ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Collections.java
Revision: 1.1
Committed: Tue Dec 28 12:14:07 2004 UTC (19 years, 4 months ago) by dl
Branch: MAIN
Log Message:
Prepare jsr166x classes for Mustang integration

File Contents

# User Rev Content
1 dl 1.1 /*
2     * %W% %E%
3     *
4     * Copyright 2004 Sun Microsystems, Inc. All rights reserved.
5     * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9     import java.io.Serializable;
10     import java.io.ObjectOutputStream;
11     import java.io.IOException;
12     import java.lang.reflect.Array;
13    
14     /**
15     * This class consists exclusively of static methods that operate on or return
16     * collections. It contains polymorphic algorithms that operate on
17     * collections, "wrappers", which return a new collection backed by a
18     * specified collection, and a few other odds and ends.
19     *
20     * <p>The methods of this class all throw a <tt>NullPointerException</tt>
21     * if the collections or class objects provided to them are null.
22     *
23     * <p>The documentation for the polymorphic algorithms contained in this class
24     * generally includes a brief description of the <i>implementation</i>. Such
25     * descriptions should be regarded as <i>implementation notes</i>, rather than
26     * parts of the <i>specification</i>. Implementors should feel free to
27     * substitute other algorithms, so long as the specification itself is adhered
28     * to. (For example, the algorithm used by <tt>sort</tt> does not have to be
29     * a mergesort, but it does have to be <i>stable</i>.)
30     *
31     * <p>The "destructive" algorithms contained in this class, that is, the
32     * algorithms that modify the collection on which they operate, are specified
33     * to throw <tt>UnsupportedOperationException</tt> if the collection does not
34     * support the appropriate mutation primitive(s), such as the <tt>set</tt>
35     * method. These algorithms may, but are not required to, throw this
36     * exception if an invocation would have no effect on the collection. For
37     * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
38     * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
39     *
40     * <p>This class is a member of the
41     * <a href="{@docRoot}/../guide/collections/index.html">
42     * Java Collections Framework</a>.
43     *
44     * @author Josh Bloch
45     * @author Neal Gafter
46     * @version %I%, %G%
47     * @see Collection
48     * @see Set
49     * @see List
50     * @see Map
51     * @since 1.2
52     */
53    
54     public class Collections {
55     // Suppresses default constructor, ensuring non-instantiability.
56     private Collections() {
57     }
58    
59     // Algorithms
60    
61     /*
62     * Tuning parameters for algorithms - Many of the List algorithms have
63     * two implementations, one of which is appropriate for RandomAccess
64     * lists, the other for "sequential." Often, the random access variant
65     * yields better performance on small sequential access lists. The
66     * tuning parameters below determine the cutoff point for what constitutes
67     * a "small" sequential access list for each algorithm. The values below
68     * were empirically determined to work well for LinkedList. Hopefully
69     * they should be reasonable for other sequential access List
70     * implementations. Those doing performance work on this code would
71     * do well to validate the values of these parameters from time to time.
72     * (The first word of each tuning parameter name is the algorithm to which
73     * it applies.)
74     */
75     private static final int BINARYSEARCH_THRESHOLD = 5000;
76     private static final int REVERSE_THRESHOLD = 18;
77     private static final int SHUFFLE_THRESHOLD = 5;
78     private static final int FILL_THRESHOLD = 25;
79     private static final int ROTATE_THRESHOLD = 100;
80     private static final int COPY_THRESHOLD = 10;
81     private static final int REPLACEALL_THRESHOLD = 11;
82     private static final int INDEXOFSUBLIST_THRESHOLD = 35;
83    
84     /**
85     * Sorts the specified list into ascending order, according to the
86     * <i>natural ordering</i> of its elements. All elements in the list must
87     * implement the <tt>Comparable</tt> interface. Furthermore, all elements
88     * in the list must be <i>mutually comparable</i> (that is,
89     * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt>
90     * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
91     *
92     * This sort is guaranteed to be <i>stable</i>: equal elements will
93     * not be reordered as a result of the sort.<p>
94     *
95     * The specified list must be modifiable, but need not be resizable.<p>
96     *
97     * The sorting algorithm is a modified mergesort (in which the merge is
98     * omitted if the highest element in the low sublist is less than the
99     * lowest element in the high sublist). This algorithm offers guaranteed
100     * n log(n) performance.
101     *
102     * This implementation dumps the specified list into an array, sorts
103     * the array, and iterates over the list resetting each element
104     * from the corresponding position in the array. This avoids the
105     * n<sup>2</sup> log(n) performance that would result from attempting
106     * to sort a linked list in place.
107     *
108     * @param list the list to be sorted.
109     * @throws ClassCastException if the list contains elements that are not
110     * <i>mutually comparable</i> (for example, strings and integers).
111     * @throws UnsupportedOperationException if the specified list's
112     * list-iterator does not support the <tt>set</tt> operation.
113     * @see Comparable
114     */
115     public static <T extends Comparable<? super T>> void sort(List<T> list) {
116     Object[] a = list.toArray();
117     Arrays.sort(a);
118     ListIterator<T> i = list.listIterator();
119     for (int j=0; j<a.length; j++) {
120     i.next();
121     i.set((T)a[j]);
122     }
123     }
124    
125     /**
126     * Sorts the specified list according to the order induced by the
127     * specified comparator. All elements in the list must be <i>mutually
128     * comparable</i> using the specified comparator (that is,
129     * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
130     * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
131     *
132     * This sort is guaranteed to be <i>stable</i>: equal elements will
133     * not be reordered as a result of the sort.<p>
134     *
135     * The sorting algorithm is a modified mergesort (in which the merge is
136     * omitted if the highest element in the low sublist is less than the
137     * lowest element in the high sublist). This algorithm offers guaranteed
138     * n log(n) performance.
139     *
140     * The specified list must be modifiable, but need not be resizable.
141     * This implementation dumps the specified list into an array, sorts
142     * the array, and iterates over the list resetting each element
143     * from the corresponding position in the array. This avoids the
144     * n<sup>2</sup> log(n) performance that would result from attempting
145     * to sort a linked list in place.
146     *
147     * @param list the list to be sorted.
148     * @param c the comparator to determine the order of the list. A
149     * <tt>null</tt> value indicates that the elements' <i>natural
150     * ordering</i> should be used.
151     * @throws ClassCastException if the list contains elements that are not
152     * <i>mutually comparable</i> using the specified comparator.
153     * @throws UnsupportedOperationException if the specified list's
154     * list-iterator does not support the <tt>set</tt> operation.
155     * @see Comparator
156     */
157     public static <T> void sort(List<T> list, Comparator<? super T> c) {
158     Object[] a = list.toArray();
159     Arrays.sort(a, (Comparator)c);
160     ListIterator i = list.listIterator();
161     for (int j=0; j<a.length; j++) {
162     i.next();
163     i.set(a[j]);
164     }
165     }
166    
167    
168     /**
169     * Searches the specified list for the specified object using the binary
170     * search algorithm. The list must be sorted into ascending order
171     * according to the <i>natural ordering</i> of its elements (as by the
172     * <tt>sort(List)</tt> method, above) prior to making this call. If it is
173     * not sorted, the results are undefined. If the list contains multiple
174     * elements equal to the specified object, there is no guarantee which one
175     * will be found.<p>
176     *
177     * This method runs in log(n) time for a "random access" list (which
178     * provides near-constant-time positional access). If the specified list
179     * does not implement the {@link RandomAccess} interface and is large,
180     * this method will do an iterator-based binary search that performs
181     * O(n) link traversals and O(log n) element comparisons.
182     *
183     * @param list the list to be searched.
184     * @param key the key to be searched for.
185     * @return index of the search key, if it is contained in the list;
186     * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
187     * <i>insertion point</i> is defined as the point at which the
188     * key would be inserted into the list: the index of the first
189     * element greater than the key, or <tt>list.size()</tt>, if all
190     * elements in the list are less than the specified key. Note
191     * that this guarantees that the return value will be &gt;= 0 if
192     * and only if the key is found.
193     * @throws ClassCastException if the list contains elements that are not
194     * <i>mutually comparable</i> (for example, strings and
195     * integers), or the search key in not mutually comparable
196     * with the elements of the list.
197     * @see Comparable
198     * @see #sort(List)
199     */
200     public static <T>
201     int binarySearch(List<? extends Comparable<? super T>> list, T key) {
202     if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
203     return Collections.indexedBinarySearch(list, key);
204     else
205     return Collections.iteratorBinarySearch(list, key);
206     }
207    
208     private static <T>
209     int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
210     {
211     int low = 0;
212     int high = list.size()-1;
213    
214     while (low <= high) {
215     int mid = (low + high) >> 1;
216     Comparable<? super T> midVal = list.get(mid);
217     int cmp = midVal.compareTo(key);
218    
219     if (cmp < 0)
220     low = mid + 1;
221     else if (cmp > 0)
222     high = mid - 1;
223     else
224     return mid; // key found
225     }
226     return -(low + 1); // key not found
227     }
228    
229     private static <T>
230     int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
231     {
232     int low = 0;
233     int high = list.size()-1;
234     ListIterator<? extends Comparable<? super T>> i = list.listIterator();
235    
236     while (low <= high) {
237     int mid = (low + high) >> 1;
238     Comparable<? super T> midVal = get(i, mid);
239     int cmp = midVal.compareTo(key);
240    
241     if (cmp < 0)
242     low = mid + 1;
243     else if (cmp > 0)
244     high = mid - 1;
245     else
246     return mid; // key found
247     }
248     return -(low + 1); // key not found
249     }
250    
251     /**
252     * Gets the ith element from the given list by repositioning the specified
253     * list listIterator.
254     */
255     private static <T> T get(ListIterator<? extends T> i, int index) {
256     T obj = null;
257     int pos = i.nextIndex();
258     if (pos <= index) {
259     do {
260     obj = i.next();
261     } while (pos++ < index);
262     } else {
263     do {
264     obj = i.previous();
265     } while (--pos > index);
266     }
267     return obj;
268     }
269    
270     /**
271     * Searches the specified list for the specified object using the binary
272     * search algorithm. The list must be sorted into ascending order
273     * according to the specified comparator (as by the <tt>Sort(List,
274     * Comparator)</tt> method, above), prior to making this call. If it is
275     * not sorted, the results are undefined. If the list contains multiple
276     * elements equal to the specified object, there is no guarantee which one
277     * will be found.<p>
278     *
279     * This method runs in log(n) time for a "random access" list (which
280     * provides near-constant-time positional access). If the specified list
281     * does not implement the {@link RandomAccess} interface and is large,
282     * this method will do an iterator-based binary search that performs
283     * O(n) link traversals and O(log n) element comparisons.
284     *
285     * @param list the list to be searched.
286     * @param key the key to be searched for.
287     * @param c the comparator by which the list is ordered. A
288     * <tt>null</tt> value indicates that the elements' <i>natural
289     * ordering</i> should be used.
290     * @return index of the search key, if it is contained in the list;
291     * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
292     * <i>insertion point</i> is defined as the point at which the
293     * key would be inserted into the list: the index of the first
294     * element greater than the key, or <tt>list.size()</tt>, if all
295     * elements in the list are less than the specified key. Note
296     * that this guarantees that the return value will be &gt;= 0 if
297     * and only if the key is found.
298     * @throws ClassCastException if the list contains elements that are not
299     * <i>mutually comparable</i> using the specified comparator,
300     * or the search key in not mutually comparable with the
301     * elements of the list using this comparator.
302     * @see Comparable
303     * @see #sort(List, Comparator)
304     */
305     public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
306     if (c==null)
307     return binarySearch((List) list, key);
308    
309     if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
310     return Collections.indexedBinarySearch(list, key, c);
311     else
312     return Collections.iteratorBinarySearch(list, key, c);
313     }
314    
315     private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
316     int low = 0;
317     int high = l.size()-1;
318    
319     while (low <= high) {
320     int mid = (low + high) >> 1;
321     T midVal = l.get(mid);
322     int cmp = c.compare(midVal, key);
323    
324     if (cmp < 0)
325     low = mid + 1;
326     else if (cmp > 0)
327     high = mid - 1;
328     else
329     return mid; // key found
330     }
331     return -(low + 1); // key not found
332     }
333    
334     private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
335     int low = 0;
336     int high = l.size()-1;
337     ListIterator<? extends T> i = l.listIterator();
338    
339     while (low <= high) {
340     int mid = (low + high) >> 1;
341     T midVal = get(i, mid);
342     int cmp = c.compare(midVal, key);
343    
344     if (cmp < 0)
345     low = mid + 1;
346     else if (cmp > 0)
347     high = mid - 1;
348     else
349     return mid; // key found
350     }
351     return -(low + 1); // key not found
352     }
353    
354     private interface SelfComparable extends Comparable<SelfComparable> {}
355    
356    
357     /**
358     * Reverses the order of the elements in the specified list.<p>
359     *
360     * This method runs in linear time.
361     *
362     * @param list the list whose elements are to be reversed.
363     * @throws UnsupportedOperationException if the specified list or
364     * its list-iterator does not support the <tt>set</tt> method.
365     */
366     public static void reverse(List<?> list) {
367     int size = list.size();
368     if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
369     for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
370     swap(list, i, j);
371     } else {
372     ListIterator fwd = list.listIterator();
373     ListIterator rev = list.listIterator(size);
374     for (int i=0, mid=list.size()>>1; i<mid; i++) {
375     Object tmp = fwd.next();
376     fwd.set(rev.previous());
377     rev.set(tmp);
378     }
379     }
380     }
381    
382     /**
383     * Randomly permutes the specified list using a default source of
384     * randomness. All permutations occur with approximately equal
385     * likelihood.<p>
386     *
387     * The hedge "approximately" is used in the foregoing description because
388     * default source of randomness is only approximately an unbiased source
389     * of independently chosen bits. If it were a perfect source of randomly
390     * chosen bits, then the algorithm would choose permutations with perfect
391     * uniformity.<p>
392     *
393     * This implementation traverses the list backwards, from the last element
394     * up to the second, repeatedly swapping a randomly selected element into
395     * the "current position". Elements are randomly selected from the
396     * portion of the list that runs from the first element to the current
397     * position, inclusive.<p>
398     *
399     * This method runs in linear time. If the specified list does not
400     * implement the {@link RandomAccess} interface and is large, this
401     * implementation dumps the specified list into an array before shuffling
402     * it, and dumps the shuffled array back into the list. This avoids the
403     * quadratic behavior that would result from shuffling a "sequential
404     * access" list in place.
405     *
406     * @param list the list to be shuffled.
407     * @throws UnsupportedOperationException if the specified list or
408     * its list-iterator does not support the <tt>set</tt> method.
409     */
410     public static void shuffle(List<?> list) {
411     shuffle(list, r);
412     }
413     private static Random r = new Random();
414    
415     /**
416     * Randomly permute the specified list using the specified source of
417     * randomness. All permutations occur with equal likelihood
418     * assuming that the source of randomness is fair.<p>
419     *
420     * This implementation traverses the list backwards, from the last element
421     * up to the second, repeatedly swapping a randomly selected element into
422     * the "current position". Elements are randomly selected from the
423     * portion of the list that runs from the first element to the current
424     * position, inclusive.<p>
425     *
426     * This method runs in linear time. If the specified list does not
427     * implement the {@link RandomAccess} interface and is large, this
428     * implementation dumps the specified list into an array before shuffling
429     * it, and dumps the shuffled array back into the list. This avoids the
430     * quadratic behavior that would result from shuffling a "sequential
431     * access" list in place.
432     *
433     * @param list the list to be shuffled.
434     * @param rnd the source of randomness to use to shuffle the list.
435     * @throws UnsupportedOperationException if the specified list or its
436     * list-iterator does not support the <tt>set</tt> operation.
437     */
438     public static void shuffle(List<?> list, Random rnd) {
439     int size = list.size();
440     if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
441     for (int i=size; i>1; i--)
442     swap(list, i-1, rnd.nextInt(i));
443     } else {
444     Object arr[] = list.toArray();
445    
446     // Shuffle array
447     for (int i=size; i>1; i--)
448     swap(arr, i-1, rnd.nextInt(i));
449    
450     // Dump array back into list
451     ListIterator it = list.listIterator();
452     for (int i=0; i<arr.length; i++) {
453     it.next();
454     it.set(arr[i]);
455     }
456     }
457     }
458    
459     /**
460     * Swaps the elements at the specified positions in the specified list.
461     * (If the specified positions are equal, invoking this method leaves
462     * the list unchanged.)
463     *
464     * @param list The list in which to swap elements.
465     * @param i the index of one element to be swapped.
466     * @param j the index of the other element to be swapped.
467     * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
468     * is out of range (i &lt; 0 || i &gt;= list.size()
469     * || j &lt; 0 || j &gt;= list.size()).
470     * @since 1.4
471     */
472     public static void swap(List<?> list, int i, int j) {
473     final List l = list;
474     l.set(i, l.set(j, l.get(i)));
475     }
476    
477     /**
478     * Swaps the two specified elements in the specified array.
479     */
480     private static void swap(Object[] arr, int i, int j) {
481     Object tmp = arr[i];
482     arr[i] = arr[j];
483     arr[j] = tmp;
484     }
485    
486     /**
487     * Replaces all of the elements of the specified list with the specified
488     * element. <p>
489     *
490     * This method runs in linear time.
491     *
492     * @param list the list to be filled with the specified element.
493     * @param obj The element with which to fill the specified list.
494     * @throws UnsupportedOperationException if the specified list or its
495     * list-iterator does not support the <tt>set</tt> operation.
496     */
497     public static <T> void fill(List<? super T> list, T obj) {
498     int size = list.size();
499    
500     if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
501     for (int i=0; i<size; i++)
502     list.set(i, obj);
503     } else {
504     ListIterator<? super T> itr = list.listIterator();
505     for (int i=0; i<size; i++) {
506     itr.next();
507     itr.set(obj);
508     }
509     }
510     }
511    
512     /**
513     * Copies all of the elements from one list into another. After the
514     * operation, the index of each copied element in the destination list
515     * will be identical to its index in the source list. The destination
516     * list must be at least as long as the source list. If it is longer, the
517     * remaining elements in the destination list are unaffected. <p>
518     *
519     * This method runs in linear time.
520     *
521     * @param dest The destination list.
522     * @param src The source list.
523     * @throws IndexOutOfBoundsException if the destination list is too small
524     * to contain the entire source List.
525     * @throws UnsupportedOperationException if the destination list's
526     * list-iterator does not support the <tt>set</tt> operation.
527     */
528     public static <T> void copy(List<? super T> dest, List<? extends T> src) {
529     int srcSize = src.size();
530     if (srcSize > dest.size())
531     throw new IndexOutOfBoundsException("Source does not fit in dest");
532    
533     if (srcSize < COPY_THRESHOLD ||
534     (src instanceof RandomAccess && dest instanceof RandomAccess)) {
535     for (int i=0; i<srcSize; i++)
536     dest.set(i, src.get(i));
537     } else {
538     ListIterator<? super T> di=dest.listIterator();
539     ListIterator<? extends T> si=src.listIterator();
540     for (int i=0; i<srcSize; i++) {
541     di.next();
542     di.set(si.next());
543     }
544     }
545     }
546    
547     /**
548     * Returns the minimum element of the given collection, according to the
549     * <i>natural ordering</i> of its elements. All elements in the
550     * collection must implement the <tt>Comparable</tt> interface.
551     * Furthermore, all elements in the collection must be <i>mutually
552     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
553     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
554     * <tt>e2</tt> in the collection).<p>
555     *
556     * This method iterates over the entire collection, hence it requires
557     * time proportional to the size of the collection.
558     *
559     * @param coll the collection whose minimum element is to be determined.
560     * @return the minimum element of the given collection, according
561     * to the <i>natural ordering</i> of its elements.
562     * @throws ClassCastException if the collection contains elements that are
563     * not <i>mutually comparable</i> (for example, strings and
564     * integers).
565     * @throws NoSuchElementException if the collection is empty.
566     * @see Comparable
567     */
568     public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
569     Iterator<? extends T> i = coll.iterator();
570     T candidate = i.next();
571    
572     while(i.hasNext()) {
573     T next = i.next();
574     if (next.compareTo(candidate) < 0)
575     candidate = next;
576     }
577     return candidate;
578     }
579    
580     /**
581     * Returns the minimum element of the given collection, according to the
582     * order induced by the specified comparator. All elements in the
583     * collection must be <i>mutually comparable</i> by the specified
584     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
585     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
586     * <tt>e2</tt> in the collection).<p>
587     *
588     * This method iterates over the entire collection, hence it requires
589     * time proportional to the size of the collection.
590     *
591     * @param coll the collection whose minimum element is to be determined.
592     * @param comp the comparator with which to determine the minimum element.
593     * A <tt>null</tt> value indicates that the elements' <i>natural
594     * ordering</i> should be used.
595     * @return the minimum element of the given collection, according
596     * to the specified comparator.
597     * @throws ClassCastException if the collection contains elements that are
598     * not <i>mutually comparable</i> using the specified comparator.
599     * @throws NoSuchElementException if the collection is empty.
600     * @see Comparable
601     */
602     public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
603     if (comp==null)
604     return (T)min((Collection<SelfComparable>) (Collection) coll);
605    
606     Iterator<? extends T> i = coll.iterator();
607     T candidate = i.next();
608    
609     while(i.hasNext()) {
610     T next = i.next();
611     if (comp.compare(next, candidate) < 0)
612     candidate = next;
613     }
614     return candidate;
615     }
616    
617     /**
618     * Returns the maximum element of the given collection, according to the
619     * <i>natural ordering</i> of its elements. All elements in the
620     * collection must implement the <tt>Comparable</tt> interface.
621     * Furthermore, all elements in the collection must be <i>mutually
622     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
623     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
624     * <tt>e2</tt> in the collection).<p>
625     *
626     * This method iterates over the entire collection, hence it requires
627     * time proportional to the size of the collection.
628     *
629     * @param coll the collection whose maximum element is to be determined.
630     * @return the maximum element of the given collection, according
631     * to the <i>natural ordering</i> of its elements.
632     * @throws ClassCastException if the collection contains elements that are
633     * not <i>mutually comparable</i> (for example, strings and
634     * integers).
635     * @throws NoSuchElementException if the collection is empty.
636     * @see Comparable
637     */
638     public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
639     Iterator<? extends T> i = coll.iterator();
640     T candidate = i.next();
641    
642     while(i.hasNext()) {
643     T next = i.next();
644     if (next.compareTo(candidate) > 0)
645     candidate = next;
646     }
647     return candidate;
648     }
649    
650     /**
651     * Returns the maximum element of the given collection, according to the
652     * order induced by the specified comparator. All elements in the
653     * collection must be <i>mutually comparable</i> by the specified
654     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
655     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
656     * <tt>e2</tt> in the collection).<p>
657     *
658     * This method iterates over the entire collection, hence it requires
659     * time proportional to the size of the collection.
660     *
661     * @param coll the collection whose maximum element is to be determined.
662     * @param comp the comparator with which to determine the maximum element.
663     * A <tt>null</tt> value indicates that the elements' <i>natural
664     * ordering</i> should be used.
665     * @return the maximum element of the given collection, according
666     * to the specified comparator.
667     * @throws ClassCastException if the collection contains elements that are
668     * not <i>mutually comparable</i> using the specified comparator.
669     * @throws NoSuchElementException if the collection is empty.
670     * @see Comparable
671     */
672     public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
673     if (comp==null)
674     return (T)max((Collection<SelfComparable>) (Collection) coll);
675    
676     Iterator<? extends T> i = coll.iterator();
677     T candidate = i.next();
678    
679     while(i.hasNext()) {
680     T next = i.next();
681     if (comp.compare(next, candidate) > 0)
682     candidate = next;
683     }
684     return candidate;
685     }
686    
687     /**
688     * Rotates the elements in the specified list by the specified distance.
689     * After calling this method, the element at index <tt>i</tt> will be
690     * the element previously at index <tt>(i - distance)</tt> mod
691     * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
692     * and <tt>list.size()-1</tt>, inclusive. (This method has no effect on
693     * the size of the list.)
694     *
695     * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
696     * After invoking <tt>Collections.rotate(list, 1)</tt> (or
697     * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
698     * <tt>[s, t, a, n, k]</tt>.
699     *
700     * <p>Note that this method can usefully be applied to sublists to
701     * move one or more elements within a list while preserving the
702     * order of the remaining elements. For example, the following idiom
703     * moves the element at index <tt>j</tt> forward to position
704     * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
705     * <pre>
706     * Collections.rotate(list.subList(j, k+1), -1);
707     * </pre>
708     * To make this concrete, suppose <tt>list</tt> comprises
709     * <tt>[a, b, c, d, e]</tt>. To move the element at index <tt>1</tt>
710     * (<tt>b</tt>) forward two positions, perform the following invocation:
711     * <pre>
712     * Collections.rotate(l.subList(1, 4), -1);
713     * </pre>
714     * The resulting list is <tt>[a, c, d, b, e]</tt>.
715     *
716     * <p>To move more than one element forward, increase the absolute value
717     * of the rotation distance. To move elements backward, use a positive
718     * shift distance.
719     *
720     * <p>If the specified list is small or implements the {@link
721     * RandomAccess} interface, this implementation exchanges the first
722     * element into the location it should go, and then repeatedly exchanges
723     * the displaced element into the location it should go until a displaced
724     * element is swapped into the first element. If necessary, the process
725     * is repeated on the second and successive elements, until the rotation
726     * is complete. If the specified list is large and doesn't implement the
727     * <tt>RandomAccess</tt> interface, this implementation breaks the
728     * list into two sublist views around index <tt>-distance mod size</tt>.
729     * Then the {@link #reverse(List)} method is invoked on each sublist view,
730     * and finally it is invoked on the entire list. For a more complete
731     * description of both algorithms, see Section 2.3 of Jon Bentley's
732     * <i>Programming Pearls</i> (Addison-Wesley, 1986).
733     *
734     * @param list the list to be rotated.
735     * @param distance the distance to rotate the list. There are no
736     * constraints on this value; it may be zero, negative, or
737     * greater than <tt>list.size()</tt>.
738     * @throws UnsupportedOperationException if the specified list or
739     * its list-iterator does not support the <tt>set</tt> method.
740     * @since 1.4
741     */
742     public static void rotate(List<?> list, int distance) {
743     if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
744     rotate1((List)list, distance);
745     else
746     rotate2((List)list, distance);
747     }
748    
749     private static <T> void rotate1(List<T> list, int distance) {
750     int size = list.size();
751     if (size == 0)
752     return;
753     distance = distance % size;
754     if (distance < 0)
755     distance += size;
756     if (distance == 0)
757     return;
758    
759     for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
760     T displaced = list.get(cycleStart);
761     int i = cycleStart;
762     do {
763     i += distance;
764     if (i >= size)
765     i -= size;
766     displaced = list.set(i, displaced);
767     nMoved ++;
768     } while(i != cycleStart);
769     }
770     }
771    
772     private static void rotate2(List<?> list, int distance) {
773     int size = list.size();
774     if (size == 0)
775     return;
776     int mid = -distance % size;
777     if (mid < 0)
778     mid += size;
779     if (mid == 0)
780     return;
781    
782     reverse(list.subList(0, mid));
783     reverse(list.subList(mid, size));
784     reverse(list);
785     }
786    
787     /**
788     * Replaces all occurrences of one specified value in a list with another.
789     * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
790     * in <tt>list</tt> such that
791     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
792     * (This method has no effect on the size of the list.)
793     *
794     * @param list the list in which replacement is to occur.
795     * @param oldVal the old value to be replaced.
796     * @param newVal the new value with which <tt>oldVal</tt> is to be
797     * replaced.
798     * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
799     * <tt>e</tt> such that
800     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
801     * @throws UnsupportedOperationException if the specified list or
802     * its list-iterator does not support the <tt>set</tt> method.
803     * @since 1.4
804     */
805     public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
806     boolean result = false;
807     int size = list.size();
808     if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
809     if (oldVal==null) {
810     for (int i=0; i<size; i++) {
811     if (list.get(i)==null) {
812     list.set(i, newVal);
813     result = true;
814     }
815     }
816     } else {
817     for (int i=0; i<size; i++) {
818     if (oldVal.equals(list.get(i))) {
819     list.set(i, newVal);
820     result = true;
821     }
822     }
823     }
824     } else {
825     ListIterator<T> itr=list.listIterator();
826     if (oldVal==null) {
827     for (int i=0; i<size; i++) {
828     if (itr.next()==null) {
829     itr.set(newVal);
830     result = true;
831     }
832     }
833     } else {
834     for (int i=0; i<size; i++) {
835     if (oldVal.equals(itr.next())) {
836     itr.set(newVal);
837     result = true;
838     }
839     }
840     }
841     }
842     return result;
843     }
844    
845     /**
846     * Returns the starting position of the first occurrence of the specified
847     * target list within the specified source list, or -1 if there is no
848     * such occurrence. More formally, returns the lowest index <tt>i</tt>
849     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
850     * or -1 if there is no such index. (Returns -1 if
851     * <tt>target.size() > source.size()</tt>.)
852     *
853     * <p>This implementation uses the "brute force" technique of scanning
854     * over the source list, looking for a match with the target at each
855     * location in turn.
856     *
857     * @param source the list in which to search for the first occurrence
858     * of <tt>target</tt>.
859     * @param target the list to search for as a subList of <tt>source</tt>.
860     * @return the starting position of the first occurrence of the specified
861     * target list within the specified source list, or -1 if there
862     * is no such occurrence.
863     * @since 1.4
864     */
865     public static int indexOfSubList(List<?> source, List<?> target) {
866     int sourceSize = source.size();
867     int targetSize = target.size();
868     int maxCandidate = sourceSize - targetSize;
869    
870     if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
871     (source instanceof RandomAccess&&target instanceof RandomAccess)) {
872     nextCand:
873     for (int candidate = 0; candidate <= maxCandidate; candidate++) {
874     for (int i=0, j=candidate; i<targetSize; i++, j++)
875     if (!eq(target.get(i), source.get(j)))
876     continue nextCand; // Element mismatch, try next cand
877     return candidate; // All elements of candidate matched target
878     }
879     } else { // Iterator version of above algorithm
880     ListIterator<?> si = source.listIterator();
881     nextCand:
882     for (int candidate = 0; candidate <= maxCandidate; candidate++) {
883     ListIterator<?> ti = target.listIterator();
884     for (int i=0; i<targetSize; i++) {
885     if (!eq(ti.next(), si.next())) {
886     // Back up source iterator to next candidate
887     for (int j=0; j<i; j++)
888     si.previous();
889     continue nextCand;
890     }
891     }
892     return candidate;
893     }
894     }
895     return -1; // No candidate matched the target
896     }
897    
898     /**
899     * Returns the starting position of the last occurrence of the specified
900     * target list within the specified source list, or -1 if there is no such
901     * occurrence. More formally, returns the highest index <tt>i</tt>
902     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
903     * or -1 if there is no such index. (Returns -1 if
904     * <tt>target.size() > source.size()</tt>.)
905     *
906     * <p>This implementation uses the "brute force" technique of iterating
907     * over the source list, looking for a match with the target at each
908     * location in turn.
909     *
910     * @param source the list in which to search for the last occurrence
911     * of <tt>target</tt>.
912     * @param target the list to search for as a subList of <tt>source</tt>.
913     * @return the starting position of the last occurrence of the specified
914     * target list within the specified source list, or -1 if there
915     * is no such occurrence.
916     * @since 1.4
917     */
918     public static int lastIndexOfSubList(List<?> source, List<?> target) {
919     int sourceSize = source.size();
920     int targetSize = target.size();
921     int maxCandidate = sourceSize - targetSize;
922    
923     if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
924     source instanceof RandomAccess) { // Index access version
925     nextCand:
926     for (int candidate = maxCandidate; candidate >= 0; candidate--) {
927     for (int i=0, j=candidate; i<targetSize; i++, j++)
928     if (!eq(target.get(i), source.get(j)))
929     continue nextCand; // Element mismatch, try next cand
930     return candidate; // All elements of candidate matched target
931     }
932     } else { // Iterator version of above algorithm
933     if (maxCandidate < 0)
934     return -1;
935     ListIterator<?> si = source.listIterator(maxCandidate);
936     nextCand:
937     for (int candidate = maxCandidate; candidate >= 0; candidate--) {
938     ListIterator<?> ti = target.listIterator();
939     for (int i=0; i<targetSize; i++) {
940     if (!eq(ti.next(), si.next())) {
941     if (candidate != 0) {
942     // Back up source iterator to next candidate
943     for (int j=0; j<=i+1; j++)
944     si.previous();
945     }
946     continue nextCand;
947     }
948     }
949     return candidate;
950     }
951     }
952     return -1; // No candidate matched the target
953     }
954    
955    
956     // Unmodifiable Wrappers
957    
958     /**
959     * Returns an unmodifiable view of the specified collection. This method
960     * allows modules to provide users with "read-only" access to internal
961     * collections. Query operations on the returned collection "read through"
962     * to the specified collection, and attempts to modify the returned
963     * collection, whether direct or via its iterator, result in an
964     * <tt>UnsupportedOperationException</tt>.<p>
965     *
966     * The returned collection does <i>not</i> pass the hashCode and equals
967     * operations through to the backing collection, but relies on
968     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
969     * is necessary to preserve the contracts of these operations in the case
970     * that the backing collection is a set or a list.<p>
971     *
972     * The returned collection will be serializable if the specified collection
973     * is serializable.
974     *
975     * @param c the collection for which an unmodifiable view is to be
976     * returned.
977     * @return an unmodifiable view of the specified collection.
978     */
979     public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
980     return new UnmodifiableCollection<T>(c);
981     }
982    
983     /**
984     * @serial include
985     */
986     static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
987     // use serialVersionUID from JDK 1.2.2 for interoperability
988     private static final long serialVersionUID = 1820017752578914078L;
989    
990     final Collection<? extends E> c;
991    
992     UnmodifiableCollection(Collection<? extends E> c) {
993     if (c==null)
994     throw new NullPointerException();
995     this.c = c;
996     }
997    
998     public int size() {return c.size();}
999     public boolean isEmpty() {return c.isEmpty();}
1000     public boolean contains(Object o) {return c.contains(o);}
1001     public Object[] toArray() {return c.toArray();}
1002     public <T> T[] toArray(T[] a) {return c.toArray(a);}
1003     public String toString() {return c.toString();}
1004    
1005     public Iterator<E> iterator() {
1006     return new Iterator<E>() {
1007     Iterator<? extends E> i = c.iterator();
1008    
1009     public boolean hasNext() {return i.hasNext();}
1010     public E next() {return i.next();}
1011     public void remove() {
1012     throw new UnsupportedOperationException();
1013     }
1014     };
1015     }
1016    
1017     public boolean add(E o){
1018     throw new UnsupportedOperationException();
1019     }
1020     public boolean remove(Object o) {
1021     throw new UnsupportedOperationException();
1022     }
1023    
1024     public boolean containsAll(Collection<?> coll) {
1025     return c.containsAll(coll);
1026     }
1027     public boolean addAll(Collection<? extends E> coll) {
1028     throw new UnsupportedOperationException();
1029     }
1030     public boolean removeAll(Collection<?> coll) {
1031     throw new UnsupportedOperationException();
1032     }
1033     public boolean retainAll(Collection<?> coll) {
1034     throw new UnsupportedOperationException();
1035     }
1036     public void clear() {
1037     throw new UnsupportedOperationException();
1038     }
1039     }
1040    
1041     /**
1042     * Returns an unmodifiable view of the specified set. This method allows
1043     * modules to provide users with "read-only" access to internal sets.
1044     * Query operations on the returned set "read through" to the specified
1045     * set, and attempts to modify the returned set, whether direct or via its
1046     * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1047     *
1048     * The returned set will be serializable if the specified set
1049     * is serializable.
1050     *
1051     * @param s the set for which an unmodifiable view is to be returned.
1052     * @return an unmodifiable view of the specified set.
1053     */
1054    
1055     public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1056     return new UnmodifiableSet<T>(s);
1057     }
1058    
1059     /**
1060     * @serial include
1061     */
1062     static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1063     implements Set<E>, Serializable {
1064     private static final long serialVersionUID = -9215047833775013803L;
1065    
1066     UnmodifiableSet(Set<? extends E> s) {super(s);}
1067     public boolean equals(Object o) {return c.equals(o);}
1068     public int hashCode() {return c.hashCode();}
1069     }
1070    
1071     /**
1072     * Returns an unmodifiable view of the specified sorted set. This method
1073     * allows modules to provide users with "read-only" access to internal
1074     * sorted sets. Query operations on the returned sorted set "read
1075     * through" to the specified sorted set. Attempts to modify the returned
1076     * sorted set, whether direct, via its iterator, or via its
1077     * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1078     * an <tt>UnsupportedOperationException</tt>.<p>
1079     *
1080     * The returned sorted set will be serializable if the specified sorted set
1081     * is serializable.
1082     *
1083     * @param s the sorted set for which an unmodifiable view is to be
1084     * returned.
1085     * @return an unmodifiable view of the specified sorted set.
1086     */
1087     public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1088     return new UnmodifiableSortedSet<T>(s);
1089     }
1090    
1091     /**
1092     * @serial include
1093     */
1094     static class UnmodifiableSortedSet<E>
1095     extends UnmodifiableSet<E>
1096     implements SortedSet<E>, Serializable {
1097     private static final long serialVersionUID = -4929149591599911165L;
1098     private final SortedSet<E> ss;
1099    
1100     UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1101    
1102     public Comparator<? super E> comparator() {return ss.comparator();}
1103    
1104     public SortedSet<E> subSet(E fromElement, E toElement) {
1105     return new UnmodifiableSortedSet<E>(ss.subSet(fromElement,toElement));
1106     }
1107     public SortedSet<E> headSet(E toElement) {
1108     return new UnmodifiableSortedSet<E>(ss.headSet(toElement));
1109     }
1110     public SortedSet<E> tailSet(E fromElement) {
1111     return new UnmodifiableSortedSet<E>(ss.tailSet(fromElement));
1112     }
1113    
1114     public E first() {return ss.first();}
1115     public E last() {return ss.last();}
1116     }
1117    
1118     /**
1119     * Returns an unmodifiable view of the specified list. This method allows
1120     * modules to provide users with "read-only" access to internal
1121     * lists. Query operations on the returned list "read through" to the
1122     * specified list, and attempts to modify the returned list, whether
1123     * direct or via its iterator, result in an
1124     * <tt>UnsupportedOperationException</tt>.<p>
1125     *
1126     * The returned list will be serializable if the specified list
1127     * is serializable. Similarly, the returned list will implement
1128     * {@link RandomAccess} if the specified list does.
1129     *
1130     * @param list the list for which an unmodifiable view is to be returned.
1131     * @return an unmodifiable view of the specified list.
1132     */
1133     public static <T> List<T> unmodifiableList(List<? extends T> list) {
1134     return (list instanceof RandomAccess ?
1135     new UnmodifiableRandomAccessList<T>(list) :
1136     new UnmodifiableList<T>(list));
1137     }
1138    
1139     /**
1140     * @serial include
1141     */
1142     static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1143     implements List<E> {
1144     static final long serialVersionUID = -283967356065247728L;
1145     final List<? extends E> list;
1146    
1147     UnmodifiableList(List<? extends E> list) {
1148     super(list);
1149     this.list = list;
1150     }
1151    
1152     public boolean equals(Object o) {return list.equals(o);}
1153     public int hashCode() {return list.hashCode();}
1154    
1155     public E get(int index) {return list.get(index);}
1156     public E set(int index, E element) {
1157     throw new UnsupportedOperationException();
1158     }
1159     public void add(int index, E element) {
1160     throw new UnsupportedOperationException();
1161     }
1162     public E remove(int index) {
1163     throw new UnsupportedOperationException();
1164     }
1165     public int indexOf(Object o) {return list.indexOf(o);}
1166     public int lastIndexOf(Object o) {return list.lastIndexOf(o);}
1167     public boolean addAll(int index, Collection<? extends E> c) {
1168     throw new UnsupportedOperationException();
1169     }
1170     public ListIterator<E> listIterator() {return listIterator(0);}
1171    
1172     public ListIterator<E> listIterator(final int index) {
1173     return new ListIterator<E>() {
1174     ListIterator<? extends E> i = list.listIterator(index);
1175    
1176     public boolean hasNext() {return i.hasNext();}
1177     public E next() {return i.next();}
1178     public boolean hasPrevious() {return i.hasPrevious();}
1179     public E previous() {return i.previous();}
1180     public int nextIndex() {return i.nextIndex();}
1181     public int previousIndex() {return i.previousIndex();}
1182    
1183     public void remove() {
1184     throw new UnsupportedOperationException();
1185     }
1186     public void set(E o) {
1187     throw new UnsupportedOperationException();
1188     }
1189     public void add(E o) {
1190     throw new UnsupportedOperationException();
1191     }
1192     };
1193     }
1194    
1195     public List<E> subList(int fromIndex, int toIndex) {
1196     return new UnmodifiableList<E>(list.subList(fromIndex, toIndex));
1197     }
1198    
1199     /**
1200     * UnmodifiableRandomAccessList instances are serialized as
1201     * UnmodifiableList instances to allow them to be deserialized
1202     * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1203     * This method inverts the transformation. As a beneficial
1204     * side-effect, it also grafts the RandomAccess marker onto
1205     * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1206     *
1207     * Note: Unfortunately, UnmodifiableRandomAccessList instances
1208     * serialized in 1.4.1 and deserialized in 1.4 will become
1209     * UnmodifiableList instances, as this method was missing in 1.4.
1210     */
1211     private Object readResolve() {
1212     return (list instanceof RandomAccess
1213     ? new UnmodifiableRandomAccessList<E>(list)
1214     : this);
1215     }
1216     }
1217    
1218     /**
1219     * @serial include
1220     */
1221     static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1222     implements RandomAccess
1223     {
1224     UnmodifiableRandomAccessList(List<? extends E> list) {
1225     super(list);
1226     }
1227    
1228     public List<E> subList(int fromIndex, int toIndex) {
1229     return new UnmodifiableRandomAccessList<E>(
1230     list.subList(fromIndex, toIndex));
1231     }
1232    
1233     private static final long serialVersionUID = -2542308836966382001L;
1234    
1235     /**
1236     * Allows instances to be deserialized in pre-1.4 JREs (which do
1237     * not have UnmodifiableRandomAccessList). UnmodifiableList has
1238     * a readResolve method that inverts this transformation upon
1239     * deserialization.
1240     */
1241     private Object writeReplace() {
1242     return new UnmodifiableList<E>(list);
1243     }
1244     }
1245    
1246     /**
1247     * Returns an unmodifiable view of the specified map. This method
1248     * allows modules to provide users with "read-only" access to internal
1249     * maps. Query operations on the returned map "read through"
1250     * to the specified map, and attempts to modify the returned
1251     * map, whether direct or via its collection views, result in an
1252     * <tt>UnsupportedOperationException</tt>.<p>
1253     *
1254     * The returned map will be serializable if the specified map
1255     * is serializable.
1256     *
1257     * @param m the map for which an unmodifiable view is to be returned.
1258     * @return an unmodifiable view of the specified map.
1259     */
1260     public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1261     return new UnmodifiableMap<K,V>(m);
1262     }
1263    
1264     /**
1265     * @serial include
1266     */
1267     private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1268     // use serialVersionUID from JDK 1.2.2 for interoperability
1269     private static final long serialVersionUID = -1034234728574286014L;
1270    
1271     private final Map<? extends K, ? extends V> m;
1272    
1273     UnmodifiableMap(Map<? extends K, ? extends V> m) {
1274     if (m==null)
1275     throw new NullPointerException();
1276     this.m = m;
1277     }
1278    
1279     public int size() {return m.size();}
1280     public boolean isEmpty() {return m.isEmpty();}
1281     public boolean containsKey(Object key) {return m.containsKey(key);}
1282     public boolean containsValue(Object val) {return m.containsValue(val);}
1283     public V get(Object key) {return m.get(key);}
1284    
1285     public V put(K key, V value) {
1286     throw new UnsupportedOperationException();
1287     }
1288     public V remove(Object key) {
1289     throw new UnsupportedOperationException();
1290     }
1291     public void putAll(Map<? extends K, ? extends V> t) {
1292     throw new UnsupportedOperationException();
1293     }
1294     public void clear() {
1295     throw new UnsupportedOperationException();
1296     }
1297    
1298     private transient Set<K> keySet = null;
1299     private transient Set<Map.Entry<K,V>> entrySet = null;
1300     private transient Collection<V> values = null;
1301    
1302     public Set<K> keySet() {
1303     if (keySet==null)
1304     keySet = unmodifiableSet(m.keySet());
1305     return keySet;
1306     }
1307    
1308     public Set<Map.Entry<K,V>> entrySet() {
1309     if (entrySet==null)
1310     entrySet = new UnmodifiableEntrySet<K,V>(m.entrySet());
1311     return entrySet;
1312     }
1313    
1314     public Collection<V> values() {
1315     if (values==null)
1316     values = unmodifiableCollection(m.values());
1317     return values;
1318     }
1319    
1320     public boolean equals(Object o) {return m.equals(o);}
1321     public int hashCode() {return m.hashCode();}
1322     public String toString() {return m.toString();}
1323    
1324     /**
1325     * We need this class in addition to UnmodifiableSet as
1326     * Map.Entries themselves permit modification of the backing Map
1327     * via their setValue operation. This class is subtle: there are
1328     * many possible attacks that must be thwarted.
1329     *
1330     * @serial include
1331     */
1332     static class UnmodifiableEntrySet<K,V>
1333     extends UnmodifiableSet<Map.Entry<K,V>> {
1334     private static final long serialVersionUID = 7854390611657943733L;
1335    
1336     UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1337     super((Set<Map.Entry<K,V>>)(Set)s);
1338     }
1339     public Iterator<Map.Entry<K,V>> iterator() {
1340     return new Iterator<Map.Entry<K,V>>() {
1341     Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1342    
1343     public boolean hasNext() {
1344     return i.hasNext();
1345     }
1346     public Map.Entry<K,V> next() {
1347     return new UnmodifiableEntry<K,V>(i.next());
1348     }
1349     public void remove() {
1350     throw new UnsupportedOperationException();
1351     }
1352     };
1353     }
1354    
1355     public Object[] toArray() {
1356     Object[] a = c.toArray();
1357     for (int i=0; i<a.length; i++)
1358     a[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)a[i]);
1359     return a;
1360     }
1361    
1362     public <T> T[] toArray(T[] a) {
1363     // We don't pass a to c.toArray, to avoid window of
1364     // vulnerability wherein an unscrupulous multithreaded client
1365     // could get his hands on raw (unwrapped) Entries from c.
1366     Object[] arr =
1367     c.toArray(
1368     a.length==0 ? a :
1369     (T[])java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), 0));
1370    
1371     for (int i=0; i<arr.length; i++)
1372     arr[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)arr[i]);
1373    
1374     if (arr.length > a.length)
1375     return (T[])arr;
1376    
1377     System.arraycopy(arr, 0, a, 0, arr.length);
1378     if (a.length > arr.length)
1379     a[arr.length] = null;
1380     return a;
1381     }
1382    
1383     /**
1384     * This method is overridden to protect the backing set against
1385     * an object with a nefarious equals function that senses
1386     * that the equality-candidate is Map.Entry and calls its
1387     * setValue method.
1388     */
1389     public boolean contains(Object o) {
1390     if (!(o instanceof Map.Entry))
1391     return false;
1392     return c.contains(new UnmodifiableEntry<K,V>((Map.Entry<K,V>) o));
1393     }
1394    
1395     /**
1396     * The next two methods are overridden to protect against
1397     * an unscrupulous List whose contains(Object o) method senses
1398     * when o is a Map.Entry, and calls o.setValue.
1399     */
1400     public boolean containsAll(Collection<?> coll) {
1401     Iterator<?> e = coll.iterator();
1402     while (e.hasNext())
1403     if (!contains(e.next())) // Invokes safe contains() above
1404     return false;
1405     return true;
1406     }
1407     public boolean equals(Object o) {
1408     if (o == this)
1409     return true;
1410    
1411     if (!(o instanceof Set))
1412     return false;
1413     Set s = (Set) o;
1414     if (s.size() != c.size())
1415     return false;
1416     return containsAll(s); // Invokes safe containsAll() above
1417     }
1418    
1419     /**
1420     * This "wrapper class" serves two purposes: it prevents
1421     * the client from modifying the backing Map, by short-circuiting
1422     * the setValue method, and it protects the backing Map against
1423     * an ill-behaved Map.Entry that attempts to modify another
1424     * Map Entry when asked to perform an equality check.
1425     */
1426     private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1427     private Map.Entry<? extends K, ? extends V> e;
1428    
1429     UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1430    
1431     public K getKey() {return e.getKey();}
1432     public V getValue() {return e.getValue();}
1433     public V setValue(V value) {
1434     throw new UnsupportedOperationException();
1435     }
1436     public int hashCode() {return e.hashCode();}
1437     public boolean equals(Object o) {
1438     if (!(o instanceof Map.Entry))
1439     return false;
1440     Map.Entry t = (Map.Entry)o;
1441     return eq(e.getKey(), t.getKey()) &&
1442     eq(e.getValue(), t.getValue());
1443     }
1444     public String toString() {return e.toString();}
1445     }
1446     }
1447     }
1448    
1449     /**
1450     * Returns an unmodifiable view of the specified sorted map. This method
1451     * allows modules to provide users with "read-only" access to internal
1452     * sorted maps. Query operations on the returned sorted map "read through"
1453     * to the specified sorted map. Attempts to modify the returned
1454     * sorted map, whether direct, via its collection views, or via its
1455     * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1456     * an <tt>UnsupportedOperationException</tt>.<p>
1457     *
1458     * The returned sorted map will be serializable if the specified sorted map
1459     * is serializable.
1460     *
1461     * @param m the sorted map for which an unmodifiable view is to be
1462     * returned.
1463     * @return an unmodifiable view of the specified sorted map.
1464     */
1465     public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1466     return new UnmodifiableSortedMap<K,V>(m);
1467     }
1468    
1469     /**
1470     * @serial include
1471     */
1472     static class UnmodifiableSortedMap<K,V>
1473     extends UnmodifiableMap<K,V>
1474     implements SortedMap<K,V>, Serializable {
1475     private static final long serialVersionUID = -8806743815996713206L;
1476    
1477     private final SortedMap<K, ? extends V> sm;
1478    
1479     UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1480    
1481     public Comparator<? super K> comparator() {return sm.comparator();}
1482    
1483     public SortedMap<K,V> subMap(K fromKey, K toKey) {
1484     return new UnmodifiableSortedMap<K,V>(sm.subMap(fromKey, toKey));
1485     }
1486     public SortedMap<K,V> headMap(K toKey) {
1487     return new UnmodifiableSortedMap<K,V>(sm.headMap(toKey));
1488     }
1489     public SortedMap<K,V> tailMap(K fromKey) {
1490     return new UnmodifiableSortedMap<K,V>(sm.tailMap(fromKey));
1491     }
1492    
1493     public K firstKey() {return sm.firstKey();}
1494     public K lastKey() {return sm.lastKey();}
1495     }
1496    
1497    
1498     // Synch Wrappers
1499    
1500     /**
1501     * Returns a synchronized (thread-safe) collection backed by the specified
1502     * collection. In order to guarantee serial access, it is critical that
1503     * <strong>all</strong> access to the backing collection is accomplished
1504     * through the returned collection.<p>
1505     *
1506     * It is imperative that the user manually synchronize on the returned
1507     * collection when iterating over it:
1508     * <pre>
1509     * Collection c = Collections.synchronizedCollection(myCollection);
1510     * ...
1511     * synchronized(c) {
1512     * Iterator i = c.iterator(); // Must be in the synchronized block
1513     * while (i.hasNext())
1514     * foo(i.next());
1515     * }
1516     * </pre>
1517     * Failure to follow this advice may result in non-deterministic behavior.
1518     *
1519     * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1520     * and <tt>equals</tt> operations through to the backing collection, but
1521     * relies on <tt>Object</tt>'s equals and hashCode methods. This is
1522     * necessary to preserve the contracts of these operations in the case
1523     * that the backing collection is a set or a list.<p>
1524     *
1525     * The returned collection will be serializable if the specified collection
1526     * is serializable.
1527     *
1528     * @param c the collection to be "wrapped" in a synchronized collection.
1529     * @return a synchronized view of the specified collection.
1530     */
1531     public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1532     return new SynchronizedCollection<T>(c);
1533     }
1534    
1535     static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1536     return new SynchronizedCollection<T>(c, mutex);
1537     }
1538    
1539     /**
1540     * @serial include
1541     */
1542     static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1543     // use serialVersionUID from JDK 1.2.2 for interoperability
1544     private static final long serialVersionUID = 3053995032091335093L;
1545    
1546     final Collection<E> c; // Backing Collection
1547     final Object mutex; // Object on which to synchronize
1548    
1549     SynchronizedCollection(Collection<E> c) {
1550     if (c==null)
1551     throw new NullPointerException();
1552     this.c = c;
1553     mutex = this;
1554     }
1555     SynchronizedCollection(Collection<E> c, Object mutex) {
1556     this.c = c;
1557     this.mutex = mutex;
1558     }
1559    
1560     public int size() {
1561     synchronized(mutex) {return c.size();}
1562     }
1563     public boolean isEmpty() {
1564     synchronized(mutex) {return c.isEmpty();}
1565     }
1566     public boolean contains(Object o) {
1567     synchronized(mutex) {return c.contains(o);}
1568     }
1569     public Object[] toArray() {
1570     synchronized(mutex) {return c.toArray();}
1571     }
1572     public <T> T[] toArray(T[] a) {
1573     synchronized(mutex) {return c.toArray(a);}
1574     }
1575    
1576     public Iterator<E> iterator() {
1577     return c.iterator(); // Must be manually synched by user!
1578     }
1579    
1580     public boolean add(E o) {
1581     synchronized(mutex) {return c.add(o);}
1582     }
1583     public boolean remove(Object o) {
1584     synchronized(mutex) {return c.remove(o);}
1585     }
1586    
1587     public boolean containsAll(Collection<?> coll) {
1588     synchronized(mutex) {return c.containsAll(coll);}
1589     }
1590     public boolean addAll(Collection<? extends E> coll) {
1591     synchronized(mutex) {return c.addAll(coll);}
1592     }
1593     public boolean removeAll(Collection<?> coll) {
1594     synchronized(mutex) {return c.removeAll(coll);}
1595     }
1596     public boolean retainAll(Collection<?> coll) {
1597     synchronized(mutex) {return c.retainAll(coll);}
1598     }
1599     public void clear() {
1600     synchronized(mutex) {c.clear();}
1601     }
1602     public String toString() {
1603     synchronized(mutex) {return c.toString();}
1604     }
1605     private void writeObject(ObjectOutputStream s) throws IOException {
1606     synchronized(mutex) {s.defaultWriteObject();}
1607     }
1608     }
1609    
1610     /**
1611     * Returns a synchronized (thread-safe) set backed by the specified
1612     * set. In order to guarantee serial access, it is critical that
1613     * <strong>all</strong> access to the backing set is accomplished
1614     * through the returned set.<p>
1615     *
1616     * It is imperative that the user manually synchronize on the returned
1617     * set when iterating over it:
1618     * <pre>
1619     * Set s = Collections.synchronizedSet(new HashSet());
1620     * ...
1621     * synchronized(s) {
1622     * Iterator i = s.iterator(); // Must be in the synchronized block
1623     * while (i.hasNext())
1624     * foo(i.next());
1625     * }
1626     * </pre>
1627     * Failure to follow this advice may result in non-deterministic behavior.
1628     *
1629     * <p>The returned set will be serializable if the specified set is
1630     * serializable.
1631     *
1632     * @param s the set to be "wrapped" in a synchronized set.
1633     * @return a synchronized view of the specified set.
1634     */
1635     public static <T> Set<T> synchronizedSet(Set<T> s) {
1636     return new SynchronizedSet<T>(s);
1637     }
1638    
1639     static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1640     return new SynchronizedSet<T>(s, mutex);
1641     }
1642    
1643     /**
1644     * @serial include
1645     */
1646     static class SynchronizedSet<E>
1647     extends SynchronizedCollection<E>
1648     implements Set<E> {
1649     private static final long serialVersionUID = 487447009682186044L;
1650    
1651     SynchronizedSet(Set<E> s) {
1652     super(s);
1653     }
1654     SynchronizedSet(Set<E> s, Object mutex) {
1655     super(s, mutex);
1656     }
1657    
1658     public boolean equals(Object o) {
1659     synchronized(mutex) {return c.equals(o);}
1660     }
1661     public int hashCode() {
1662     synchronized(mutex) {return c.hashCode();}
1663     }
1664     }
1665    
1666     /**
1667     * Returns a synchronized (thread-safe) sorted set backed by the specified
1668     * sorted set. In order to guarantee serial access, it is critical that
1669     * <strong>all</strong> access to the backing sorted set is accomplished
1670     * through the returned sorted set (or its views).<p>
1671     *
1672     * It is imperative that the user manually synchronize on the returned
1673     * sorted set when iterating over it or any of its <tt>subSet</tt>,
1674     * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1675     * <pre>
1676     * SortedSet s = Collections.synchronizedSortedSet(new HashSortedSet());
1677     * ...
1678     * synchronized(s) {
1679     * Iterator i = s.iterator(); // Must be in the synchronized block
1680     * while (i.hasNext())
1681     * foo(i.next());
1682     * }
1683     * </pre>
1684     * or:
1685     * <pre>
1686     * SortedSet s = Collections.synchronizedSortedSet(new HashSortedSet());
1687     * SortedSet s2 = s.headSet(foo);
1688     * ...
1689     * synchronized(s) { // Note: s, not s2!!!
1690     * Iterator i = s2.iterator(); // Must be in the synchronized block
1691     * while (i.hasNext())
1692     * foo(i.next());
1693     * }
1694     * </pre>
1695     * Failure to follow this advice may result in non-deterministic behavior.
1696     *
1697     * <p>The returned sorted set will be serializable if the specified
1698     * sorted set is serializable.
1699     *
1700     * @param s the sorted set to be "wrapped" in a synchronized sorted set.
1701     * @return a synchronized view of the specified sorted set.
1702     */
1703     public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1704     return new SynchronizedSortedSet<T>(s);
1705     }
1706    
1707     /**
1708     * @serial include
1709     */
1710     static class SynchronizedSortedSet<E>
1711     extends SynchronizedSet<E>
1712     implements SortedSet<E>
1713     {
1714     private static final long serialVersionUID = 8695801310862127406L;
1715    
1716     final private SortedSet<E> ss;
1717    
1718     SynchronizedSortedSet(SortedSet<E> s) {
1719     super(s);
1720     ss = s;
1721     }
1722     SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1723     super(s, mutex);
1724     ss = s;
1725     }
1726    
1727     public Comparator<? super E> comparator() {
1728     synchronized(mutex) {return ss.comparator();}
1729     }
1730    
1731     public SortedSet<E> subSet(E fromElement, E toElement) {
1732     synchronized(mutex) {
1733     return new SynchronizedSortedSet<E>(
1734     ss.subSet(fromElement, toElement), mutex);
1735     }
1736     }
1737     public SortedSet<E> headSet(E toElement) {
1738     synchronized(mutex) {
1739     return new SynchronizedSortedSet<E>(ss.headSet(toElement), mutex);
1740     }
1741     }
1742     public SortedSet<E> tailSet(E fromElement) {
1743     synchronized(mutex) {
1744     return new SynchronizedSortedSet<E>(ss.tailSet(fromElement),mutex);
1745     }
1746     }
1747    
1748     public E first() {
1749     synchronized(mutex) {return ss.first();}
1750     }
1751     public E last() {
1752     synchronized(mutex) {return ss.last();}
1753     }
1754     }
1755    
1756     /**
1757     * Returns a synchronized (thread-safe) list backed by the specified
1758     * list. In order to guarantee serial access, it is critical that
1759     * <strong>all</strong> access to the backing list is accomplished
1760     * through the returned list.<p>
1761     *
1762     * It is imperative that the user manually synchronize on the returned
1763     * list when iterating over it:
1764     * <pre>
1765     * List list = Collections.synchronizedList(new ArrayList());
1766     * ...
1767     * synchronized(list) {
1768     * Iterator i = list.iterator(); // Must be in synchronized block
1769     * while (i.hasNext())
1770     * foo(i.next());
1771     * }
1772     * </pre>
1773     * Failure to follow this advice may result in non-deterministic behavior.
1774     *
1775     * <p>The returned list will be serializable if the specified list is
1776     * serializable.
1777     *
1778     * @param list the list to be "wrapped" in a synchronized list.
1779     * @return a synchronized view of the specified list.
1780     */
1781     public static <T> List<T> synchronizedList(List<T> list) {
1782     return (list instanceof RandomAccess ?
1783     new SynchronizedRandomAccessList<T>(list) :
1784     new SynchronizedList<T>(list));
1785     }
1786    
1787     static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1788     return (list instanceof RandomAccess ?
1789     new SynchronizedRandomAccessList<T>(list, mutex) :
1790     new SynchronizedList<T>(list, mutex));
1791     }
1792    
1793     /**
1794     * @serial include
1795     */
1796     static class SynchronizedList<E>
1797     extends SynchronizedCollection<E>
1798     implements List<E> {
1799     static final long serialVersionUID = -7754090372962971524L;
1800    
1801     final List<E> list;
1802    
1803     SynchronizedList(List<E> list) {
1804     super(list);
1805     this.list = list;
1806     }
1807     SynchronizedList(List<E> list, Object mutex) {
1808     super(list, mutex);
1809     this.list = list;
1810     }
1811    
1812     public boolean equals(Object o) {
1813     synchronized(mutex) {return list.equals(o);}
1814     }
1815     public int hashCode() {
1816     synchronized(mutex) {return list.hashCode();}
1817     }
1818    
1819     public E get(int index) {
1820     synchronized(mutex) {return list.get(index);}
1821     }
1822     public E set(int index, E element) {
1823     synchronized(mutex) {return list.set(index, element);}
1824     }
1825     public void add(int index, E element) {
1826     synchronized(mutex) {list.add(index, element);}
1827     }
1828     public E remove(int index) {
1829     synchronized(mutex) {return list.remove(index);}
1830     }
1831    
1832     public int indexOf(Object o) {
1833     synchronized(mutex) {return list.indexOf(o);}
1834     }
1835     public int lastIndexOf(Object o) {
1836     synchronized(mutex) {return list.lastIndexOf(o);}
1837     }
1838    
1839     public boolean addAll(int index, Collection<? extends E> c) {
1840     synchronized(mutex) {return list.addAll(index, c);}
1841     }
1842    
1843     public ListIterator<E> listIterator() {
1844     return list.listIterator(); // Must be manually synched by user
1845     }
1846    
1847     public ListIterator<E> listIterator(int index) {
1848     return list.listIterator(index); // Must be manually synched by user
1849     }
1850    
1851     public List<E> subList(int fromIndex, int toIndex) {
1852     synchronized(mutex) {
1853     return new SynchronizedList<E>(list.subList(fromIndex, toIndex),
1854     mutex);
1855     }
1856     }
1857    
1858     /**
1859     * SynchronizedRandomAccessList instances are serialized as
1860     * SynchronizedList instances to allow them to be deserialized
1861     * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1862     * This method inverts the transformation. As a beneficial
1863     * side-effect, it also grafts the RandomAccess marker onto
1864     * SynchronizedList instances that were serialized in pre-1.4 JREs.
1865     *
1866     * Note: Unfortunately, SynchronizedRandomAccessList instances
1867     * serialized in 1.4.1 and deserialized in 1.4 will become
1868     * SynchronizedList instances, as this method was missing in 1.4.
1869     */
1870     private Object readResolve() {
1871     return (list instanceof RandomAccess
1872     ? new SynchronizedRandomAccessList<E>(list)
1873     : this);
1874     }
1875     }
1876    
1877     /**
1878     * @serial include
1879     */
1880     static class SynchronizedRandomAccessList<E>
1881     extends SynchronizedList<E>
1882     implements RandomAccess {
1883    
1884     SynchronizedRandomAccessList(List<E> list) {
1885     super(list);
1886     }
1887    
1888     SynchronizedRandomAccessList(List<E> list, Object mutex) {
1889     super(list, mutex);
1890     }
1891    
1892     public List<E> subList(int fromIndex, int toIndex) {
1893     synchronized(mutex) {
1894     return new SynchronizedRandomAccessList<E>(
1895     list.subList(fromIndex, toIndex), mutex);
1896     }
1897     }
1898    
1899     static final long serialVersionUID = 1530674583602358482L;
1900    
1901     /**
1902     * Allows instances to be deserialized in pre-1.4 JREs (which do
1903     * not have SynchronizedRandomAccessList). SynchronizedList has
1904     * a readResolve method that inverts this transformation upon
1905     * deserialization.
1906     */
1907     private Object writeReplace() {
1908     return new SynchronizedList<E>(list);
1909     }
1910     }
1911    
1912     /**
1913     * Returns a synchronized (thread-safe) map backed by the specified
1914     * map. In order to guarantee serial access, it is critical that
1915     * <strong>all</strong> access to the backing map is accomplished
1916     * through the returned map.<p>
1917     *
1918     * It is imperative that the user manually synchronize on the returned
1919     * map when iterating over any of its collection views:
1920     * <pre>
1921     * Map m = Collections.synchronizedMap(new HashMap());
1922     * ...
1923     * Set s = m.keySet(); // Needn't be in synchronized block
1924     * ...
1925     * synchronized(m) { // Synchronizing on m, not s!
1926     * Iterator i = s.iterator(); // Must be in synchronized block
1927     * while (i.hasNext())
1928     * foo(i.next());
1929     * }
1930     * </pre>
1931     * Failure to follow this advice may result in non-deterministic behavior.
1932     *
1933     * <p>The returned map will be serializable if the specified map is
1934     * serializable.
1935     *
1936     * @param m the map to be "wrapped" in a synchronized map.
1937     * @return a synchronized view of the specified map.
1938     */
1939     public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
1940     return new SynchronizedMap<K,V>(m);
1941     }
1942    
1943     /**
1944     * @serial include
1945     */
1946     private static class SynchronizedMap<K,V>
1947     implements Map<K,V>, Serializable {
1948     // use serialVersionUID from JDK 1.2.2 for interoperability
1949     private static final long serialVersionUID = 1978198479659022715L;
1950    
1951     private final Map<K,V> m; // Backing Map
1952     final Object mutex; // Object on which to synchronize
1953    
1954     SynchronizedMap(Map<K,V> m) {
1955     if (m==null)
1956     throw new NullPointerException();
1957     this.m = m;
1958     mutex = this;
1959     }
1960    
1961     SynchronizedMap(Map<K,V> m, Object mutex) {
1962     this.m = m;
1963     this.mutex = mutex;
1964     }
1965    
1966     public int size() {
1967     synchronized(mutex) {return m.size();}
1968     }
1969     public boolean isEmpty(){
1970     synchronized(mutex) {return m.isEmpty();}
1971     }
1972     public boolean containsKey(Object key) {
1973     synchronized(mutex) {return m.containsKey(key);}
1974     }
1975     public boolean containsValue(Object value){
1976     synchronized(mutex) {return m.containsValue(value);}
1977     }
1978     public V get(Object key) {
1979     synchronized(mutex) {return m.get(key);}
1980     }
1981    
1982     public V put(K key, V value) {
1983     synchronized(mutex) {return m.put(key, value);}
1984     }
1985     public V remove(Object key) {
1986     synchronized(mutex) {return m.remove(key);}
1987     }
1988     public void putAll(Map<? extends K, ? extends V> map) {
1989     synchronized(mutex) {m.putAll(map);}
1990     }
1991     public void clear() {
1992     synchronized(mutex) {m.clear();}
1993     }
1994    
1995     private transient Set<K> keySet = null;
1996     private transient Set<Map.Entry<K,V>> entrySet = null;
1997     private transient Collection<V> values = null;
1998    
1999     public Set<K> keySet() {
2000     synchronized(mutex) {
2001     if (keySet==null)
2002     keySet = new SynchronizedSet<K>(m.keySet(), mutex);
2003     return keySet;
2004     }
2005     }
2006    
2007     public Set<Map.Entry<K,V>> entrySet() {
2008     synchronized(mutex) {
2009     if (entrySet==null)
2010     entrySet = new SynchronizedSet<Map.Entry<K,V>>((Set<Map.Entry<K,V>>)m.entrySet(), mutex);
2011     return entrySet;
2012     }
2013     }
2014    
2015     public Collection<V> values() {
2016     synchronized(mutex) {
2017     if (values==null)
2018     values = new SynchronizedCollection<V>(m.values(), mutex);
2019     return values;
2020     }
2021     }
2022    
2023     public boolean equals(Object o) {
2024     synchronized(mutex) {return m.equals(o);}
2025     }
2026     public int hashCode() {
2027     synchronized(mutex) {return m.hashCode();}
2028     }
2029     public String toString() {
2030     synchronized(mutex) {return m.toString();}
2031     }
2032     private void writeObject(ObjectOutputStream s) throws IOException {
2033     synchronized(mutex) {s.defaultWriteObject();}
2034     }
2035     }
2036    
2037     /**
2038     * Returns a synchronized (thread-safe) sorted map backed by the specified
2039     * sorted map. In order to guarantee serial access, it is critical that
2040     * <strong>all</strong> access to the backing sorted map is accomplished
2041     * through the returned sorted map (or its views).<p>
2042     *
2043     * It is imperative that the user manually synchronize on the returned
2044     * sorted map when iterating over any of its collection views, or the
2045     * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2046     * <tt>tailMap</tt> views.
2047     * <pre>
2048     * SortedMap m = Collections.synchronizedSortedMap(new HashSortedMap());
2049     * ...
2050     * Set s = m.keySet(); // Needn't be in synchronized block
2051     * ...
2052     * synchronized(m) { // Synchronizing on m, not s!
2053     * Iterator i = s.iterator(); // Must be in synchronized block
2054     * while (i.hasNext())
2055     * foo(i.next());
2056     * }
2057     * </pre>
2058     * or:
2059     * <pre>
2060     * SortedMap m = Collections.synchronizedSortedMap(new HashSortedMap());
2061     * SortedMap m2 = m.subMap(foo, bar);
2062     * ...
2063     * Set s2 = m2.keySet(); // Needn't be in synchronized block
2064     * ...
2065     * synchronized(m) { // Synchronizing on m, not m2 or s2!
2066     * Iterator i = s.iterator(); // Must be in synchronized block
2067     * while (i.hasNext())
2068     * foo(i.next());
2069     * }
2070     * </pre>
2071     * Failure to follow this advice may result in non-deterministic behavior.
2072     *
2073     * <p>The returned sorted map will be serializable if the specified
2074     * sorted map is serializable.
2075     *
2076     * @param m the sorted map to be "wrapped" in a synchronized sorted map.
2077     * @return a synchronized view of the specified sorted map.
2078     */
2079     public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2080     return new SynchronizedSortedMap<K,V>(m);
2081     }
2082    
2083    
2084     /**
2085     * @serial include
2086     */
2087     static class SynchronizedSortedMap<K,V>
2088     extends SynchronizedMap<K,V>
2089     implements SortedMap<K,V>
2090     {
2091     private static final long serialVersionUID = -8798146769416483793L;
2092    
2093     private final SortedMap<K,V> sm;
2094    
2095     SynchronizedSortedMap(SortedMap<K,V> m) {
2096     super(m);
2097     sm = m;
2098     }
2099     SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2100     super(m, mutex);
2101     sm = m;
2102     }
2103    
2104     public Comparator<? super K> comparator() {
2105     synchronized(mutex) {return sm.comparator();}
2106     }
2107    
2108     public SortedMap<K,V> subMap(K fromKey, K toKey) {
2109     synchronized(mutex) {
2110     return new SynchronizedSortedMap<K,V>(
2111     sm.subMap(fromKey, toKey), mutex);
2112     }
2113     }
2114     public SortedMap<K,V> headMap(K toKey) {
2115     synchronized(mutex) {
2116     return new SynchronizedSortedMap<K,V>(sm.headMap(toKey), mutex);
2117     }
2118     }
2119     public SortedMap<K,V> tailMap(K fromKey) {
2120     synchronized(mutex) {
2121     return new SynchronizedSortedMap<K,V>(sm.tailMap(fromKey),mutex);
2122     }
2123     }
2124    
2125     public K firstKey() {
2126     synchronized(mutex) {return sm.firstKey();}
2127     }
2128     public K lastKey() {
2129     synchronized(mutex) {return sm.lastKey();}
2130     }
2131     }
2132    
2133     // Dynamically typesafe collection wrappers
2134    
2135     /**
2136     * Returns a dynamically typesafe view of the specified collection. Any
2137     * attempt to insert an element of the wrong type will result in an
2138     * immediate <tt>ClassCastException</tt>. Assuming a collection contains
2139     * no incorrectly typed elements prior to the time a dynamically typesafe
2140     * view is generated, and that all subsequent access to the collection
2141     * takes place through the view, it is <i>guaranteed</i> that the
2142     * collection cannot contain an incorrectly typed element.
2143     *
2144     * <p>The generics mechanism in the language provides compile-time
2145     * (static) type checking, but it is possible to defeat this mechanism
2146     * with unchecked casts. Usually this is not a problem, as the compiler
2147     * issues warnings on all such unchecked operations. There are, however,
2148     * times when static type checking alone is not sufficient. For example,
2149     * suppose a collection is passed to a third-party library and it is
2150     * imperative that the library code not corrupt the collection by
2151     * inserting an element of the wrong type.
2152     *
2153     * <p>Another use of dynamically typesafe views is debugging. Suppose a
2154     * program fails with a <tt>ClassCastException</tt>, indicating that an
2155     * incorrectly typed element was put into a parameterized collection.
2156     * Unfortunately, the exception can occur at any time after the erroneous
2157     * element is inserted, so it typically provides little or no information
2158     * as to the real source of the problem. If the problem is reproducible,
2159     * one can quickly determine its source by temporarily modifying the
2160     * program to wrap the collection with a dynamically typesafe view.
2161     * For example, this declaration:
2162     * <pre>
2163     * Collection&lt;String&gt; c = new HashSet&lt;String&gt;();
2164     * </pre>
2165     * may be replaced temporarily by this one:
2166     * <pre>
2167     * Collection&lt;String&gt; c = Collections.checkedCollection(
2168     * new HashSet&lt;String&gt;(), String.class);
2169     * </pre>
2170     * Running the program again will cause it to fail at the point where
2171     * an incorrectly typed element is inserted into the collection, clearly
2172     * identifying the source of the problem. Once the problem is fixed, the
2173     * modified declaration may be reverted back to the original.
2174     *
2175     * <p>The returned collection does <i>not</i> pass the hashCode and equals
2176     * operations through to the backing collection, but relies on
2177     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
2178     * is necessary to preserve the contracts of these operations in the case
2179     * that the backing collection is a set or a list.
2180     *
2181     * <p>The returned collection will be serializable if the specified
2182     * collection is serializable.
2183     *
2184     * @param c the collection for which a dynamically typesafe view is to be
2185     * returned
2186     * @param type the type of element that <tt>c</tt> is permitted to hold
2187     * @return a dynamically typesafe view of the specified collection
2188     * @since 1.5
2189     */
2190     public static <E> Collection<E> checkedCollection(Collection<E> c,
2191     Class<E> type) {
2192     return new CheckedCollection<E>(c, type);
2193     }
2194    
2195     /**
2196     * @serial include
2197     */
2198     static class CheckedCollection<E> implements Collection<E>, Serializable {
2199     private static final long serialVersionUID = 1578914078182001775L;
2200    
2201     final Collection<E> c;
2202     final Class<E> type;
2203    
2204     void typeCheck(Object o) {
2205     if (!type.isInstance(o))
2206     throw new ClassCastException("Attempt to insert " +
2207     o.getClass() + " element into collection with element type "
2208     + type);
2209     }
2210    
2211     CheckedCollection(Collection<E> c, Class<E> type) {
2212     if (c==null || type == null)
2213     throw new NullPointerException();
2214     this.c = c;
2215     this.type = type;
2216     }
2217    
2218     public int size() { return c.size(); }
2219     public boolean isEmpty() { return c.isEmpty(); }
2220     public boolean contains(Object o) { return c.contains(o); }
2221     public Object[] toArray() { return c.toArray(); }
2222     public <T> T[] toArray(T[] a) { return c.toArray(a); }
2223     public String toString() { return c.toString(); }
2224     public Iterator<E> iterator() { return c.iterator(); }
2225     public boolean remove(Object o) { return c.remove(o); }
2226     public boolean containsAll(Collection<?> coll) {
2227     return c.containsAll(coll);
2228     }
2229     public boolean removeAll(Collection<?> coll) {
2230     return c.removeAll(coll);
2231     }
2232     public boolean retainAll(Collection<?> coll) {
2233     return c.retainAll(coll);
2234     }
2235     public void clear() {
2236     c.clear();
2237     }
2238    
2239     public boolean add(E o){
2240     typeCheck(o);
2241     return c.add(o);
2242     }
2243    
2244     public boolean addAll(Collection<? extends E> coll) {
2245     /*
2246     * Dump coll into an array of the required type. This serves
2247     * three purposes: it insulates us from concurrent changes in
2248     * the contents of coll, it type-checks all of the elements in
2249     * coll, and it provides all-or-nothing semantics(which we
2250     * wouldn't get if we type-checked each element as we added it).
2251     */
2252     E[] a = null;
2253     try {
2254     a = coll.toArray(zeroLengthElementArray());
2255     } catch(ArrayStoreException e) {
2256     throw new ClassCastException();
2257     }
2258    
2259     boolean result = false;
2260     for (E e : a)
2261     result |= c.add(e);
2262     return result;
2263     }
2264    
2265     private E[] zeroLengthElementArray = null; // Lazily initialized
2266    
2267     /*
2268     * We don't need locking or volatile, because it's OK if we create
2269     * several zeroLengthElementArrays, and they're immutable.
2270     */
2271     E[] zeroLengthElementArray() {
2272     if (zeroLengthElementArray == null)
2273     zeroLengthElementArray = (E[]) Array.newInstance(type, 0);
2274     return zeroLengthElementArray;
2275     }
2276     }
2277    
2278     /**
2279     * Returns a dynamically typesafe view of the specified set.
2280     * Any attempt to insert an element of the wrong type will result in
2281     * an immediate <tt>ClassCastException</tt>. Assuming a set contains
2282     * no incorrectly typed elements prior to the time a dynamically typesafe
2283     * view is generated, and that all subsequent access to the set
2284     * takes place through the view, it is <i>guaranteed</i> that the
2285     * set cannot contain an incorrectly typed element.
2286     *
2287     * <p>A discussion of the use of dynamically typesafe views may be
2288     * found in the documentation for the {@link #checkedCollection checkedCollection}
2289     * method.
2290     *
2291     * <p>The returned set will be serializable if the specified set is
2292     * serializable.
2293     *
2294     * @param s the set for which a dynamically typesafe view is to be
2295     * returned
2296     * @param type the type of element that <tt>s</tt> is permitted to hold
2297     * @return a dynamically typesafe view of the specified set
2298     * @since 1.5
2299     */
2300     public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2301     return new CheckedSet<E>(s, type);
2302     }
2303    
2304     /**
2305     * @serial include
2306     */
2307     static class CheckedSet<E> extends CheckedCollection<E>
2308     implements Set<E>, Serializable
2309     {
2310     private static final long serialVersionUID = 4694047833775013803L;
2311    
2312     CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2313    
2314     public boolean equals(Object o) { return c.equals(o); }
2315     public int hashCode() { return c.hashCode(); }
2316     }
2317    
2318     /**
2319     * Returns a dynamically typesafe view of the specified sorted set. Any
2320     * attempt to insert an element of the wrong type will result in an
2321     * immediate <tt>ClassCastException</tt>. Assuming a sorted set contains
2322     * no incorrectly typed elements prior to the time a dynamically typesafe
2323     * view is generated, and that all subsequent access to the sorted set
2324     * takes place through the view, it is <i>guaranteed</i> that the sorted
2325     * set cannot contain an incorrectly typed element.
2326     *
2327     * <p>A discussion of the use of dynamically typesafe views may be
2328     * found in the documentation for the {@link #checkedCollection checkedCollection}
2329     * method.
2330     *
2331     * <p>The returned sorted set will be serializable if the specified sorted
2332     * set is serializable.
2333     *
2334     * @param s the sorted set for which a dynamically typesafe view is to be
2335     * returned
2336     * @param type the type of element that <tt>s</tt> is permitted to hold
2337     * @return a dynamically typesafe view of the specified sorted set
2338     * @since 1.5
2339     */
2340     public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2341     Class<E> type) {
2342     return new CheckedSortedSet<E>(s, type);
2343     }
2344    
2345     /**
2346     * @serial include
2347     */
2348     static class CheckedSortedSet<E> extends CheckedSet<E>
2349     implements SortedSet<E>, Serializable
2350     {
2351     private static final long serialVersionUID = 1599911165492914959L;
2352     private final SortedSet<E> ss;
2353    
2354     CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2355     super(s, type);
2356     ss = s;
2357     }
2358    
2359     public Comparator<? super E> comparator() { return ss.comparator(); }
2360     public E first() { return ss.first(); }
2361     public E last() { return ss.last(); }
2362    
2363     public SortedSet<E> subSet(E fromElement, E toElement) {
2364     return new CheckedSortedSet<E>(ss.subSet(fromElement,toElement),
2365     type);
2366     }
2367     public SortedSet<E> headSet(E toElement) {
2368     return new CheckedSortedSet<E>(ss.headSet(toElement), type);
2369     }
2370     public SortedSet<E> tailSet(E fromElement) {
2371     return new CheckedSortedSet<E>(ss.tailSet(fromElement), type);
2372     }
2373     }
2374    
2375     /**
2376     * Returns a dynamically typesafe view of the specified list.
2377     * Any attempt to insert an element of the wrong type will result in
2378     * an immediate <tt>ClassCastException</tt>. Assuming a list contains
2379     * no incorrectly typed elements prior to the time a dynamically typesafe
2380     * view is generated, and that all subsequent access to the list
2381     * takes place through the view, it is <i>guaranteed</i> that the
2382     * list cannot contain an incorrectly typed element.
2383     *
2384     * <p>A discussion of the use of dynamically typesafe views may be
2385     * found in the documentation for the {@link #checkedCollection checkedCollection}
2386     * method.
2387     *
2388     * <p>The returned list will be serializable if the specified list is
2389     * serializable.
2390     *
2391     * @param list the list for which a dynamically typesafe view is to be
2392     * returned
2393     * @param type the type of element that <tt>list</tt> is permitted to hold
2394     * @return a dynamically typesafe view of the specified list
2395     * @since 1.5
2396     */
2397     public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2398     return (list instanceof RandomAccess ?
2399     new CheckedRandomAccessList<E>(list, type) :
2400     new CheckedList<E>(list, type));
2401     }
2402    
2403     /**
2404     * @serial include
2405     */
2406     static class CheckedList<E> extends CheckedCollection<E>
2407     implements List<E>
2408     {
2409     static final long serialVersionUID = 65247728283967356L;
2410     final List<E> list;
2411    
2412     CheckedList(List<E> list, Class<E> type) {
2413     super(list, type);
2414     this.list = list;
2415     }
2416    
2417     public boolean equals(Object o) { return list.equals(o); }
2418     public int hashCode() { return list.hashCode(); }
2419     public E get(int index) { return list.get(index); }
2420     public E remove(int index) { return list.remove(index); }
2421     public int indexOf(Object o) { return list.indexOf(o); }
2422     public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2423    
2424     public E set(int index, E element) {
2425     typeCheck(element);
2426     return list.set(index, element);
2427     }
2428    
2429     public void add(int index, E element) {
2430     typeCheck(element);
2431     list.add(index, element);
2432     }
2433    
2434     public boolean addAll(int index, Collection<? extends E> c) {
2435     // See CheckCollection.addAll, above, for an explanation
2436     E[] a = null;
2437     try {
2438     a = c.toArray(zeroLengthElementArray());
2439     } catch(ArrayStoreException e) {
2440     throw new ClassCastException();
2441     }
2442    
2443     return list.addAll(index, Arrays.asList(a));
2444     }
2445     public ListIterator<E> listIterator() { return listIterator(0); }
2446    
2447     public ListIterator<E> listIterator(final int index) {
2448     return new ListIterator<E>() {
2449     ListIterator<E> i = list.listIterator(index);
2450    
2451     public boolean hasNext() { return i.hasNext(); }
2452     public E next() { return i.next(); }
2453     public boolean hasPrevious() { return i.hasPrevious(); }
2454     public E previous() { return i.previous(); }
2455     public int nextIndex() { return i.nextIndex(); }
2456     public int previousIndex() { return i.previousIndex(); }
2457     public void remove() { i.remove(); }
2458    
2459     public void set(E o) {
2460     typeCheck(o);
2461     i.set(o);
2462     }
2463    
2464     public void add(E o) {
2465     typeCheck(o);
2466     i.add(o);
2467     }
2468     };
2469     }
2470    
2471     public List<E> subList(int fromIndex, int toIndex) {
2472     return new CheckedList<E>(list.subList(fromIndex, toIndex), type);
2473     }
2474     }
2475    
2476     /**
2477     * @serial include
2478     */
2479     static class CheckedRandomAccessList<E> extends CheckedList<E>
2480     implements RandomAccess
2481     {
2482     private static final long serialVersionUID = 1638200125423088369L;
2483    
2484     CheckedRandomAccessList(List<E> list, Class<E> type) {
2485     super(list, type);
2486     }
2487    
2488     public List<E> subList(int fromIndex, int toIndex) {
2489     return new CheckedRandomAccessList<E>(
2490     list.subList(fromIndex, toIndex), type);
2491     }
2492     }
2493    
2494     /**
2495     * Returns a dynamically typesafe view of the specified map. Any attempt
2496     * to insert a mapping whose key or value have the wrong type will result
2497     * in an immediate <tt>ClassCastException</tt>. Similarly, any attempt to
2498     * modify the value currently associated with a key will result in an
2499     * immediate <tt>ClassCastException</tt>, whether the modification is
2500     * attempted directly through the map itself, or through a {@link
2501     * Map.Entry} instance obtained from the map's {@link Map#entrySet()
2502     * entry set} view.
2503     *
2504     * <p>Assuming a map contains no incorrectly typed keys or values
2505     * prior to the time a dynamically typesafe view is generated, and
2506     * that all subsequent access to the map takes place through the view
2507     * (or one of its collection views), it is <i>guaranteed</i> that the
2508     * map cannot contain an incorrectly typed key or value.
2509     *
2510     * <p>A discussion of the use of dynamically typesafe views may be
2511     * found in the documentation for the {@link #checkedCollection checkedCollection}
2512     * method.
2513     *
2514     * <p>The returned map will be serializable if the specified map is
2515     * serializable.
2516     *
2517     * @param m the map for which a dynamically typesafe view is to be
2518     * returned
2519     * @param keyType the type of key that <tt>m</tt> is permitted to hold
2520     * @param valueType the type of value that <tt>m</tt> is permitted to hold
2521     * @return a dynamically typesafe view of the specified map
2522     * @since 1.5
2523     */
2524     public static <K, V> Map<K, V> checkedMap(Map<K, V> m, Class<K> keyType,
2525     Class<V> valueType) {
2526     return new CheckedMap<K,V>(m, keyType, valueType);
2527     }
2528    
2529    
2530     /**
2531     * @serial include
2532     */
2533     private static class CheckedMap<K,V> implements Map<K,V>,
2534     Serializable
2535     {
2536     private static final long serialVersionUID = 5742860141034234728L;
2537    
2538     private final Map<K, V> m;
2539     final Class<K> keyType;
2540     final Class<V> valueType;
2541    
2542     private void typeCheck(Object key, Object value) {
2543     if (!keyType.isInstance(key))
2544     throw new ClassCastException("Attempt to insert " +
2545     key.getClass() + " key into collection with key type "
2546     + keyType);
2547    
2548     if (!valueType.isInstance(value))
2549     throw new ClassCastException("Attempt to insert " +
2550     value.getClass() +" value into collection with value type "
2551     + valueType);
2552     }
2553    
2554     CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2555     if (m == null || keyType == null || valueType == null)
2556     throw new NullPointerException();
2557     this.m = m;
2558     this.keyType = keyType;
2559     this.valueType = valueType;
2560     }
2561    
2562     public int size() { return m.size(); }
2563     public boolean isEmpty() { return m.isEmpty(); }
2564     public boolean containsKey(Object key) { return m.containsKey(key); }
2565     public boolean containsValue(Object v) { return m.containsValue(v); }
2566     public V get(Object key) { return m.get(key); }
2567     public V remove(Object key) { return m.remove(key); }
2568     public void clear() { m.clear(); }
2569     public Set<K> keySet() { return m.keySet(); }
2570     public Collection<V> values() { return m.values(); }
2571     public boolean equals(Object o) { return m.equals(o); }
2572     public int hashCode() { return m.hashCode(); }
2573     public String toString() { return m.toString(); }
2574    
2575     public V put(K key, V value) {
2576     typeCheck(key, value);
2577     return m.put(key, value);
2578     }
2579    
2580     public void putAll(Map<? extends K, ? extends V> t) {
2581     // See CheckCollection.addAll, above, for an explanation
2582     K[] keys = null;
2583     try {
2584     keys = t.keySet().toArray(zeroLengthKeyArray());
2585     } catch(ArrayStoreException e) {
2586     throw new ClassCastException();
2587     }
2588     V[] values = null;
2589     try {
2590     values = t.values().toArray(zeroLengthValueArray());
2591     } catch(ArrayStoreException e) {
2592     throw new ClassCastException();
2593     }
2594    
2595     if (keys.length != values.length)
2596     throw new ConcurrentModificationException();
2597    
2598     for (int i = 0; i < keys.length; i++)
2599     m.put(keys[i], values[i]);
2600     }
2601    
2602     // Lazily initialized
2603     private K[] zeroLengthKeyArray = null;
2604     private V[] zeroLengthValueArray = null;
2605    
2606     /*
2607     * We don't need locking or volatile, because it's OK if we create
2608     * several zeroLengthValueArrays, and they're immutable.
2609     */
2610     private K[] zeroLengthKeyArray() {
2611     if (zeroLengthKeyArray == null)
2612     zeroLengthKeyArray = (K[]) Array.newInstance(keyType, 0);
2613     return zeroLengthKeyArray;
2614     }
2615     private V[] zeroLengthValueArray() {
2616     if (zeroLengthValueArray == null)
2617     zeroLengthValueArray = (V[]) Array.newInstance(valueType, 0);
2618     return zeroLengthValueArray;
2619     }
2620    
2621     private transient Set<Map.Entry<K,V>> entrySet = null;
2622    
2623     public Set<Map.Entry<K,V>> entrySet() {
2624     if (entrySet==null)
2625     entrySet = new CheckedEntrySet<K,V>(m.entrySet(), valueType);
2626     return entrySet;
2627     }
2628    
2629     /**
2630     * We need this class in addition to CheckedSet as Map.Entry permits
2631     * modification of the backing Map via the setValue operation. This
2632     * class is subtle: there are many possible attacks that must be
2633     * thwarted.
2634     *
2635     * @serial exclude
2636     */
2637     static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2638     Set<Map.Entry<K,V>> s;
2639     Class<V> valueType;
2640    
2641     CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2642     this.s = s;
2643     this.valueType = valueType;
2644     }
2645    
2646     public int size() { return s.size(); }
2647     public boolean isEmpty() { return s.isEmpty(); }
2648     public String toString() { return s.toString(); }
2649     public int hashCode() { return s.hashCode(); }
2650     public boolean remove(Object o) { return s.remove(o); }
2651     public boolean removeAll(Collection<?> coll) {
2652     return s.removeAll(coll);
2653     }
2654     public boolean retainAll(Collection<?> coll) {
2655     return s.retainAll(coll);
2656     }
2657     public void clear() {
2658     s.clear();
2659     }
2660    
2661     public boolean add(Map.Entry<K, V> o){
2662     throw new UnsupportedOperationException();
2663     }
2664     public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2665     throw new UnsupportedOperationException();
2666     }
2667    
2668    
2669     public Iterator<Map.Entry<K,V>> iterator() {
2670     return new Iterator<Map.Entry<K,V>>() {
2671     Iterator<Map.Entry<K, V>> i = s.iterator();
2672    
2673     public boolean hasNext() { return i.hasNext(); }
2674     public void remove() { i.remove(); }
2675    
2676     public Map.Entry<K,V> next() {
2677     return new CheckedEntry<K,V>(i.next(), valueType);
2678     }
2679     };
2680     }
2681    
2682     public Object[] toArray() {
2683     Object[] source = s.toArray();
2684    
2685     /*
2686     * Ensure that we don't get an ArrayStoreException even if
2687     * s.toArray returns an array of something other than Object
2688     */
2689     Object[] dest = (CheckedEntry.class.isInstance(
2690     source.getClass().getComponentType()) ? source :
2691     new Object[source.length]);
2692    
2693     for (int i = 0; i < source.length; i++)
2694     dest[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)source[i],
2695     valueType);
2696     return dest;
2697     }
2698    
2699     public <T> T[] toArray(T[] a) {
2700     // We don't pass a to s.toArray, to avoid window of
2701     // vulnerability wherein an unscrupulous multithreaded client
2702     // could get his hands on raw (unwrapped) Entries from s.
2703     Object[] arr = s.toArray(a.length==0 ? a :
2704     (T[])Array.newInstance(a.getClass().getComponentType(), 0));
2705    
2706     for (int i=0; i<arr.length; i++)
2707     arr[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)arr[i],
2708     valueType);
2709     if (arr.length > a.length)
2710     return (T[])arr;
2711    
2712     System.arraycopy(arr, 0, a, 0, arr.length);
2713     if (a.length > arr.length)
2714     a[arr.length] = null;
2715     return a;
2716     }
2717    
2718     /**
2719     * This method is overridden to protect the backing set against
2720     * an object with a nefarious equals function that senses
2721     * that the equality-candidate is Map.Entry and calls its
2722     * setValue method.
2723     */
2724     public boolean contains(Object o) {
2725     if (!(o instanceof Map.Entry))
2726     return false;
2727     return s.contains(
2728     new CheckedEntry<K,V>((Map.Entry<K,V>) o, valueType));
2729     }
2730    
2731     /**
2732     * The next two methods are overridden to protect against
2733     * an unscrupulous collection whose contains(Object o) method
2734     * senses when o is a Map.Entry, and calls o.setValue.
2735     */
2736     public boolean containsAll(Collection<?> coll) {
2737     Iterator<?> e = coll.iterator();
2738     while (e.hasNext())
2739     if (!contains(e.next())) // Invokes safe contains() above
2740     return false;
2741     return true;
2742     }
2743    
2744     public boolean equals(Object o) {
2745     if (o == this)
2746     return true;
2747     if (!(o instanceof Set))
2748     return false;
2749     Set<?> that = (Set<?>) o;
2750     if (that.size() != s.size())
2751     return false;
2752     return containsAll(that); // Invokes safe containsAll() above
2753     }
2754    
2755     /**
2756     * This "wrapper class" serves two purposes: it prevents
2757     * the client from modifying the backing Map, by short-circuiting
2758     * the setValue method, and it protects the backing Map against
2759     * an ill-behaved Map.Entry that attempts to modify another
2760     * Map Entry when asked to perform an equality check.
2761     */
2762     private static class CheckedEntry<K,V> implements Map.Entry<K,V> {
2763     private Map.Entry<K, V> e;
2764     private Class<V> valueType;
2765    
2766     CheckedEntry(Map.Entry<K, V> e, Class<V> valueType) {
2767     this.e = e;
2768     this.valueType = valueType;
2769     }
2770    
2771     public K getKey() { return e.getKey(); }
2772     public V getValue() { return e.getValue(); }
2773     public int hashCode() { return e.hashCode(); }
2774     public String toString() { return e.toString(); }
2775    
2776    
2777     public V setValue(V value) {
2778     if (!valueType.isInstance(value))
2779     throw new ClassCastException("Attempt to insert " +
2780     value.getClass() +
2781     " value into collection with value type " + valueType);
2782     return e.setValue(value);
2783     }
2784    
2785     public boolean equals(Object o) {
2786     if (!(o instanceof Map.Entry))
2787     return false;
2788     Map.Entry t = (Map.Entry)o;
2789     return eq(e.getKey(), t.getKey()) &&
2790     eq(e.getValue(), t.getValue());
2791     }
2792     }
2793     }
2794     }
2795    
2796     /**
2797     * Returns a dynamically typesafe view of the specified sorted map. Any
2798     * attempt to insert a mapping whose key or value have the wrong type will
2799     * result in an immediate <tt>ClassCastException</tt>. Similarly, any
2800     * attempt to modify the value currently associated with a key will result
2801     * in an immediate <tt>ClassCastException</tt>, whether the modification
2802     * is attempted directly through the map itself, or through a {@link
2803     * Map.Entry} instance obtained from the map's {@link Map#entrySet() entry
2804     * set} view.
2805     *
2806     * <p>Assuming a map contains no incorrectly typed keys or values
2807     * prior to the time a dynamically typesafe view is generated, and
2808     * that all subsequent access to the map takes place through the view
2809     * (or one of its collection views), it is <i>guaranteed</i> that the
2810     * map cannot contain an incorrectly typed key or value.
2811     *
2812     * <p>A discussion of the use of dynamically typesafe views may be
2813     * found in the documentation for the {@link #checkedCollection checkedCollection}
2814     * method.
2815     *
2816     * <p>The returned map will be serializable if the specified map is
2817     * serializable.
2818     *
2819     * @param m the map for which a dynamically typesafe view is to be
2820     * returned
2821     * @param keyType the type of key that <tt>m</tt> is permitted to hold
2822     * @param valueType the type of value that <tt>m</tt> is permitted to hold
2823     * @return a dynamically typesafe view of the specified map
2824     * @since 1.5
2825     */
2826     public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
2827     Class<K> keyType,
2828     Class<V> valueType) {
2829     return new CheckedSortedMap<K,V>(m, keyType, valueType);
2830     }
2831    
2832     /**
2833     * @serial include
2834     */
2835     static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
2836     implements SortedMap<K,V>, Serializable
2837     {
2838     private static final long serialVersionUID = 1599671320688067438L;
2839    
2840     private final SortedMap<K, V> sm;
2841    
2842     CheckedSortedMap(SortedMap<K, V> m,
2843     Class<K> keyType, Class<V> valueType) {
2844     super(m, keyType, valueType);
2845     sm = m;
2846     }
2847    
2848     public Comparator<? super K> comparator() { return sm.comparator(); }
2849     public K firstKey() { return sm.firstKey(); }
2850     public K lastKey() { return sm.lastKey(); }
2851    
2852     public SortedMap<K,V> subMap(K fromKey, K toKey) {
2853     return new CheckedSortedMap<K,V>(sm.subMap(fromKey, toKey),
2854     keyType, valueType);
2855     }
2856    
2857     public SortedMap<K,V> headMap(K toKey) {
2858     return new CheckedSortedMap<K,V>(sm.headMap(toKey),
2859     keyType, valueType);
2860     }
2861    
2862     public SortedMap<K,V> tailMap(K fromKey) {
2863     return new CheckedSortedMap<K,V>(sm.tailMap(fromKey),
2864     keyType, valueType);
2865     }
2866     }
2867    
2868     // Miscellaneous
2869    
2870     /**
2871     * The empty set (immutable). This set is serializable.
2872     *
2873     * @see #emptySet()
2874     */
2875     public static final Set EMPTY_SET = new EmptySet();
2876    
2877     /**
2878     * Returns the empty set (immutable). This set is serializable.
2879     * Unlike the like-named field, this method is parameterized.
2880     *
2881     * <p>This example illustrates the type-safe way to obtain an empty set:
2882     * <pre>
2883     * Set&lt;String&gt; s = Collections.emptySet();
2884     * </pre>
2885     * Implementation note: Implementations of this method need not
2886     * create a separate <tt>Set</tt> object for each call. Using this
2887     * method is likely to have comparable cost to using the like-named
2888     * field. (Unlike this method, the field does not provide type safety.)
2889     *
2890     * @see #EMPTY_SET
2891     * @since 1.5
2892     */
2893     public static final <T> Set<T> emptySet() {
2894     return (Set<T>) EMPTY_SET;
2895     }
2896    
2897     /**
2898     * @serial include
2899     */
2900     private static class EmptySet extends AbstractSet<Object> implements Serializable {
2901     // use serialVersionUID from JDK 1.2.2 for interoperability
2902     private static final long serialVersionUID = 1582296315990362920L;
2903    
2904     public Iterator<Object> iterator() {
2905     return new Iterator<Object>() {
2906     public boolean hasNext() {
2907     return false;
2908     }
2909     public Object next() {
2910     throw new NoSuchElementException();
2911     }
2912     public void remove() {
2913     throw new UnsupportedOperationException();
2914     }
2915     };
2916     }
2917    
2918     public int size() {return 0;}
2919    
2920     public boolean contains(Object obj) {return false;}
2921    
2922     // Preserves singleton property
2923     private Object readResolve() {
2924     return EMPTY_SET;
2925     }
2926     }
2927    
2928     /**
2929     * The empty list (immutable). This list is serializable.
2930     *
2931     * @see #emptyList()
2932     */
2933     public static final List EMPTY_LIST = new EmptyList();
2934    
2935     /**
2936     * Returns the empty list (immutable). This list is serializable.
2937     *
2938     * <p>This example illustrates the type-safe way to obtain an empty list:
2939     * <pre>
2940     * List&lt;String&gt; s = Collections.emptyList();
2941     * </pre>
2942     * Implementation note: Implementations of this method need not
2943     * create a separate <tt>List</tt> object for each call. Using this
2944     * method is likely to have comparable cost to using the like-named
2945     * field. (Unlike this method, the field does not provide type safety.)
2946     *
2947     * @see #EMPTY_LIST
2948     * @since 1.5
2949     */
2950     public static final <T> List<T> emptyList() {
2951     return (List<T>) EMPTY_LIST;
2952     }
2953    
2954     /**
2955     * @serial include
2956     */
2957     private static class EmptyList
2958     extends AbstractList<Object>
2959     implements RandomAccess, Serializable {
2960     // use serialVersionUID from JDK 1.2.2 for interoperability
2961     private static final long serialVersionUID = 8842843931221139166L;
2962    
2963     public int size() {return 0;}
2964    
2965     public boolean contains(Object obj) {return false;}
2966    
2967     public Object get(int index) {
2968     throw new IndexOutOfBoundsException("Index: "+index);
2969     }
2970    
2971     // Preserves singleton property
2972     private Object readResolve() {
2973     return EMPTY_LIST;
2974     }
2975     }
2976    
2977     /**
2978     * The empty map (immutable). This map is serializable.
2979     *
2980     * @see #emptyMap()
2981     * @since 1.3
2982     */
2983     public static final Map EMPTY_MAP = new EmptyMap();
2984    
2985     /**
2986     * Returns the empty map (immutable). This map is serializable.
2987     *
2988     * <p>This example illustrates the type-safe way to obtain an empty set:
2989     * <pre>
2990     * Map&lt;String, Date&gt; s = Collections.emptyMap();
2991     * </pre>
2992     * Implementation note: Implementations of this method need not
2993     * create a separate <tt>Map</tt> object for each call. Using this
2994     * method is likely to have comparable cost to using the like-named
2995     * field. (Unlike this method, the field does not provide type safety.)
2996     *
2997     * @see #EMPTY_MAP
2998     * @since 1.5
2999     */
3000     public static final <K,V> Map<K,V> emptyMap() {
3001     return (Map<K,V>) EMPTY_MAP;
3002     }
3003    
3004     private static class EmptyMap
3005     extends AbstractMap<Object,Object>
3006     implements Serializable {
3007    
3008     private static final long serialVersionUID = 6428348081105594320L;
3009    
3010     public int size() {return 0;}
3011    
3012     public boolean isEmpty() {return true;}
3013    
3014     public boolean containsKey(Object key) {return false;}
3015    
3016     public boolean containsValue(Object value) {return false;}
3017    
3018     public Object get(Object key) {return null;}
3019    
3020     public Set<Object> keySet() {return Collections.<Object>emptySet();}
3021    
3022     public Collection<Object> values() {return Collections.<Object>emptySet();}
3023    
3024     public Set<Map.Entry<Object,Object>> entrySet() {
3025     return Collections.emptySet();
3026     }
3027    
3028     public boolean equals(Object o) {
3029     return (o instanceof Map) && ((Map)o).size()==0;
3030     }
3031    
3032     public int hashCode() {return 0;}
3033    
3034     // Preserves singleton property
3035     private Object readResolve() {
3036     return EMPTY_MAP;
3037     }
3038     }
3039    
3040     /**
3041     * Returns an immutable set containing only the specified object.
3042     * The returned set is serializable.
3043     *
3044     * @param o the sole object to be stored in the returned set.
3045     * @return an immutable set containing only the specified object.
3046     */
3047     public static <T> Set<T> singleton(T o) {
3048     return new SingletonSet<T>(o);
3049     }
3050    
3051     /**
3052     * @serial include
3053     */
3054     private static class SingletonSet<E>
3055     extends AbstractSet<E>
3056     implements Serializable
3057     {
3058     // use serialVersionUID from JDK 1.2.2 for interoperability
3059     private static final long serialVersionUID = 3193687207550431679L;
3060    
3061     final private E element;
3062    
3063     SingletonSet(E o) {element = o;}
3064    
3065     public Iterator<E> iterator() {
3066     return new Iterator<E>() {
3067     private boolean hasNext = true;
3068     public boolean hasNext() {
3069     return hasNext;
3070     }
3071     public E next() {
3072     if (hasNext) {
3073     hasNext = false;
3074     return element;
3075     }
3076     throw new NoSuchElementException();
3077     }
3078     public void remove() {
3079     throw new UnsupportedOperationException();
3080     }
3081     };
3082     }
3083    
3084     public int size() {return 1;}
3085    
3086     public boolean contains(Object o) {return eq(o, element);}
3087     }
3088    
3089     /**
3090     * Returns an immutable list containing only the specified object.
3091     * The returned list is serializable.
3092     *
3093     * @param o the sole object to be stored in the returned list.
3094     * @return an immutable list containing only the specified object.
3095     * @since 1.3
3096     */
3097     public static <T> List<T> singletonList(T o) {
3098     return new SingletonList<T>(o);
3099     }
3100    
3101     private static class SingletonList<E>
3102     extends AbstractList<E>
3103     implements RandomAccess, Serializable {
3104    
3105     static final long serialVersionUID = 3093736618740652951L;
3106    
3107     private final E element;
3108    
3109     SingletonList(E obj) {element = obj;}
3110    
3111     public int size() {return 1;}
3112    
3113     public boolean contains(Object obj) {return eq(obj, element);}
3114    
3115     public E get(int index) {
3116     if (index != 0)
3117     throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3118     return element;
3119     }
3120     }
3121    
3122     /**
3123     * Returns an immutable map, mapping only the specified key to the
3124     * specified value. The returned map is serializable.
3125     *
3126     * @param key the sole key to be stored in the returned map.
3127     * @param value the value to which the returned map maps <tt>key</tt>.
3128     * @return an immutable map containing only the specified key-value
3129     * mapping.
3130     * @since 1.3
3131     */
3132     public static <K,V> Map<K,V> singletonMap(K key, V value) {
3133     return new SingletonMap<K,V>(key, value);
3134     }
3135    
3136     private static class SingletonMap<K,V>
3137     extends AbstractMap<K,V>
3138     implements Serializable {
3139     private static final long serialVersionUID = -6979724477215052911L;
3140    
3141     private final K k;
3142     private final V v;
3143    
3144     SingletonMap(K key, V value) {
3145     k = key;
3146     v = value;
3147     }
3148    
3149     public int size() {return 1;}
3150    
3151     public boolean isEmpty() {return false;}
3152    
3153     public boolean containsKey(Object key) {return eq(key, k);}
3154    
3155     public boolean containsValue(Object value) {return eq(value, v);}
3156    
3157     public V get(Object key) {return (eq(key, k) ? v : null);}
3158    
3159     private transient Set<K> keySet = null;
3160     private transient Set<Map.Entry<K,V>> entrySet = null;
3161     private transient Collection<V> values = null;
3162    
3163     public Set<K> keySet() {
3164     if (keySet==null)
3165     keySet = singleton(k);
3166     return keySet;
3167     }
3168    
3169     public Set<Map.Entry<K,V>> entrySet() {
3170     if (entrySet==null)
3171     entrySet = singleton((Map.Entry<K,V>)new ImmutableEntry<K,V>(k, v));
3172     return entrySet;
3173     }
3174    
3175     public Collection<V> values() {
3176     if (values==null)
3177     values = singleton(v);
3178     return values;
3179     }
3180    
3181     private static class ImmutableEntry<K,V>
3182     implements Map.Entry<K,V> {
3183     final K k;
3184     final V v;
3185    
3186     ImmutableEntry(K key, V value) {
3187     k = key;
3188     v = value;
3189     }
3190    
3191     public K getKey() {return k;}
3192    
3193     public V getValue() {return v;}
3194    
3195     public V setValue(V value) {
3196     throw new UnsupportedOperationException();
3197     }
3198    
3199     public boolean equals(Object o) {
3200     if (!(o instanceof Map.Entry))
3201     return false;
3202     Map.Entry e = (Map.Entry)o;
3203     return eq(e.getKey(), k) && eq(e.getValue(), v);
3204     }
3205    
3206     public int hashCode() {
3207     return ((k==null ? 0 : k.hashCode()) ^
3208     (v==null ? 0 : v.hashCode()));
3209     }
3210    
3211     public String toString() {
3212     return k+"="+v;
3213     }
3214     }
3215     }
3216    
3217     /**
3218     * Returns an immutable list consisting of <tt>n</tt> copies of the
3219     * specified object. The newly allocated data object is tiny (it contains
3220     * a single reference to the data object). This method is useful in
3221     * combination with the <tt>List.addAll</tt> method to grow lists.
3222     * The returned list is serializable.
3223     *
3224     * @param n the number of elements in the returned list.
3225     * @param o the element to appear repeatedly in the returned list.
3226     * @return an immutable list consisting of <tt>n</tt> copies of the
3227     * specified object.
3228     * @throws IllegalArgumentException if n &lt; 0.
3229     * @see List#addAll(Collection)
3230     * @see List#addAll(int, Collection)
3231     */
3232     public static <T> List<T> nCopies(int n, T o) {
3233     return new CopiesList<T>(n, o);
3234     }
3235    
3236     /**
3237     * @serial include
3238     */
3239     private static class CopiesList<E>
3240     extends AbstractList<E>
3241     implements RandomAccess, Serializable
3242     {
3243     static final long serialVersionUID = 2739099268398711800L;
3244    
3245     int n;
3246     E element;
3247    
3248     CopiesList(int n, E o) {
3249     if (n < 0)
3250     throw new IllegalArgumentException("List length = " + n);
3251     this.n = n;
3252     element = o;
3253     }
3254    
3255     public int size() {
3256     return n;
3257     }
3258    
3259     public boolean contains(Object obj) {
3260     return n != 0 && eq(obj, element);
3261     }
3262    
3263     public E get(int index) {
3264     if (index<0 || index>=n)
3265     throw new IndexOutOfBoundsException("Index: "+index+
3266     ", Size: "+n);
3267     return element;
3268     }
3269     }
3270    
3271     /**
3272     * Returns a comparator that imposes the reverse of the <i>natural
3273     * ordering</i> on a collection of objects that implement the
3274     * <tt>Comparable</tt> interface. (The natural ordering is the ordering
3275     * imposed by the objects' own <tt>compareTo</tt> method.) This enables a
3276     * simple idiom for sorting (or maintaining) collections (or arrays) of
3277     * objects that implement the <tt>Comparable</tt> interface in
3278     * reverse-natural-order. For example, suppose a is an array of
3279     * strings. Then: <pre>
3280     * Arrays.sort(a, Collections.reverseOrder());
3281     * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
3282     *
3283     * The returned comparator is serializable.
3284     *
3285     * @return a comparator that imposes the reverse of the <i>natural
3286     * ordering</i> on a collection of objects that implement
3287     * the <tt>Comparable</tt> interface.
3288     * @see Comparable
3289     */
3290     public static <T> Comparator<T> reverseOrder() {
3291     return (Comparator<T>) REVERSE_ORDER;
3292     }
3293    
3294     private static final Comparator REVERSE_ORDER = new ReverseComparator();
3295    
3296     /**
3297     * @serial include
3298     */
3299     private static class ReverseComparator<T>
3300     implements Comparator<Comparable<Object>>, Serializable {
3301    
3302     // use serialVersionUID from JDK 1.2.2 for interoperability
3303     private static final long serialVersionUID = 7207038068494060240L;
3304    
3305     public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3306     return c2.compareTo(c1);
3307     }
3308     }
3309    
3310     /**
3311     * Returns a comparator that imposes the reverse ordering of the specified
3312     * comparator. If the specified comparator is null, this method is
3313     * equivalent to {@link #reverseOrder()} (in other words, it returns a
3314     * comparator that imposes the reverse of the <i>natural ordering</i> on a
3315     * collection of objects that implement the Comparable interface).
3316     *
3317     * <p>The returned comparator is serializable (assuming the specified
3318     * comparator is also serializable or null).
3319     *
3320     * @return a comparator that imposes the reverse ordering of the
3321     * specified comparator.
3322     * @since 1.5
3323     */
3324     public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3325     if (cmp == null)
3326     return new ReverseComparator(); // Unchecked warning!!
3327    
3328     return new ReverseComparator2<T>(cmp);
3329     }
3330    
3331     /**
3332     * @serial include
3333     */
3334     private static class ReverseComparator2<T> implements Comparator<T>,
3335     Serializable
3336     {
3337     private static final long serialVersionUID = 4374092139857L;
3338    
3339     /**
3340     * The comparator specified in the static factory. This will never
3341     * be null, as the static factory returns a ReverseComparator
3342     * instance if its argument is null.
3343     *
3344     * @serial
3345     */
3346     private Comparator<T> cmp;
3347    
3348     ReverseComparator2(Comparator<T> cmp) {
3349     assert cmp != null;
3350     this.cmp = cmp;
3351     }
3352    
3353     public int compare(T t1, T t2) {
3354     return cmp.compare(t2, t1);
3355     }
3356     }
3357    
3358     /**
3359     * Returns an enumeration over the specified collection. This provides
3360     * interoperability with legacy APIs that require an enumeration
3361     * as input.
3362     *
3363     * @param c the collection for which an enumeration is to be returned.
3364     * @return an enumeration over the specified collection.
3365     * @see Enumeration
3366     */
3367     public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3368     return new Enumeration<T>() {
3369     Iterator<T> i = c.iterator();
3370    
3371     public boolean hasMoreElements() {
3372     return i.hasNext();
3373     }
3374    
3375     public T nextElement() {
3376     return i.next();
3377     }
3378     };
3379     }
3380    
3381     /**
3382     * Returns an array list containing the elements returned by the
3383     * specified enumeration in the order they are returned by the
3384     * enumeration. This method provides interoperability between
3385     * legacy APIs that return enumerations and new APIs that require
3386     * collections.
3387     *
3388     * @param e enumeration providing elements for the returned
3389     * array list
3390     * @return an array list containing the elements returned
3391     * by the specified enumeration.
3392     * @since 1.4
3393     * @see Enumeration
3394     * @see ArrayList
3395     */
3396     public static <T> ArrayList<T> list(Enumeration<T> e) {
3397     ArrayList<T> l = new ArrayList<T>();
3398     while (e.hasMoreElements())
3399     l.add(e.nextElement());
3400     return l;
3401     }
3402    
3403     /**
3404     * Returns true if the specified arguments are equal, or both null.
3405     */
3406     private static boolean eq(Object o1, Object o2) {
3407     return (o1==null ? o2==null : o1.equals(o2));
3408     }
3409    
3410     /**
3411     * Returns the number of elements in the specified collection equal to the
3412     * specified object. More formally, returns the number of elements
3413     * <tt>e</tt> in the collection such that
3414     * <tt>(o == null ? e == null : o.equals(e))</tt>.
3415     *
3416     * @param c the collection in which to determine the frequency
3417     * of <tt>o</tt>
3418     * @param o the object whose frequency is to be determined
3419     * @throws NullPointerException if <tt>c</tt> is null
3420     * @since 1.5
3421     */
3422     public static int frequency(Collection<?> c, Object o) {
3423     int result = 0;
3424     if (o == null) {
3425     for (Object e : c)
3426     if (e == null)
3427     result++;
3428     } else {
3429     for (Object e : c)
3430     if (o.equals(e))
3431     result++;
3432     }
3433     return result;
3434     }
3435    
3436     /**
3437     * Returns <tt>true</tt> if the two specified collections have no
3438     * elements in common.
3439     *
3440     * <p>Care must be exercised if this method is used on collections that
3441     * do not comply with the general contract for <tt>Collection</tt>.
3442     * Implementations may elect to iterate over either collection and test
3443     * for containment in the other collection (or to perform any equivalent
3444     * computation). If either collection uses a nonstandard equality test
3445     * (as does a {@link SortedSet} whose ordering is not <i>compatible with
3446     * equals</i>, or the key set of an {@link IdentityHashMap}), both
3447     * collections must use the same nonstandard equality test, or the
3448     * result of this method is undefined.
3449     *
3450     * <p>Note that it is permissible to pass the same collection in both
3451     * parameters, in which case the method will return true if and only if
3452     * the collection is empty.
3453     *
3454     * @param c1 a collection
3455     * @param c2 a collection
3456     * @throws NullPointerException if either collection is null
3457     * @since 1.5
3458     */
3459     public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
3460     /*
3461     * We're going to iterate through c1 and test for inclusion in c2.
3462     * If c1 is a Set and c2 isn't, swap the collections. Otherwise,
3463     * place the shorter collection in c1. Hopefully this heuristic
3464     * will minimize the cost of the operation.
3465     */
3466     if ((c1 instanceof Set) && !(c2 instanceof Set) ||
3467     (c1.size() > c2.size())) {
3468     Collection<?> tmp = c1;
3469     c1 = c2;
3470     c2 = tmp;
3471     }
3472    
3473     for (Object e : c1)
3474     if (c2.contains(e))
3475     return false;
3476     return true;
3477     }
3478    
3479     /**
3480     * Adds all of the specified elements to the specified collection.
3481     * Elements to be added may be specified individually or as an array.
3482     * The behavior of this convenience method is identical to that of
3483     * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
3484     * to run significantly faster under most implementations.
3485     *
3486     * <p>When elements are specified individually, this method provides a
3487     * convenient way to add a few elements to an existing collection:
3488     * <pre>
3489     * Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
3490     * </pre>
3491     *
3492     * @param c the collection into which <tt>elements</tt> are to be inserted
3493     * @param a the elements to insert into <tt>c</tt>
3494     * @return <tt>true</tt> if the collection changed as a result of the call
3495     * @throws UnsupportedOperationException if <tt>c</tt> does not support
3496     * the <tt>add</tt> method
3497     * @throws NullPointerException if <tt>elements</tt> contains one or more
3498     * null values and <tt>c</tt> does not support null elements, or
3499     * if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
3500     * @throws IllegalArgumentException if some aspect of a value in
3501     * <tt>elements</tt> prevents it from being added to <tt>c</tt>
3502     * @see Collection#addAll(Collection)
3503     * @since 1.5
3504     */
3505     public static <T> boolean addAll(Collection<? super T> c, T... a) {
3506     boolean result = false;
3507     for (T e : a)
3508     result |= c.add(e);
3509     return result;
3510     }
3511    
3512     /**
3513     * Returns a set backed by the specified map. The resulting set displays
3514     * the same ordering, concurrency, and performance characteristics as the
3515     * backing map. In essence, this factory method provides a {@link Set}
3516     * implementation corresponding to any {@link Map} implementation. There
3517     * is no need to use this method on a {@link Map} implementation that
3518     * already has a corresponding {@link Set} implementation (such as {@link
3519     * HashMap} or {@link TreeMap}).
3520     *
3521     * <p>Each method invocation on the set returned by this method results in
3522     * exactly one method invocation on the backing map or its <tt>keySet</tt>
3523     * view, with one exception. The <tt>addAll</tt> method is implemented
3524     * as a sequence of <tt>put</tt> invocations on the backing map.
3525     *
3526     * <p>The specified map must be empty at the time this method is invoked,
3527     * and should not be accessed directly after this method returns. These
3528     * conditions are ensured if the map is created empty, passed directly
3529     * to this method, and no reference to the map is retained, as illustrated
3530     * in the following code fragment:
3531     * <pre>
3532     * Set&lt;Object&gt; weakHashSet = Collections.asSet(
3533     * new WeakHashMap&lt;Object, Boolean&gt;());
3534     * </pre>
3535     *
3536     * @param map the backing map
3537     * @return the set backed by the map
3538     * @throws IllegalArgumentException if <tt>map</tt> is not empty
3539     */
3540     public static <E> Set<E> asSet(Map<E, Boolean> map) {
3541     return new MapAsSet<E>(map);
3542     }
3543    
3544     private static class MapAsSet<E> extends AbstractSet<E>
3545     implements Set<E>, Serializable
3546     {
3547     private final Map<E, Boolean> m; // The backing map
3548     private transient Set<E> keySet; // Its keySet
3549    
3550     MapAsSet(Map<E, Boolean> map) {
3551     if (!map.isEmpty())
3552     throw new IllegalArgumentException("Map is non-empty");
3553     m = map;
3554     keySet = map.keySet();
3555     }
3556    
3557     public int size() { return m.size(); }
3558     public boolean isEmpty() { return m.isEmpty(); }
3559     public boolean contains(Object o) { return m.containsKey(o); }
3560     public Iterator<E> iterator() { return keySet.iterator(); }
3561     public Object[] toArray() { return keySet.toArray(); }
3562     public <T> T[] toArray(T[] a) { return keySet.toArray(a); }
3563     public boolean add(E e) {
3564     return m.put(e, Boolean.TRUE) == null;
3565     }
3566     public boolean remove(Object o) { return m.remove(o) != null; }
3567    
3568     public boolean removeAll(Collection<?> c) {
3569     return keySet.removeAll(c);
3570     }
3571     public boolean retainAll(Collection<?> c) {
3572     return keySet.retainAll(c);
3573     }
3574     public void clear() { m.clear(); }
3575     public boolean equals(Object o) { return keySet.equals(o); }
3576     public int hashCode() { return keySet.hashCode(); }
3577    
3578     private static final long serialVersionUID = 2454657854757543876L;
3579    
3580     private void readObject(java.io.ObjectInputStream s)
3581     throws IOException, ClassNotFoundException
3582     {
3583     s.defaultReadObject();
3584     keySet = m.keySet();
3585     }
3586     }
3587    
3588     /**
3589     * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
3590     * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
3591     * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
3592     * view can be useful when you would like to use a method
3593     * requiring a <tt>Queue</tt> but you need Lifo ordering.
3594     * @param deque the Deque
3595     * @return the queue
3596     * @since 1.6
3597     */
3598     public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
3599     return new AsLIFOQueue<T>(deque);
3600     }
3601    
3602     static class AsLIFOQueue<E> extends AbstractQueue<E>
3603     implements Queue<E>, Serializable {
3604     private final Deque<E> q;
3605     AsLIFOQueue(Deque<E> q) { this.q = q; }
3606     public boolean offer(E o) { return q.offerFirst(o); }
3607     public E poll() { return q.pollFirst(); }
3608     public E remove() { return q.removeFirst(); }
3609     public E peek() { return q.peekFirst(); }
3610     public E element() { return q.getFirst(); }
3611     public int size() { return q.size(); }
3612     public boolean isEmpty() { return q.isEmpty(); }
3613     public boolean contains(Object o) { return q.contains(o); }
3614     public Iterator<E> iterator() { return q.iterator(); }
3615     public Object[] toArray() { return q.toArray(); }
3616     public <T> T[] toArray(T[] a) { return q.toArray(a); }
3617     public boolean add(E o) { return q.offerFirst(o); }
3618     public boolean remove(Object o) { return q.remove(o); }
3619     public void clear() { q.clear(); }
3620     }
3621     }