similar idioms may be constructed for {@link #indexOf(Object)} and
1025 * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1026 * {@link Collections} class can be applied to a subList.
1027 *
1028 * <p>The semantics of the list returned by this method become undefined if
1029 * the backing list (i.e., this list) is <i>structurally modified</i> in
1030 * any way other than via the returned list. (Structural modifications are
1031 * those that change the size of this list, or otherwise perturb it in such
1032 * a fashion that iterations in progress may yield incorrect results.)
1033 *
1034 * @throws IndexOutOfBoundsException {@inheritDoc}
1035 * @throws IllegalArgumentException {@inheritDoc}
1036 */
1037 public List<E> subList(int fromIndex, int toIndex) {
1038 subListRangeCheck(fromIndex, toIndex, size);
1039 return new SubList<>(this, fromIndex, toIndex);
1040 }
1041
1042 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1043 private final ArrayList<E> root;
1044 private final SubList<E> parent;
1045 private final int offset;
1046 private int size;
1047
1048 /**
1049 * Constructs a sublist of an arbitrary ArrayList.
1050 */
1051 public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1052 this.root = root;
1053 this.parent = null;
1054 this.offset = fromIndex;
1055 this.size = toIndex - fromIndex;
1056 this.modCount = root.modCount;
1057 }
1058
1059 /**
1060 * Constructs a sublist of another SubList.
1061 */
1062 private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1063 this.root = parent.root;
1064 this.parent = parent;
1065 this.offset = parent.offset + fromIndex;
1066 this.size = toIndex - fromIndex;
1067 this.modCount = root.modCount;
1068 }
1069
1070 public E set(int index, E element) {
1071 Objects.checkIndex(index, size);
1072 checkForComodification();
1073 E oldValue = root.elementData(offset + index);
1074 root.elementData[offset + index] = element;
1075 return oldValue;
1076 }
1077
1078 public E get(int index) {
1079 Objects.checkIndex(index, size);
1080 checkForComodification();
1081 return root.elementData(offset + index);
1082 }
1083
1084 public int size() {
1085 checkForComodification();
1086 return size;
1087 }
1088
1089 public void add(int index, E element) {
1090 rangeCheckForAdd(index);
1091 checkForComodification();
1092 root.add(offset + index, element);
1093 updateSizeAndModCount(1);
1094 }
1095
1096 public E remove(int index) {
1097 Objects.checkIndex(index, size);
1098 checkForComodification();
1099 E result = root.remove(offset + index);
1100 updateSizeAndModCount(-1);
1101 return result;
1102 }
1103
1104 protected void removeRange(int fromIndex, int toIndex) {
1105 checkForComodification();
1106 root.removeRange(offset + fromIndex, offset + toIndex);
1107 updateSizeAndModCount(fromIndex - toIndex);
1108 }
1109
1110 public boolean addAll(Collection<? extends E> c) {
1111 return addAll(this.size, c);
1112 }
1113
1114 public boolean addAll(int index, Collection<? extends E> c) {
1115 rangeCheckForAdd(index);
1116 int cSize = c.size();
1117 if (cSize==0)
1118 return false;
1119 checkForComodification();
1120 root.addAll(offset + index, c);
1121 updateSizeAndModCount(cSize);
1122 return true;
1123 }
1124
1125 public void replaceAll(UnaryOperator<E> operator) {
1126 root.replaceAllRange(operator, offset, offset + size);
1127 }
1128
1129 public boolean removeAll(Collection<?> c) {
1130 return batchRemove(c, false);
1131 }
1132
1133 public boolean retainAll(Collection<?> c) {
1134 return batchRemove(c, true);
1135 }
1136
1137 private boolean batchRemove(Collection<?> c, boolean complement) {
1138 checkForComodification();
1139 int oldSize = root.size;
1140 boolean modified =
1141 root.batchRemove(c, complement, offset, offset + size);
1142 if (modified)
1143 updateSizeAndModCount(root.size - oldSize);
1144 return modified;
1145 }
1146
1147 public boolean removeIf(Predicate<? super E> filter) {
1148 checkForComodification();
1149 int oldSize = root.size;
1150 boolean modified = root.removeIf(filter, offset, offset + size);
1151 if (modified)
1152 updateSizeAndModCount(root.size - oldSize);
1153 return modified;
1154 }
1155
1156 public Object[] toArray() {
1157 checkForComodification();
1158 return Arrays.copyOfRange(root.elementData, offset, offset + size);
1159 }
1160
1161 @SuppressWarnings("unchecked")
1162 public <T> T[] toArray(T[] a) {
1163 checkForComodification();
1164 if (a.length < size)
1165 return (T[]) Arrays.copyOfRange(
1166 root.elementData, offset, offset + size, a.getClass());
1167 System.arraycopy(root.elementData, offset, a, 0, size);
1168 if (a.length > size)
1169 a[size] = null;
1170 return a;
1171 }
1172
1173 public Iterator<E> iterator() {
1174 return listIterator();
1175 }
1176
1177 public ListIterator<E> listIterator(int index) {
1178 checkForComodification();
1179 rangeCheckForAdd(index);
1180
1181 return new ListIterator<E>() {
1182 int cursor = index;
1183 int lastRet = -1;
1184 int expectedModCount = root.modCount;
1185
1186 public boolean hasNext() {
1187 return cursor != SubList.this.size;
1188 }
1189
1190 @SuppressWarnings("unchecked")
1191 public E next() {
1192 checkForComodification();
1193 int i = cursor;
1194 if (i >= SubList.this.size)
1195 throw new NoSuchElementException();
1196 Object[] elementData = root.elementData;
1197 if (offset + i >= elementData.length)
1198 throw new ConcurrentModificationException();
1199 cursor = i + 1;
1200 return (E) elementData[offset + (lastRet = i)];
1201 }
1202
1203 public boolean hasPrevious() {
1204 return cursor != 0;
1205 }
1206
1207 @SuppressWarnings("unchecked")
1208 public E previous() {
1209 checkForComodification();
1210 int i = cursor - 1;
1211 if (i < 0)
1212 throw new NoSuchElementException();
1213 Object[] elementData = root.elementData;
1214 if (offset + i >= elementData.length)
1215 throw new ConcurrentModificationException();
1216 cursor = i;
1217 return (E) elementData[offset + (lastRet = i)];
1218 }
1219
1220 public void forEachRemaining(Consumer<? super E> action) {
1221 Objects.requireNonNull(action);
1222 final int size = SubList.this.size;
1223 int i = cursor;
1224 if (i < size) {
1225 final Object[] es = root.elementData;
1226 if (offset + i >= es.length)
1227 throw new ConcurrentModificationException();
1228 for (; i < size && modCount == expectedModCount; i++)
1229 action.accept(elementAt(es, offset + i));
1230 // update once at end to reduce heap write traffic
1231 cursor = i;
1232 lastRet = i - 1;
1233 checkForComodification();
1234 }
1235 }
1236
1237 public int nextIndex() {
1238 return cursor;
1239 }
1240
1241 public int previousIndex() {
1242 return cursor - 1;
1243 }
1244
1245 public void remove() {
1246 if (lastRet < 0)
1247 throw new IllegalStateException();
1248 checkForComodification();
1249
1250 try {
1251 SubList.this.remove(lastRet);
1252 cursor = lastRet;
1253 lastRet = -1;
1254 expectedModCount = root.modCount;
1255 } catch (IndexOutOfBoundsException ex) {
1256 throw new ConcurrentModificationException();
1257 }
1258 }
1259
1260 public void set(E e) {
1261 if (lastRet < 0)
1262 throw new IllegalStateException();
1263 checkForComodification();
1264
1265 try {
1266 root.set(offset + lastRet, e);
1267 } catch (IndexOutOfBoundsException ex) {
1268 throw new ConcurrentModificationException();
1269 }
1270 }
1271
1272 public void add(E e) {
1273 checkForComodification();
1274
1275 try {
1276 int i = cursor;
1277 SubList.this.add(i, e);
1278 cursor = i + 1;
1279 lastRet = -1;
1280 expectedModCount = root.modCount;
1281 } catch (IndexOutOfBoundsException ex) {
1282 throw new ConcurrentModificationException();
1283 }
1284 }
1285
1286 final void checkForComodification() {
1287 if (root.modCount != expectedModCount)
1288 throw new ConcurrentModificationException();
1289 }
1290 };
1291 }
1292
1293 public List<E> subList(int fromIndex, int toIndex) {
1294 subListRangeCheck(fromIndex, toIndex, size);
1295 return new SubList<>(this, fromIndex, toIndex);
1296 }
1297
1298 private void rangeCheckForAdd(int index) {
1299 if (index < 0 || index > this.size)
1300 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1301 }
1302
1303 private String outOfBoundsMsg(int index) {
1304 return "Index: "+index+", Size: "+this.size;
1305 }
1306
1307 private void checkForComodification() {
1308 if (root.modCount != modCount)
1309 throw new ConcurrentModificationException();
1310 }
1311
1312 private void updateSizeAndModCount(int sizeChange) {
1313 SubList<E> slist = this;
1314 do {
1315 slist.size += sizeChange;
1316 slist.modCount = root.modCount;
1317 slist = slist.parent;
1318 } while (slist != null);
1319 }
1320
1321 public Spliterator<E> spliterator() {
1322 checkForComodification();
1323
1324 // ArrayListSpliterator not used here due to late-binding
1325 return new Spliterator<E>() {
1326 private int index = offset; // current index, modified on advance/split
1327 private int fence = -1; // -1 until used; then one past last index
1328 private int expectedModCount; // initialized when fence set
1329
1330 private int getFence() { // initialize fence to size on first use
1331 int hi; // (a specialized variant appears in method forEach)
1332 if ((hi = fence) < 0) {
1333 expectedModCount = modCount;
1334 hi = fence = offset + size;
1335 }
1336 return hi;
1337 }
1338
1339 public ArrayList<E>.ArrayListSpliterator trySplit() {
1340 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1341 // ArrayListSpliterator can be used here as the source is already bound
1342 return (lo >= mid) ? null : // divide range in half unless too small
1343 root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1344 }
1345
1346 public boolean tryAdvance(Consumer<? super E> action) {
1347 Objects.requireNonNull(action);
1348 int hi = getFence(), i = index;
1349 if (i < hi) {
1350 index = i + 1;
1351 @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1352 action.accept(e);
1353 if (root.modCount != expectedModCount)
1354 throw new ConcurrentModificationException();
1355 return true;
1356 }
1357 return false;
1358 }
1359
1360 public void forEachRemaining(Consumer<? super E> action) {
1361 Objects.requireNonNull(action);
1362 int i, hi, mc; // hoist accesses and checks from loop
1363 ArrayList<E> lst = root;
1364 Object[] a;
1365 if ((a = lst.elementData) != null) {
1366 if ((hi = fence) < 0) {
1367 mc = modCount;
1368 hi = offset + size;
1369 }
1370 else
1371 mc = expectedModCount;
1372 if ((i = index) >= 0 && (index = hi) <= a.length) {
1373 for (; i < hi; ++i) {
1374 @SuppressWarnings("unchecked") E e = (E) a[i];
1375 action.accept(e);
1376 }
1377 if (lst.modCount == mc)
1378 return;
1379 }
1380 }
1381 throw new ConcurrentModificationException();
1382 }
1383
1384 public long estimateSize() {
1385 return getFence() - index;
1386 }
1387
1388 public int characteristics() {
1389 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1390 }
1391 };
1392 }
1393 }
1394
1395 /**
1396 * @throws NullPointerException {@inheritDoc}
1397 */
1398 @Override
1399 public void forEach(Consumer<? super E> action) {
1400 Objects.requireNonNull(action);
1401 final int expectedModCount = modCount;
1402 final Object[] es = elementData;
1403 final int size = this.size;
1404 for (int i = 0; modCount == expectedModCount && i < size; i++)
1405 action.accept(elementAt(es, i));
1406 if (modCount != expectedModCount)
1407 throw new ConcurrentModificationException();
1408 }
1409
1410 /**
1411 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1412 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1413 * list.
1414 *
1415 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1416 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1417 * Overriding implementations should document the reporting of additional
1418 * characteristic values.
1419 *
1420 * @return a {@code Spliterator} over the elements in this list
1421 * @since 1.8
1422 */
1423 @Override
1424 public Spliterator<E> spliterator() {
1425 return new ArrayListSpliterator(0, -1, 0);
1426 }
1427
1428 /** Index-based split-by-two, lazily initialized Spliterator */
1429 final class ArrayListSpliterator implements Spliterator<E> {
1430
1431 /*
1432 * If ArrayLists were immutable, or structurally immutable (no
1433 * adds, removes, etc), we could implement their spliterators
1434 * with Arrays.spliterator. Instead we detect as much
1435 * interference during traversal as practical without
1436 * sacrificing much performance. We rely primarily on
1437 * modCounts. These are not guaranteed to detect concurrency
1438 * violations, and are sometimes overly conservative about
1439 * within-thread interference, but detect enough problems to
1440 * be worthwhile in practice. To carry this out, we (1) lazily
1441 * initialize fence and expectedModCount until the latest
1442 * point that we need to commit to the state we are checking
1443 * against; thus improving precision. (This doesn't apply to
1444 * SubLists, that create spliterators with current non-lazy
1445 * values). (2) We perform only a single
1446 * ConcurrentModificationException check at the end of forEach
1447 * (the most performance-sensitive method). When using forEach
1448 * (as opposed to iterators), we can normally only detect
1449 * interference after actions, not before. Further
1450 * CME-triggering checks apply to all other possible
1451 * violations of assumptions for example null or too-small
1452 * elementData array given its size(), that could only have
1453 * occurred due to interference. This allows the inner loop
1454 * of forEach to run without any further checks, and
1455 * simplifies lambda-resolution. While this does entail a
1456 * number of checks, note that in the common case of
1457 * list.stream().forEach(a), no checks or other computation
1458 * occur anywhere other than inside forEach itself. The other
1459 * less-often-used methods cannot take advantage of most of
1460 * these streamlinings.
1461 */
1462
1463 private int index; // current index, modified on advance/split
1464 private int fence; // -1 until used; then one past last index
1465 private int expectedModCount; // initialized when fence set
1466
1467 /** Creates new spliterator covering the given range. */
1468 ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1469 this.index = origin;
1470 this.fence = fence;
1471 this.expectedModCount = expectedModCount;
1472 }
1473
1474 private int getFence() { // initialize fence to size on first use
1475 int hi; // (a specialized variant appears in method forEach)
1476 if ((hi = fence) < 0) {
1477 expectedModCount = modCount;
1478 hi = fence = size;
1479 }
1480 return hi;
1481 }
1482
1483 public ArrayListSpliterator trySplit() {
1484 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1485 return (lo >= mid) ? null : // divide range in half unless too small
1486 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1487 }
1488
1489 public boolean tryAdvance(Consumer<? super E> action) {
1490 if (action == null)
1491 throw new NullPointerException();
1492 int hi = getFence(), i = index;
1493 if (i < hi) {
1494 index = i + 1;
1495 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1496 action.accept(e);
1497 if (modCount != expectedModCount)
1498 throw new ConcurrentModificationException();
1499 return true;
1500 }
1501 return false;
1502 }
1503
1504 public void forEachRemaining(Consumer<? super E> action) {
1505 int i, hi, mc; // hoist accesses and checks from loop
1506 Object[] a;
1507 if (action == null)
1508 throw new NullPointerException();
1509 if ((a = elementData) != null) {
1510 if ((hi = fence) < 0) {
1511 mc = modCount;
1512 hi = size;
1513 }
1514 else
1515 mc = expectedModCount;
1516 if ((i = index) >= 0 && (index = hi) <= a.length) {
1517 for (; i < hi; ++i) {
1518 @SuppressWarnings("unchecked") E e = (E) a[i];
1519 action.accept(e);
1520 }
1521 if (modCount == mc)
1522 return;
1523 }
1524 }
1525 throw new ConcurrentModificationException();
1526 }
1527
1528 public long estimateSize() {
1529 return getFence() - index;
1530 }
1531
1532 public int characteristics() {
1533 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1534 }
1535 }
1536
1537 // A tiny bit set implementation
1538
1539 private static long[] nBits(int n) {
1540 return new long[((n - 1) >> 6) + 1];
1541 }
1542 private static void setBit(long[] bits, int i) {
1543 bits[i >> 6] |= 1L << i;
1544 }
1545 private static boolean isClear(long[] bits, int i) {
1546 return (bits[i >> 6] & (1L << i)) == 0;
1547 }
1548
1549 /**
1550 * @throws NullPointerException {@inheritDoc}
1551 */
1552 @Override
1553 public boolean removeIf(Predicate<? super E> filter) {
1554 return removeIf(filter, 0, size);
1555 }
1556
1557 /**
1558 * Removes all elements satisfying the given predicate, from index
1559 * i (inclusive) to index end (exclusive).
1560 */
1561 boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1562 Objects.requireNonNull(filter);
1563 int expectedModCount = modCount;
1564 final Object[] es = elementData;
1565 // Optimize for initial run of survivors
1566 for (; i < end && !filter.test(elementAt(es, i)); i++)
1567 ;
1568 // Tolerate predicates that reentrantly access the collection for
1569 // read (but writers still get CME), so traverse once to find
1570 // elements to delete, a second pass to physically expunge.
1571 if (i < end) {
1572 final int beg = i;
1573 final long[] deathRow = nBits(end - beg);
1574 deathRow[0] = 1L; // set bit 0
1575 for (i = beg + 1; i < end; i++)
1576 if (filter.test(elementAt(es, i)))
1577 setBit(deathRow, i - beg);
1578 if (modCount != expectedModCount)
1579 throw new ConcurrentModificationException();
1580 modCount++;
1581 int w = beg;
1582 for (i = beg; i < end; i++)
1583 if (isClear(deathRow, i - beg))
1584 es[w++] = es[i];
1585 shiftTailOverGap(es, w, end);
1586 // checkInvariants();
1587 return true;
1588 } else {
1589 if (modCount != expectedModCount)
1590 throw new ConcurrentModificationException();
1591 // checkInvariants();
1592 return false;
1593 }
1594 }
1595
1596 @Override
1597 public void replaceAll(UnaryOperator<E> operator) {
1598 replaceAllRange(operator, 0, size);
1599 }
1600
1601 private void replaceAllRange(UnaryOperator<E> operator, int i, int end) {
1602 Objects.requireNonNull(operator);
1603 final int expectedModCount = modCount;
1604 final Object[] es = elementData;
1605 for (; modCount == expectedModCount && i < end; i++)
1606 es[i] = operator.apply(elementAt(es, i));
1607 if (modCount != expectedModCount)
1608 throw new ConcurrentModificationException();
1609 // checkInvariants();
1610 }
1611
1612 @Override
1613 @SuppressWarnings("unchecked")
1614 public void sort(Comparator<? super E> c) {
1615 final int expectedModCount = modCount;
1616 Arrays.sort((E[]) elementData, 0, size, c);
1617 if (modCount != expectedModCount)
1618 throw new ConcurrentModificationException();
1619 modCount++;
1620 // checkInvariants();
1621 }
1622
1623 void checkInvariants() {
1624 // assert size >= 0;
1625 // assert size == elementData.length || elementData[size] == null;
1626 }
1627 }