ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayList.java
Revision: 1.68
Committed: Sat Aug 10 16:48:05 2019 UTC (4 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.67: +1 -1 lines
Log Message:
drop support for jdk9 and jdk10; drop backward compatibility hacks

File Contents

# Content
1 /*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.util.function.Consumer;
29 import java.util.function.Predicate;
30 import java.util.function.UnaryOperator;
31 // OPENJDK import jdk.internal.access.SharedSecrets;
32 import jdk.internal.util.ArraysSupport;
33
34 /**
35 * Resizable-array implementation of the {@code List} interface. Implements
36 * all optional list operations, and permits all elements, including
37 * {@code null}. In addition to implementing the {@code List} interface,
38 * this class provides methods to manipulate the size of the array that is
39 * used internally to store the list. (This class is roughly equivalent to
40 * {@code Vector}, except that it is unsynchronized.)
41 *
42 * <p>The {@code size}, {@code isEmpty}, {@code get}, {@code set},
43 * {@code iterator}, and {@code listIterator} operations run in constant
44 * time. The {@code add} operation runs in <i>amortized constant time</i>,
45 * that is, adding n elements requires O(n) time. All of the other operations
46 * run in linear time (roughly speaking). The constant factor is low compared
47 * to that for the {@code LinkedList} implementation.
48 *
49 * <p>Each {@code ArrayList} instance has a <i>capacity</i>. The capacity is
50 * the size of the array used to store the elements in the list. It is always
51 * at least as large as the list size. As elements are added to an ArrayList,
52 * its capacity grows automatically. The details of the growth policy are not
53 * specified beyond the fact that adding an element has constant amortized
54 * time cost.
55 *
56 * <p>An application can increase the capacity of an {@code ArrayList} instance
57 * before adding a large number of elements using the {@code ensureCapacity}
58 * operation. This may reduce the amount of incremental reallocation.
59 *
60 * <p><strong>Note that this implementation is not synchronized.</strong>
61 * If multiple threads access an {@code ArrayList} instance concurrently,
62 * and at least one of the threads modifies the list structurally, it
63 * <i>must</i> be synchronized externally. (A structural modification is
64 * any operation that adds or deletes one or more elements, or explicitly
65 * resizes the backing array; merely setting the value of an element is not
66 * a structural modification.) This is typically accomplished by
67 * synchronizing on some object that naturally encapsulates the list.
68 *
69 * If no such object exists, the list should be "wrapped" using the
70 * {@link Collections#synchronizedList Collections.synchronizedList}
71 * method. This is best done at creation time, to prevent accidental
72 * unsynchronized access to the list:<pre>
73 * List list = Collections.synchronizedList(new ArrayList(...));</pre>
74 *
75 * <p id="fail-fast">
76 * The iterators returned by this class's {@link #iterator() iterator} and
77 * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
78 * if the list is structurally modified at any time after the iterator is
79 * created, in any way except through the iterator's own
80 * {@link ListIterator#remove() remove} or
81 * {@link ListIterator#add(Object) add} methods, the iterator will throw a
82 * {@link ConcurrentModificationException}. Thus, in the face of
83 * concurrent modification, the iterator fails quickly and cleanly, rather
84 * than risking arbitrary, non-deterministic behavior at an undetermined
85 * time in the future.
86 *
87 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
88 * as it is, generally speaking, impossible to make any hard guarantees in the
89 * presence of unsynchronized concurrent modification. Fail-fast iterators
90 * throw {@code ConcurrentModificationException} on a best-effort basis.
91 * Therefore, it would be wrong to write a program that depended on this
92 * exception for its correctness: <i>the fail-fast behavior of iterators
93 * should be used only to detect bugs.</i>
94 *
95 * <p>This class is a member of the
96 * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
97 * Java Collections Framework</a>.
98 *
99 * @param <E> the type of elements in this list
100 *
101 * @author Josh Bloch
102 * @author Neal Gafter
103 * @see Collection
104 * @see List
105 * @see LinkedList
106 * @see Vector
107 * @since 1.2
108 */
109 public class ArrayList<E> extends AbstractList<E>
110 implements List<E>, RandomAccess, Cloneable, java.io.Serializable
111 {
112 private static final long serialVersionUID = 8683452581122892189L;
113
114 /**
115 * Default initial capacity.
116 */
117 private static final int DEFAULT_CAPACITY = 10;
118
119 /**
120 * Shared empty array instance used for empty instances.
121 */
122 private static final Object[] EMPTY_ELEMENTDATA = {};
123
124 /**
125 * Shared empty array instance used for default sized empty instances. We
126 * distinguish this from EMPTY_ELEMENTDATA to know how much to inflate when
127 * first element is added.
128 */
129 private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
130
131 /**
132 * The array buffer into which the elements of the ArrayList are stored.
133 * The capacity of the ArrayList is the length of this array buffer. Any
134 * empty ArrayList with elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
135 * will be expanded to DEFAULT_CAPACITY when the first element is added.
136 */
137 transient Object[] elementData; // non-private to simplify nested class access
138
139 /**
140 * The size of the ArrayList (the number of elements it contains).
141 *
142 * @serial
143 */
144 private int size;
145
146 /**
147 * Constructs an empty list with the specified initial capacity.
148 *
149 * @param initialCapacity the initial capacity of the list
150 * @throws IllegalArgumentException if the specified initial capacity
151 * is negative
152 */
153 public ArrayList(int initialCapacity) {
154 if (initialCapacity > 0) {
155 this.elementData = new Object[initialCapacity];
156 } else if (initialCapacity == 0) {
157 this.elementData = EMPTY_ELEMENTDATA;
158 } else {
159 throw new IllegalArgumentException("Illegal Capacity: "+
160 initialCapacity);
161 }
162 }
163
164 /**
165 * Constructs an empty list with an initial capacity of ten.
166 */
167 public ArrayList() {
168 this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
169 }
170
171 /**
172 * Constructs a list containing the elements of the specified
173 * collection, in the order they are returned by the collection's
174 * iterator.
175 *
176 * @param c the collection whose elements are to be placed into this list
177 * @throws NullPointerException if the specified collection is null
178 */
179 public ArrayList(Collection<? extends E> c) {
180 elementData = c.toArray();
181 if ((size = elementData.length) != 0) {
182 // defend against c.toArray (incorrectly) not returning Object[]
183 // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
184 if (elementData.getClass() != Object[].class)
185 elementData = Arrays.copyOf(elementData, size, Object[].class);
186 } else {
187 // replace with empty array.
188 this.elementData = EMPTY_ELEMENTDATA;
189 }
190 }
191
192 /**
193 * Trims the capacity of this {@code ArrayList} instance to be the
194 * list's current size. An application can use this operation to minimize
195 * the storage of an {@code ArrayList} instance.
196 */
197 public void trimToSize() {
198 modCount++;
199 if (size < elementData.length) {
200 elementData = (size == 0)
201 ? EMPTY_ELEMENTDATA
202 : Arrays.copyOf(elementData, size);
203 }
204 }
205
206 /**
207 * Increases the capacity of this {@code ArrayList} instance, if
208 * necessary, to ensure that it can hold at least the number of elements
209 * specified by the minimum capacity argument.
210 *
211 * @param minCapacity the desired minimum capacity
212 */
213 public void ensureCapacity(int minCapacity) {
214 if (minCapacity > elementData.length
215 && !(elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA
216 && minCapacity <= DEFAULT_CAPACITY)) {
217 modCount++;
218 grow(minCapacity);
219 }
220 }
221
222 /**
223 * Increases the capacity to ensure that it can hold at least the
224 * number of elements specified by the minimum capacity argument.
225 *
226 * @param minCapacity the desired minimum capacity
227 * @throws OutOfMemoryError if minCapacity is less than zero
228 */
229 private Object[] grow(int minCapacity) {
230 int oldCapacity = elementData.length;
231 if (oldCapacity > 0 || elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
232 int newCapacity = ArraysSupport.newLength(oldCapacity,
233 minCapacity - oldCapacity, /* minimum growth */
234 oldCapacity >> 1 /* preferred growth */);
235 return elementData = Arrays.copyOf(elementData, newCapacity);
236 } else {
237 return elementData = new Object[Math.max(DEFAULT_CAPACITY, minCapacity)];
238 }
239 }
240
241 private Object[] grow() {
242 return grow(size + 1);
243 }
244
245 /**
246 * Returns the number of elements in this list.
247 *
248 * @return the number of elements in this list
249 */
250 public int size() {
251 return size;
252 }
253
254 /**
255 * Returns {@code true} if this list contains no elements.
256 *
257 * @return {@code true} if this list contains no elements
258 */
259 public boolean isEmpty() {
260 return size == 0;
261 }
262
263 /**
264 * Returns {@code true} if this list contains the specified element.
265 * More formally, returns {@code true} if and only if this list contains
266 * at least one element {@code e} such that
267 * {@code Objects.equals(o, e)}.
268 *
269 * @param o element whose presence in this list is to be tested
270 * @return {@code true} if this list contains the specified element
271 */
272 public boolean contains(Object o) {
273 return indexOf(o) >= 0;
274 }
275
276 /**
277 * Returns the index of the first occurrence of the specified element
278 * in this list, or -1 if this list does not contain the element.
279 * More formally, returns the lowest index {@code i} such that
280 * {@code Objects.equals(o, get(i))},
281 * or -1 if there is no such index.
282 */
283 public int indexOf(Object o) {
284 return indexOfRange(o, 0, size);
285 }
286
287 int indexOfRange(Object o, int start, int end) {
288 Object[] es = elementData;
289 if (o == null) {
290 for (int i = start; i < end; i++) {
291 if (es[i] == null) {
292 return i;
293 }
294 }
295 } else {
296 for (int i = start; i < end; i++) {
297 if (o.equals(es[i])) {
298 return i;
299 }
300 }
301 }
302 return -1;
303 }
304
305 /**
306 * Returns the index of the last occurrence of the specified element
307 * in this list, or -1 if this list does not contain the element.
308 * More formally, returns the highest index {@code i} such that
309 * {@code Objects.equals(o, get(i))},
310 * or -1 if there is no such index.
311 */
312 public int lastIndexOf(Object o) {
313 return lastIndexOfRange(o, 0, size);
314 }
315
316 int lastIndexOfRange(Object o, int start, int end) {
317 Object[] es = elementData;
318 if (o == null) {
319 for (int i = end - 1; i >= start; i--) {
320 if (es[i] == null) {
321 return i;
322 }
323 }
324 } else {
325 for (int i = end - 1; i >= start; i--) {
326 if (o.equals(es[i])) {
327 return i;
328 }
329 }
330 }
331 return -1;
332 }
333
334 /**
335 * Returns a shallow copy of this {@code ArrayList} instance. (The
336 * elements themselves are not copied.)
337 *
338 * @return a clone of this {@code ArrayList} instance
339 */
340 public Object clone() {
341 try {
342 ArrayList<?> v = (ArrayList<?>) super.clone();
343 v.elementData = Arrays.copyOf(elementData, size);
344 v.modCount = 0;
345 return v;
346 } catch (CloneNotSupportedException e) {
347 // this shouldn't happen, since we are Cloneable
348 throw new InternalError(e);
349 }
350 }
351
352 /**
353 * Returns an array containing all of the elements in this list
354 * in proper sequence (from first to last element).
355 *
356 * <p>The returned array will be "safe" in that no references to it are
357 * maintained by this list. (In other words, this method must allocate
358 * a new array). The caller is thus free to modify the returned array.
359 *
360 * <p>This method acts as bridge between array-based and collection-based
361 * APIs.
362 *
363 * @return an array containing all of the elements in this list in
364 * proper sequence
365 */
366 public Object[] toArray() {
367 return Arrays.copyOf(elementData, size);
368 }
369
370 /**
371 * Returns an array containing all of the elements in this list in proper
372 * sequence (from first to last element); the runtime type of the returned
373 * array is that of the specified array. If the list fits in the
374 * specified array, it is returned therein. Otherwise, a new array is
375 * allocated with the runtime type of the specified array and the size of
376 * this list.
377 *
378 * <p>If the list fits in the specified array with room to spare
379 * (i.e., the array has more elements than the list), the element in
380 * the array immediately following the end of the collection is set to
381 * {@code null}. (This is useful in determining the length of the
382 * list <i>only</i> if the caller knows that the list does not contain
383 * any null elements.)
384 *
385 * @param a the array into which the elements of the list are to
386 * be stored, if it is big enough; otherwise, a new array of the
387 * same runtime type is allocated for this purpose.
388 * @return an array containing the elements of the list
389 * @throws ArrayStoreException if the runtime type of the specified array
390 * is not a supertype of the runtime type of every element in
391 * this list
392 * @throws NullPointerException if the specified array is null
393 */
394 @SuppressWarnings("unchecked")
395 public <T> T[] toArray(T[] a) {
396 if (a.length < size)
397 // Make a new array of a's runtime type, but my contents:
398 return (T[]) Arrays.copyOf(elementData, size, a.getClass());
399 System.arraycopy(elementData, 0, a, 0, size);
400 if (a.length > size)
401 a[size] = null;
402 return a;
403 }
404
405 // Positional Access Operations
406
407 @SuppressWarnings("unchecked")
408 E elementData(int index) {
409 return (E) elementData[index];
410 }
411
412 @SuppressWarnings("unchecked")
413 static <E> E elementAt(Object[] es, int index) {
414 return (E) es[index];
415 }
416
417 /**
418 * Returns the element at the specified position in this list.
419 *
420 * @param index index of the element to return
421 * @return the element at the specified position in this list
422 * @throws IndexOutOfBoundsException {@inheritDoc}
423 */
424 public E get(int index) {
425 Objects.checkIndex(index, size);
426 return elementData(index);
427 }
428
429 /**
430 * Replaces the element at the specified position in this list with
431 * the specified element.
432 *
433 * @param index index of the element to replace
434 * @param element element to be stored at the specified position
435 * @return the element previously at the specified position
436 * @throws IndexOutOfBoundsException {@inheritDoc}
437 */
438 public E set(int index, E element) {
439 Objects.checkIndex(index, size);
440 E oldValue = elementData(index);
441 elementData[index] = element;
442 return oldValue;
443 }
444
445 /**
446 * This helper method split out from add(E) to keep method
447 * bytecode size under 35 (the -XX:MaxInlineSize default value),
448 * which helps when add(E) is called in a C1-compiled loop.
449 */
450 private void add(E e, Object[] elementData, int s) {
451 if (s == elementData.length)
452 elementData = grow();
453 elementData[s] = e;
454 size = s + 1;
455 }
456
457 /**
458 * Appends the specified element to the end of this list.
459 *
460 * @param e element to be appended to this list
461 * @return {@code true} (as specified by {@link Collection#add})
462 */
463 public boolean add(E e) {
464 modCount++;
465 add(e, elementData, size);
466 return true;
467 }
468
469 /**
470 * Inserts the specified element at the specified position in this
471 * list. Shifts the element currently at that position (if any) and
472 * any subsequent elements to the right (adds one to their indices).
473 *
474 * @param index index at which the specified element is to be inserted
475 * @param element element to be inserted
476 * @throws IndexOutOfBoundsException {@inheritDoc}
477 */
478 public void add(int index, E element) {
479 rangeCheckForAdd(index);
480 modCount++;
481 final int s;
482 Object[] elementData;
483 if ((s = size) == (elementData = this.elementData).length)
484 elementData = grow();
485 System.arraycopy(elementData, index,
486 elementData, index + 1,
487 s - index);
488 elementData[index] = element;
489 size = s + 1;
490 // checkInvariants();
491 }
492
493 /**
494 * Removes the element at the specified position in this list.
495 * Shifts any subsequent elements to the left (subtracts one from their
496 * indices).
497 *
498 * @param index the index of the element to be removed
499 * @return the element that was removed from the list
500 * @throws IndexOutOfBoundsException {@inheritDoc}
501 */
502 public E remove(int index) {
503 Objects.checkIndex(index, size);
504 final Object[] es = elementData;
505
506 @SuppressWarnings("unchecked") E oldValue = (E) es[index];
507 fastRemove(es, index);
508
509 // checkInvariants();
510 return oldValue;
511 }
512
513 /**
514 * {@inheritDoc}
515 */
516 public boolean equals(Object o) {
517 if (o == this) {
518 return true;
519 }
520
521 if (!(o instanceof List)) {
522 return false;
523 }
524
525 final int expectedModCount = modCount;
526 // ArrayList can be subclassed and given arbitrary behavior, but we can
527 // still deal with the common case where o is ArrayList precisely
528 boolean equal = (o.getClass() == ArrayList.class)
529 ? equalsArrayList((ArrayList<?>) o)
530 : equalsRange((List<?>) o, 0, size);
531
532 checkForComodification(expectedModCount);
533 return equal;
534 }
535
536 boolean equalsRange(List<?> other, int from, int to) {
537 final Object[] es = elementData;
538 if (to > es.length) {
539 throw new ConcurrentModificationException();
540 }
541 var oit = other.iterator();
542 for (; from < to; from++) {
543 if (!oit.hasNext() || !Objects.equals(es[from], oit.next())) {
544 return false;
545 }
546 }
547 return !oit.hasNext();
548 }
549
550 private boolean equalsArrayList(ArrayList<?> other) {
551 final int otherModCount = other.modCount;
552 final int s = size;
553 boolean equal;
554 if (equal = (s == other.size)) {
555 final Object[] otherEs = other.elementData;
556 final Object[] es = elementData;
557 if (s > es.length || s > otherEs.length) {
558 throw new ConcurrentModificationException();
559 }
560 for (int i = 0; i < s; i++) {
561 if (!Objects.equals(es[i], otherEs[i])) {
562 equal = false;
563 break;
564 }
565 }
566 }
567 other.checkForComodification(otherModCount);
568 return equal;
569 }
570
571 private void checkForComodification(final int expectedModCount) {
572 if (modCount != expectedModCount) {
573 throw new ConcurrentModificationException();
574 }
575 }
576
577 /**
578 * {@inheritDoc}
579 */
580 public int hashCode() {
581 int expectedModCount = modCount;
582 int hash = hashCodeRange(0, size);
583 checkForComodification(expectedModCount);
584 return hash;
585 }
586
587 int hashCodeRange(int from, int to) {
588 final Object[] es = elementData;
589 if (to > es.length) {
590 throw new ConcurrentModificationException();
591 }
592 int hashCode = 1;
593 for (int i = from; i < to; i++) {
594 Object e = es[i];
595 hashCode = 31 * hashCode + (e == null ? 0 : e.hashCode());
596 }
597 return hashCode;
598 }
599
600 /**
601 * Removes the first occurrence of the specified element from this list,
602 * if it is present. If the list does not contain the element, it is
603 * unchanged. More formally, removes the element with the lowest index
604 * {@code i} such that
605 * {@code Objects.equals(o, get(i))}
606 * (if such an element exists). Returns {@code true} if this list
607 * contained the specified element (or equivalently, if this list
608 * changed as a result of the call).
609 *
610 * @param o element to be removed from this list, if present
611 * @return {@code true} if this list contained the specified element
612 */
613 public boolean remove(Object o) {
614 final Object[] es = elementData;
615 final int size = this.size;
616 int i = 0;
617 found: {
618 if (o == null) {
619 for (; i < size; i++)
620 if (es[i] == null)
621 break found;
622 } else {
623 for (; i < size; i++)
624 if (o.equals(es[i]))
625 break found;
626 }
627 return false;
628 }
629 fastRemove(es, i);
630 return true;
631 }
632
633 /**
634 * Private remove method that skips bounds checking and does not
635 * return the value removed.
636 */
637 private void fastRemove(Object[] es, int i) {
638 modCount++;
639 final int newSize;
640 if ((newSize = size - 1) > i)
641 System.arraycopy(es, i + 1, es, i, newSize - i);
642 es[size = newSize] = null;
643 }
644
645 /**
646 * Removes all of the elements from this list. The list will
647 * be empty after this call returns.
648 */
649 public void clear() {
650 modCount++;
651 final Object[] es = elementData;
652 for (int to = size, i = size = 0; i < to; i++)
653 es[i] = null;
654 }
655
656 /**
657 * Appends all of the elements in the specified collection to the end of
658 * this list, in the order that they are returned by the
659 * specified collection's Iterator. The behavior of this operation is
660 * undefined if the specified collection is modified while the operation
661 * is in progress. (This implies that the behavior of this call is
662 * undefined if the specified collection is this list, and this
663 * list is nonempty.)
664 *
665 * @param c collection containing elements to be added to this list
666 * @return {@code true} if this list changed as a result of the call
667 * @throws NullPointerException if the specified collection is null
668 */
669 public boolean addAll(Collection<? extends E> c) {
670 Object[] a = c.toArray();
671 modCount++;
672 int numNew = a.length;
673 if (numNew == 0)
674 return false;
675 Object[] elementData;
676 final int s;
677 if (numNew > (elementData = this.elementData).length - (s = size))
678 elementData = grow(s + numNew);
679 System.arraycopy(a, 0, elementData, s, numNew);
680 size = s + numNew;
681 // checkInvariants();
682 return true;
683 }
684
685 /**
686 * Inserts all of the elements in the specified collection into this
687 * list, starting at the specified position. Shifts the element
688 * currently at that position (if any) and any subsequent elements to
689 * the right (increases their indices). The new elements will appear
690 * in the list in the order that they are returned by the
691 * specified collection's iterator.
692 *
693 * @param index index at which to insert the first element from the
694 * specified collection
695 * @param c collection containing elements to be added to this list
696 * @return {@code true} if this list changed as a result of the call
697 * @throws IndexOutOfBoundsException {@inheritDoc}
698 * @throws NullPointerException if the specified collection is null
699 */
700 public boolean addAll(int index, Collection<? extends E> c) {
701 rangeCheckForAdd(index);
702
703 Object[] a = c.toArray();
704 modCount++;
705 int numNew = a.length;
706 if (numNew == 0)
707 return false;
708 Object[] elementData;
709 final int s;
710 if (numNew > (elementData = this.elementData).length - (s = size))
711 elementData = grow(s + numNew);
712
713 int numMoved = s - index;
714 if (numMoved > 0)
715 System.arraycopy(elementData, index,
716 elementData, index + numNew,
717 numMoved);
718 System.arraycopy(a, 0, elementData, index, numNew);
719 size = s + numNew;
720 // checkInvariants();
721 return true;
722 }
723
724 /**
725 * Removes from this list all of the elements whose index is between
726 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
727 * Shifts any succeeding elements to the left (reduces their index).
728 * This call shortens the list by {@code (toIndex - fromIndex)} elements.
729 * (If {@code toIndex==fromIndex}, this operation has no effect.)
730 *
731 * @throws IndexOutOfBoundsException if {@code fromIndex} or
732 * {@code toIndex} is out of range
733 * ({@code fromIndex < 0 ||
734 * toIndex > size() ||
735 * toIndex < fromIndex})
736 */
737 protected void removeRange(int fromIndex, int toIndex) {
738 if (fromIndex > toIndex) {
739 throw new IndexOutOfBoundsException(
740 outOfBoundsMsg(fromIndex, toIndex));
741 }
742 modCount++;
743 shiftTailOverGap(elementData, fromIndex, toIndex);
744 // checkInvariants();
745 }
746
747 /** Erases the gap from lo to hi, by sliding down following elements. */
748 private void shiftTailOverGap(Object[] es, int lo, int hi) {
749 System.arraycopy(es, hi, es, lo, size - hi);
750 for (int to = size, i = (size -= hi - lo); i < to; i++)
751 es[i] = null;
752 }
753
754 /**
755 * A version of rangeCheck used by add and addAll.
756 */
757 private void rangeCheckForAdd(int index) {
758 if (index > size || index < 0)
759 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
760 }
761
762 /**
763 * Constructs an IndexOutOfBoundsException detail message.
764 * Of the many possible refactorings of the error handling code,
765 * this "outlining" performs best with both server and client VMs.
766 */
767 private String outOfBoundsMsg(int index) {
768 return "Index: "+index+", Size: "+size;
769 }
770
771 /**
772 * A version used in checking (fromIndex > toIndex) condition
773 */
774 private static String outOfBoundsMsg(int fromIndex, int toIndex) {
775 return "From Index: " + fromIndex + " > To Index: " + toIndex;
776 }
777
778 /**
779 * Removes from this list all of its elements that are contained in the
780 * specified collection.
781 *
782 * @param c collection containing elements to be removed from this list
783 * @return {@code true} if this list changed as a result of the call
784 * @throws ClassCastException if the class of an element of this list
785 * is incompatible with the specified collection
786 * (<a href="Collection.html#optional-restrictions">optional</a>)
787 * @throws NullPointerException if this list contains a null element and the
788 * specified collection does not permit null elements
789 * (<a href="Collection.html#optional-restrictions">optional</a>),
790 * or if the specified collection is null
791 * @see Collection#contains(Object)
792 */
793 public boolean removeAll(Collection<?> c) {
794 return batchRemove(c, false, 0, size);
795 }
796
797 /**
798 * Retains only the elements in this list that are contained in the
799 * specified collection. In other words, removes from this list all
800 * of its elements that are not contained in the specified collection.
801 *
802 * @param c collection containing elements to be retained in this list
803 * @return {@code true} if this list changed as a result of the call
804 * @throws ClassCastException if the class of an element of this list
805 * is incompatible with the specified collection
806 * (<a href="Collection.html#optional-restrictions">optional</a>)
807 * @throws NullPointerException if this list contains a null element and the
808 * specified collection does not permit null elements
809 * (<a href="Collection.html#optional-restrictions">optional</a>),
810 * or if the specified collection is null
811 * @see Collection#contains(Object)
812 */
813 public boolean retainAll(Collection<?> c) {
814 return batchRemove(c, true, 0, size);
815 }
816
817 boolean batchRemove(Collection<?> c, boolean complement,
818 final int from, final int end) {
819 Objects.requireNonNull(c);
820 final Object[] es = elementData;
821 int r;
822 // Optimize for initial run of survivors
823 for (r = from;; r++) {
824 if (r == end)
825 return false;
826 if (c.contains(es[r]) != complement)
827 break;
828 }
829 int w = r++;
830 try {
831 for (Object e; r < end; r++)
832 if (c.contains(e = es[r]) == complement)
833 es[w++] = e;
834 } catch (Throwable ex) {
835 // Preserve behavioral compatibility with AbstractCollection,
836 // even if c.contains() throws.
837 System.arraycopy(es, r, es, w, end - r);
838 w += end - r;
839 throw ex;
840 } finally {
841 modCount += end - w;
842 shiftTailOverGap(es, w, end);
843 }
844 // checkInvariants();
845 return true;
846 }
847
848 /**
849 * Saves the state of the {@code ArrayList} instance to a stream
850 * (that is, serializes it).
851 *
852 * @param s the stream
853 * @throws java.io.IOException if an I/O error occurs
854 * @serialData The length of the array backing the {@code ArrayList}
855 * instance is emitted (int), followed by all of its elements
856 * (each an {@code Object}) in the proper order.
857 */
858 private void writeObject(java.io.ObjectOutputStream s)
859 throws java.io.IOException {
860 // Write out element count, and any hidden stuff
861 int expectedModCount = modCount;
862 s.defaultWriteObject();
863
864 // Write out size as capacity for behavioral compatibility with clone()
865 s.writeInt(size);
866
867 // Write out all elements in the proper order.
868 for (int i=0; i<size; i++) {
869 s.writeObject(elementData[i]);
870 }
871
872 if (modCount != expectedModCount) {
873 throw new ConcurrentModificationException();
874 }
875 }
876
877 /**
878 * Reconstitutes the {@code ArrayList} instance from a stream (that is,
879 * deserializes it).
880 * @param s the stream
881 * @throws ClassNotFoundException if the class of a serialized object
882 * could not be found
883 * @throws java.io.IOException if an I/O error occurs
884 */
885 private void readObject(java.io.ObjectInputStream s)
886 throws java.io.IOException, ClassNotFoundException {
887
888 // Read in size, and any hidden stuff
889 s.defaultReadObject();
890
891 // Read in capacity
892 s.readInt(); // ignored
893
894 if (size > 0) {
895 // like clone(), allocate array based upon size not capacity
896 jsr166.Platform.checkArray(s, Object[].class, size);
897 Object[] elements = new Object[size];
898
899 // Read in all elements in the proper order.
900 for (int i = 0; i < size; i++) {
901 elements[i] = s.readObject();
902 }
903
904 elementData = elements;
905 } else if (size == 0) {
906 elementData = EMPTY_ELEMENTDATA;
907 } else {
908 throw new java.io.InvalidObjectException("Invalid size: " + size);
909 }
910 }
911
912 /**
913 * Returns a list iterator over the elements in this list (in proper
914 * sequence), starting at the specified position in the list.
915 * The specified index indicates the first element that would be
916 * returned by an initial call to {@link ListIterator#next next}.
917 * An initial call to {@link ListIterator#previous previous} would
918 * return the element with the specified index minus one.
919 *
920 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
921 *
922 * @throws IndexOutOfBoundsException {@inheritDoc}
923 */
924 public ListIterator<E> listIterator(int index) {
925 rangeCheckForAdd(index);
926 return new ListItr(index);
927 }
928
929 /**
930 * Returns a list iterator over the elements in this list (in proper
931 * sequence).
932 *
933 * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
934 *
935 * @see #listIterator(int)
936 */
937 public ListIterator<E> listIterator() {
938 return new ListItr(0);
939 }
940
941 /**
942 * Returns an iterator over the elements in this list in proper sequence.
943 *
944 * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
945 *
946 * @return an iterator over the elements in this list in proper sequence
947 */
948 public Iterator<E> iterator() {
949 return new Itr();
950 }
951
952 /**
953 * An optimized version of AbstractList.Itr
954 */
955 private class Itr implements Iterator<E> {
956 int cursor; // index of next element to return
957 int lastRet = -1; // index of last element returned; -1 if no such
958 int expectedModCount = modCount;
959
960 // prevent creating a synthetic constructor
961 Itr() {}
962
963 public boolean hasNext() {
964 return cursor != size;
965 }
966
967 @SuppressWarnings("unchecked")
968 public E next() {
969 checkForComodification();
970 int i = cursor;
971 if (i >= size)
972 throw new NoSuchElementException();
973 Object[] elementData = ArrayList.this.elementData;
974 if (i >= elementData.length)
975 throw new ConcurrentModificationException();
976 cursor = i + 1;
977 return (E) elementData[lastRet = i];
978 }
979
980 public void remove() {
981 if (lastRet < 0)
982 throw new IllegalStateException();
983 checkForComodification();
984
985 try {
986 ArrayList.this.remove(lastRet);
987 cursor = lastRet;
988 lastRet = -1;
989 expectedModCount = modCount;
990 } catch (IndexOutOfBoundsException ex) {
991 throw new ConcurrentModificationException();
992 }
993 }
994
995 @Override
996 public void forEachRemaining(Consumer<? super E> action) {
997 Objects.requireNonNull(action);
998 final int size = ArrayList.this.size;
999 int i = cursor;
1000 if (i < size) {
1001 final Object[] es = elementData;
1002 if (i >= es.length)
1003 throw new ConcurrentModificationException();
1004 for (; i < size && modCount == expectedModCount; i++)
1005 action.accept(elementAt(es, i));
1006 // update once at end to reduce heap write traffic
1007 cursor = i;
1008 lastRet = i - 1;
1009 checkForComodification();
1010 }
1011 }
1012
1013 final void checkForComodification() {
1014 if (modCount != expectedModCount)
1015 throw new ConcurrentModificationException();
1016 }
1017 }
1018
1019 /**
1020 * An optimized version of AbstractList.ListItr
1021 */
1022 private class ListItr extends Itr implements ListIterator<E> {
1023 ListItr(int index) {
1024 super();
1025 cursor = index;
1026 }
1027
1028 public boolean hasPrevious() {
1029 return cursor != 0;
1030 }
1031
1032 public int nextIndex() {
1033 return cursor;
1034 }
1035
1036 public int previousIndex() {
1037 return cursor - 1;
1038 }
1039
1040 @SuppressWarnings("unchecked")
1041 public E previous() {
1042 checkForComodification();
1043 int i = cursor - 1;
1044 if (i < 0)
1045 throw new NoSuchElementException();
1046 Object[] elementData = ArrayList.this.elementData;
1047 if (i >= elementData.length)
1048 throw new ConcurrentModificationException();
1049 cursor = i;
1050 return (E) elementData[lastRet = i];
1051 }
1052
1053 public void set(E e) {
1054 if (lastRet < 0)
1055 throw new IllegalStateException();
1056 checkForComodification();
1057
1058 try {
1059 ArrayList.this.set(lastRet, e);
1060 } catch (IndexOutOfBoundsException ex) {
1061 throw new ConcurrentModificationException();
1062 }
1063 }
1064
1065 public void add(E e) {
1066 checkForComodification();
1067
1068 try {
1069 int i = cursor;
1070 ArrayList.this.add(i, e);
1071 cursor = i + 1;
1072 lastRet = -1;
1073 expectedModCount = modCount;
1074 } catch (IndexOutOfBoundsException ex) {
1075 throw new ConcurrentModificationException();
1076 }
1077 }
1078 }
1079
1080 /**
1081 * Returns a view of the portion of this list between the specified
1082 * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive. (If
1083 * {@code fromIndex} and {@code toIndex} are equal, the returned list is
1084 * empty.) The returned list is backed by this list, so non-structural
1085 * changes in the returned list are reflected in this list, and vice-versa.
1086 * The returned list supports all of the optional list operations.
1087 *
1088 * <p>This method eliminates the need for explicit range operations (of
1089 * the sort that commonly exist for arrays). Any operation that expects
1090 * a list can be used as a range operation by passing a subList view
1091 * instead of a whole list. For example, the following idiom
1092 * removes a range of elements from a list:
1093 * <pre>
1094 * list.subList(from, to).clear();
1095 * </pre>
1096 * Similar idioms may be constructed for {@link #indexOf(Object)} and
1097 * {@link #lastIndexOf(Object)}, and all of the algorithms in the
1098 * {@link Collections} class can be applied to a subList.
1099 *
1100 * <p>The semantics of the list returned by this method become undefined if
1101 * the backing list (i.e., this list) is <i>structurally modified</i> in
1102 * any way other than via the returned list. (Structural modifications are
1103 * those that change the size of this list, or otherwise perturb it in such
1104 * a fashion that iterations in progress may yield incorrect results.)
1105 *
1106 * @throws IndexOutOfBoundsException {@inheritDoc}
1107 * @throws IllegalArgumentException {@inheritDoc}
1108 */
1109 public List<E> subList(int fromIndex, int toIndex) {
1110 subListRangeCheck(fromIndex, toIndex, size);
1111 return new SubList<>(this, fromIndex, toIndex);
1112 }
1113
1114 private static class SubList<E> extends AbstractList<E> implements RandomAccess {
1115 private final ArrayList<E> root;
1116 private final SubList<E> parent;
1117 private final int offset;
1118 private int size;
1119
1120 /**
1121 * Constructs a sublist of an arbitrary ArrayList.
1122 */
1123 public SubList(ArrayList<E> root, int fromIndex, int toIndex) {
1124 this.root = root;
1125 this.parent = null;
1126 this.offset = fromIndex;
1127 this.size = toIndex - fromIndex;
1128 this.modCount = root.modCount;
1129 }
1130
1131 /**
1132 * Constructs a sublist of another SubList.
1133 */
1134 private SubList(SubList<E> parent, int fromIndex, int toIndex) {
1135 this.root = parent.root;
1136 this.parent = parent;
1137 this.offset = parent.offset + fromIndex;
1138 this.size = toIndex - fromIndex;
1139 this.modCount = root.modCount;
1140 }
1141
1142 public E set(int index, E element) {
1143 Objects.checkIndex(index, size);
1144 checkForComodification();
1145 E oldValue = root.elementData(offset + index);
1146 root.elementData[offset + index] = element;
1147 return oldValue;
1148 }
1149
1150 public E get(int index) {
1151 Objects.checkIndex(index, size);
1152 checkForComodification();
1153 return root.elementData(offset + index);
1154 }
1155
1156 public int size() {
1157 checkForComodification();
1158 return size;
1159 }
1160
1161 public void add(int index, E element) {
1162 rangeCheckForAdd(index);
1163 checkForComodification();
1164 root.add(offset + index, element);
1165 updateSizeAndModCount(1);
1166 }
1167
1168 public E remove(int index) {
1169 Objects.checkIndex(index, size);
1170 checkForComodification();
1171 E result = root.remove(offset + index);
1172 updateSizeAndModCount(-1);
1173 return result;
1174 }
1175
1176 protected void removeRange(int fromIndex, int toIndex) {
1177 checkForComodification();
1178 root.removeRange(offset + fromIndex, offset + toIndex);
1179 updateSizeAndModCount(fromIndex - toIndex);
1180 }
1181
1182 public boolean addAll(Collection<? extends E> c) {
1183 return addAll(this.size, c);
1184 }
1185
1186 public boolean addAll(int index, Collection<? extends E> c) {
1187 rangeCheckForAdd(index);
1188 int cSize = c.size();
1189 if (cSize==0)
1190 return false;
1191 checkForComodification();
1192 root.addAll(offset + index, c);
1193 updateSizeAndModCount(cSize);
1194 return true;
1195 }
1196
1197 public void replaceAll(UnaryOperator<E> operator) {
1198 root.replaceAllRange(operator, offset, offset + size);
1199 }
1200
1201 public boolean removeAll(Collection<?> c) {
1202 return batchRemove(c, false);
1203 }
1204
1205 public boolean retainAll(Collection<?> c) {
1206 return batchRemove(c, true);
1207 }
1208
1209 private boolean batchRemove(Collection<?> c, boolean complement) {
1210 checkForComodification();
1211 int oldSize = root.size;
1212 boolean modified =
1213 root.batchRemove(c, complement, offset, offset + size);
1214 if (modified)
1215 updateSizeAndModCount(root.size - oldSize);
1216 return modified;
1217 }
1218
1219 public boolean removeIf(Predicate<? super E> filter) {
1220 checkForComodification();
1221 int oldSize = root.size;
1222 boolean modified = root.removeIf(filter, offset, offset + size);
1223 if (modified)
1224 updateSizeAndModCount(root.size - oldSize);
1225 return modified;
1226 }
1227
1228 public Object[] toArray() {
1229 checkForComodification();
1230 return Arrays.copyOfRange(root.elementData, offset, offset + size);
1231 }
1232
1233 @SuppressWarnings("unchecked")
1234 public <T> T[] toArray(T[] a) {
1235 checkForComodification();
1236 if (a.length < size)
1237 return (T[]) Arrays.copyOfRange(
1238 root.elementData, offset, offset + size, a.getClass());
1239 System.arraycopy(root.elementData, offset, a, 0, size);
1240 if (a.length > size)
1241 a[size] = null;
1242 return a;
1243 }
1244
1245 public boolean equals(Object o) {
1246 if (o == this) {
1247 return true;
1248 }
1249
1250 if (!(o instanceof List)) {
1251 return false;
1252 }
1253
1254 boolean equal = root.equalsRange((List<?>)o, offset, offset + size);
1255 checkForComodification();
1256 return equal;
1257 }
1258
1259 public int hashCode() {
1260 int hash = root.hashCodeRange(offset, offset + size);
1261 checkForComodification();
1262 return hash;
1263 }
1264
1265 public int indexOf(Object o) {
1266 int index = root.indexOfRange(o, offset, offset + size);
1267 checkForComodification();
1268 return index >= 0 ? index - offset : -1;
1269 }
1270
1271 public int lastIndexOf(Object o) {
1272 int index = root.lastIndexOfRange(o, offset, offset + size);
1273 checkForComodification();
1274 return index >= 0 ? index - offset : -1;
1275 }
1276
1277 public boolean contains(Object o) {
1278 return indexOf(o) >= 0;
1279 }
1280
1281 public Iterator<E> iterator() {
1282 return listIterator();
1283 }
1284
1285 public ListIterator<E> listIterator(int index) {
1286 checkForComodification();
1287 rangeCheckForAdd(index);
1288
1289 return new ListIterator<E>() {
1290 int cursor = index;
1291 int lastRet = -1;
1292 int expectedModCount = root.modCount;
1293
1294 public boolean hasNext() {
1295 return cursor != SubList.this.size;
1296 }
1297
1298 @SuppressWarnings("unchecked")
1299 public E next() {
1300 checkForComodification();
1301 int i = cursor;
1302 if (i >= SubList.this.size)
1303 throw new NoSuchElementException();
1304 Object[] elementData = root.elementData;
1305 if (offset + i >= elementData.length)
1306 throw new ConcurrentModificationException();
1307 cursor = i + 1;
1308 return (E) elementData[offset + (lastRet = i)];
1309 }
1310
1311 public boolean hasPrevious() {
1312 return cursor != 0;
1313 }
1314
1315 @SuppressWarnings("unchecked")
1316 public E previous() {
1317 checkForComodification();
1318 int i = cursor - 1;
1319 if (i < 0)
1320 throw new NoSuchElementException();
1321 Object[] elementData = root.elementData;
1322 if (offset + i >= elementData.length)
1323 throw new ConcurrentModificationException();
1324 cursor = i;
1325 return (E) elementData[offset + (lastRet = i)];
1326 }
1327
1328 public void forEachRemaining(Consumer<? super E> action) {
1329 Objects.requireNonNull(action);
1330 final int size = SubList.this.size;
1331 int i = cursor;
1332 if (i < size) {
1333 final Object[] es = root.elementData;
1334 if (offset + i >= es.length)
1335 throw new ConcurrentModificationException();
1336 for (; i < size && modCount == expectedModCount; i++)
1337 action.accept(elementAt(es, offset + i));
1338 // update once at end to reduce heap write traffic
1339 cursor = i;
1340 lastRet = i - 1;
1341 checkForComodification();
1342 }
1343 }
1344
1345 public int nextIndex() {
1346 return cursor;
1347 }
1348
1349 public int previousIndex() {
1350 return cursor - 1;
1351 }
1352
1353 public void remove() {
1354 if (lastRet < 0)
1355 throw new IllegalStateException();
1356 checkForComodification();
1357
1358 try {
1359 SubList.this.remove(lastRet);
1360 cursor = lastRet;
1361 lastRet = -1;
1362 expectedModCount = root.modCount;
1363 } catch (IndexOutOfBoundsException ex) {
1364 throw new ConcurrentModificationException();
1365 }
1366 }
1367
1368 public void set(E e) {
1369 if (lastRet < 0)
1370 throw new IllegalStateException();
1371 checkForComodification();
1372
1373 try {
1374 root.set(offset + lastRet, e);
1375 } catch (IndexOutOfBoundsException ex) {
1376 throw new ConcurrentModificationException();
1377 }
1378 }
1379
1380 public void add(E e) {
1381 checkForComodification();
1382
1383 try {
1384 int i = cursor;
1385 SubList.this.add(i, e);
1386 cursor = i + 1;
1387 lastRet = -1;
1388 expectedModCount = root.modCount;
1389 } catch (IndexOutOfBoundsException ex) {
1390 throw new ConcurrentModificationException();
1391 }
1392 }
1393
1394 final void checkForComodification() {
1395 if (root.modCount != expectedModCount)
1396 throw new ConcurrentModificationException();
1397 }
1398 };
1399 }
1400
1401 public List<E> subList(int fromIndex, int toIndex) {
1402 subListRangeCheck(fromIndex, toIndex, size);
1403 return new SubList<>(this, fromIndex, toIndex);
1404 }
1405
1406 private void rangeCheckForAdd(int index) {
1407 if (index < 0 || index > this.size)
1408 throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
1409 }
1410
1411 private String outOfBoundsMsg(int index) {
1412 return "Index: "+index+", Size: "+this.size;
1413 }
1414
1415 private void checkForComodification() {
1416 if (root.modCount != modCount)
1417 throw new ConcurrentModificationException();
1418 }
1419
1420 private void updateSizeAndModCount(int sizeChange) {
1421 SubList<E> slist = this;
1422 do {
1423 slist.size += sizeChange;
1424 slist.modCount = root.modCount;
1425 slist = slist.parent;
1426 } while (slist != null);
1427 }
1428
1429 public Spliterator<E> spliterator() {
1430 checkForComodification();
1431
1432 // ArrayListSpliterator not used here due to late-binding
1433 return new Spliterator<E>() {
1434 private int index = offset; // current index, modified on advance/split
1435 private int fence = -1; // -1 until used; then one past last index
1436 private int expectedModCount; // initialized when fence set
1437
1438 private int getFence() { // initialize fence to size on first use
1439 int hi; // (a specialized variant appears in method forEach)
1440 if ((hi = fence) < 0) {
1441 expectedModCount = modCount;
1442 hi = fence = offset + size;
1443 }
1444 return hi;
1445 }
1446
1447 public ArrayList<E>.ArrayListSpliterator trySplit() {
1448 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1449 // ArrayListSpliterator can be used here as the source is already bound
1450 return (lo >= mid) ? null : // divide range in half unless too small
1451 root.new ArrayListSpliterator(lo, index = mid, expectedModCount);
1452 }
1453
1454 public boolean tryAdvance(Consumer<? super E> action) {
1455 Objects.requireNonNull(action);
1456 int hi = getFence(), i = index;
1457 if (i < hi) {
1458 index = i + 1;
1459 @SuppressWarnings("unchecked") E e = (E)root.elementData[i];
1460 action.accept(e);
1461 if (root.modCount != expectedModCount)
1462 throw new ConcurrentModificationException();
1463 return true;
1464 }
1465 return false;
1466 }
1467
1468 public void forEachRemaining(Consumer<? super E> action) {
1469 Objects.requireNonNull(action);
1470 int i, hi, mc; // hoist accesses and checks from loop
1471 ArrayList<E> lst = root;
1472 Object[] a;
1473 if ((a = lst.elementData) != null) {
1474 if ((hi = fence) < 0) {
1475 mc = modCount;
1476 hi = offset + size;
1477 }
1478 else
1479 mc = expectedModCount;
1480 if ((i = index) >= 0 && (index = hi) <= a.length) {
1481 for (; i < hi; ++i) {
1482 @SuppressWarnings("unchecked") E e = (E) a[i];
1483 action.accept(e);
1484 }
1485 if (lst.modCount == mc)
1486 return;
1487 }
1488 }
1489 throw new ConcurrentModificationException();
1490 }
1491
1492 public long estimateSize() {
1493 return getFence() - index;
1494 }
1495
1496 public int characteristics() {
1497 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1498 }
1499 };
1500 }
1501 }
1502
1503 /**
1504 * @throws NullPointerException {@inheritDoc}
1505 */
1506 @Override
1507 public void forEach(Consumer<? super E> action) {
1508 Objects.requireNonNull(action);
1509 final int expectedModCount = modCount;
1510 final Object[] es = elementData;
1511 final int size = this.size;
1512 for (int i = 0; modCount == expectedModCount && i < size; i++)
1513 action.accept(elementAt(es, i));
1514 if (modCount != expectedModCount)
1515 throw new ConcurrentModificationException();
1516 }
1517
1518 /**
1519 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1520 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1521 * list.
1522 *
1523 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1524 * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1525 * Overriding implementations should document the reporting of additional
1526 * characteristic values.
1527 *
1528 * @return a {@code Spliterator} over the elements in this list
1529 * @since 1.8
1530 */
1531 @Override
1532 public Spliterator<E> spliterator() {
1533 return new ArrayListSpliterator(0, -1, 0);
1534 }
1535
1536 /** Index-based split-by-two, lazily initialized Spliterator */
1537 final class ArrayListSpliterator implements Spliterator<E> {
1538
1539 /*
1540 * If ArrayLists were immutable, or structurally immutable (no
1541 * adds, removes, etc), we could implement their spliterators
1542 * with Arrays.spliterator. Instead we detect as much
1543 * interference during traversal as practical without
1544 * sacrificing much performance. We rely primarily on
1545 * modCounts. These are not guaranteed to detect concurrency
1546 * violations, and are sometimes overly conservative about
1547 * within-thread interference, but detect enough problems to
1548 * be worthwhile in practice. To carry this out, we (1) lazily
1549 * initialize fence and expectedModCount until the latest
1550 * point that we need to commit to the state we are checking
1551 * against; thus improving precision. (This doesn't apply to
1552 * SubLists, that create spliterators with current non-lazy
1553 * values). (2) We perform only a single
1554 * ConcurrentModificationException check at the end of forEach
1555 * (the most performance-sensitive method). When using forEach
1556 * (as opposed to iterators), we can normally only detect
1557 * interference after actions, not before. Further
1558 * CME-triggering checks apply to all other possible
1559 * violations of assumptions for example null or too-small
1560 * elementData array given its size(), that could only have
1561 * occurred due to interference. This allows the inner loop
1562 * of forEach to run without any further checks, and
1563 * simplifies lambda-resolution. While this does entail a
1564 * number of checks, note that in the common case of
1565 * list.stream().forEach(a), no checks or other computation
1566 * occur anywhere other than inside forEach itself. The other
1567 * less-often-used methods cannot take advantage of most of
1568 * these streamlinings.
1569 */
1570
1571 private int index; // current index, modified on advance/split
1572 private int fence; // -1 until used; then one past last index
1573 private int expectedModCount; // initialized when fence set
1574
1575 /** Creates new spliterator covering the given range. */
1576 ArrayListSpliterator(int origin, int fence, int expectedModCount) {
1577 this.index = origin;
1578 this.fence = fence;
1579 this.expectedModCount = expectedModCount;
1580 }
1581
1582 private int getFence() { // initialize fence to size on first use
1583 int hi; // (a specialized variant appears in method forEach)
1584 if ((hi = fence) < 0) {
1585 expectedModCount = modCount;
1586 hi = fence = size;
1587 }
1588 return hi;
1589 }
1590
1591 public ArrayListSpliterator trySplit() {
1592 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1593 return (lo >= mid) ? null : // divide range in half unless too small
1594 new ArrayListSpliterator(lo, index = mid, expectedModCount);
1595 }
1596
1597 public boolean tryAdvance(Consumer<? super E> action) {
1598 if (action == null)
1599 throw new NullPointerException();
1600 int hi = getFence(), i = index;
1601 if (i < hi) {
1602 index = i + 1;
1603 @SuppressWarnings("unchecked") E e = (E)elementData[i];
1604 action.accept(e);
1605 if (modCount != expectedModCount)
1606 throw new ConcurrentModificationException();
1607 return true;
1608 }
1609 return false;
1610 }
1611
1612 public void forEachRemaining(Consumer<? super E> action) {
1613 int i, hi, mc; // hoist accesses and checks from loop
1614 Object[] a;
1615 if (action == null)
1616 throw new NullPointerException();
1617 if ((a = elementData) != null) {
1618 if ((hi = fence) < 0) {
1619 mc = modCount;
1620 hi = size;
1621 }
1622 else
1623 mc = expectedModCount;
1624 if ((i = index) >= 0 && (index = hi) <= a.length) {
1625 for (; i < hi; ++i) {
1626 @SuppressWarnings("unchecked") E e = (E) a[i];
1627 action.accept(e);
1628 }
1629 if (modCount == mc)
1630 return;
1631 }
1632 }
1633 throw new ConcurrentModificationException();
1634 }
1635
1636 public long estimateSize() {
1637 return getFence() - index;
1638 }
1639
1640 public int characteristics() {
1641 return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1642 }
1643 }
1644
1645 // A tiny bit set implementation
1646
1647 private static long[] nBits(int n) {
1648 return new long[((n - 1) >> 6) + 1];
1649 }
1650 private static void setBit(long[] bits, int i) {
1651 bits[i >> 6] |= 1L << i;
1652 }
1653 private static boolean isClear(long[] bits, int i) {
1654 return (bits[i >> 6] & (1L << i)) == 0;
1655 }
1656
1657 /**
1658 * @throws NullPointerException {@inheritDoc}
1659 */
1660 @Override
1661 public boolean removeIf(Predicate<? super E> filter) {
1662 return removeIf(filter, 0, size);
1663 }
1664
1665 /**
1666 * Removes all elements satisfying the given predicate, from index
1667 * i (inclusive) to index end (exclusive).
1668 */
1669 boolean removeIf(Predicate<? super E> filter, int i, final int end) {
1670 Objects.requireNonNull(filter);
1671 int expectedModCount = modCount;
1672 final Object[] es = elementData;
1673 // Optimize for initial run of survivors
1674 for (; i < end && !filter.test(elementAt(es, i)); i++)
1675 ;
1676 // Tolerate predicates that reentrantly access the collection for
1677 // read (but writers still get CME), so traverse once to find
1678 // elements to delete, a second pass to physically expunge.
1679 if (i < end) {
1680 final int beg = i;
1681 final long[] deathRow = nBits(end - beg);
1682 deathRow[0] = 1L; // set bit 0
1683 for (i = beg + 1; i < end; i++)
1684 if (filter.test(elementAt(es, i)))
1685 setBit(deathRow, i - beg);
1686 if (modCount != expectedModCount)
1687 throw new ConcurrentModificationException();
1688 modCount++;
1689 int w = beg;
1690 for (i = beg; i < end; i++)
1691 if (isClear(deathRow, i - beg))
1692 es[w++] = es[i];
1693 shiftTailOverGap(es, w, end);
1694 // checkInvariants();
1695 return true;
1696 } else {
1697 if (modCount != expectedModCount)
1698 throw new ConcurrentModificationException();
1699 // checkInvariants();
1700 return false;
1701 }
1702 }
1703
1704 @Override
1705 public void replaceAll(UnaryOperator<E> operator) {
1706 replaceAllRange(operator, 0, size);
1707 // TODO(8203662): remove increment of modCount from ...
1708 modCount++;
1709 }
1710
1711 private void replaceAllRange(UnaryOperator<E> operator, int i, int end) {
1712 Objects.requireNonNull(operator);
1713 final int expectedModCount = modCount;
1714 final Object[] es = elementData;
1715 for (; modCount == expectedModCount && i < end; i++)
1716 es[i] = operator.apply(elementAt(es, i));
1717 if (modCount != expectedModCount)
1718 throw new ConcurrentModificationException();
1719 // checkInvariants();
1720 }
1721
1722 @Override
1723 @SuppressWarnings("unchecked")
1724 public void sort(Comparator<? super E> c) {
1725 final int expectedModCount = modCount;
1726 Arrays.sort((E[]) elementData, 0, size, c);
1727 if (modCount != expectedModCount)
1728 throw new ConcurrentModificationException();
1729 modCount++;
1730 // checkInvariants();
1731 }
1732
1733 void checkInvariants() {
1734 // assert size >= 0;
1735 // assert size == elementData.length || elementData[size] == null;
1736 }
1737 }