ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Collections.java
Revision: 1.8
Committed: Wed May 25 14:05:06 2005 UTC (18 years, 11 months ago) by dl
Branch: MAIN
Changes since 1.7: +1 -0 lines
Log Message:
Avoid generics warnings

File Contents

# User Rev Content
1 dl 1.1 /*
2     * %W% %E%
3     *
4 jsr166 1.3 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 dl 1.1 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9     import java.io.Serializable;
10     import java.io.ObjectOutputStream;
11     import java.io.IOException;
12     import java.lang.reflect.Array;
13    
14     /**
15     * This class consists exclusively of static methods that operate on or return
16     * collections. It contains polymorphic algorithms that operate on
17     * collections, "wrappers", which return a new collection backed by a
18     * specified collection, and a few other odds and ends.
19     *
20     * <p>The methods of this class all throw a <tt>NullPointerException</tt>
21     * if the collections or class objects provided to them are null.
22     *
23     * <p>The documentation for the polymorphic algorithms contained in this class
24     * generally includes a brief description of the <i>implementation</i>. Such
25     * descriptions should be regarded as <i>implementation notes</i>, rather than
26     * parts of the <i>specification</i>. Implementors should feel free to
27     * substitute other algorithms, so long as the specification itself is adhered
28     * to. (For example, the algorithm used by <tt>sort</tt> does not have to be
29     * a mergesort, but it does have to be <i>stable</i>.)
30     *
31     * <p>The "destructive" algorithms contained in this class, that is, the
32     * algorithms that modify the collection on which they operate, are specified
33     * to throw <tt>UnsupportedOperationException</tt> if the collection does not
34     * support the appropriate mutation primitive(s), such as the <tt>set</tt>
35     * method. These algorithms may, but are not required to, throw this
36     * exception if an invocation would have no effect on the collection. For
37     * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
38     * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
39     *
40 jsr166 1.4 * <p>This class is a member of the
41 dl 1.1 * <a href="{@docRoot}/../guide/collections/index.html">
42     * Java Collections Framework</a>.
43     *
44     * @author Josh Bloch
45     * @author Neal Gafter
46     * @version %I%, %G%
47     * @see Collection
48     * @see Set
49     * @see List
50     * @see Map
51     * @since 1.2
52     */
53    
54     public class Collections {
55     // Suppresses default constructor, ensuring non-instantiability.
56     private Collections() {
57     }
58    
59     // Algorithms
60    
61     /*
62     * Tuning parameters for algorithms - Many of the List algorithms have
63     * two implementations, one of which is appropriate for RandomAccess
64     * lists, the other for "sequential." Often, the random access variant
65     * yields better performance on small sequential access lists. The
66 jsr166 1.7 * tuning parameters below determine the cutoff point for what constitutes
67 dl 1.1 * a "small" sequential access list for each algorithm. The values below
68     * were empirically determined to work well for LinkedList. Hopefully
69     * they should be reasonable for other sequential access List
70     * implementations. Those doing performance work on this code would
71     * do well to validate the values of these parameters from time to time.
72     * (The first word of each tuning parameter name is the algorithm to which
73     * it applies.)
74     */
75     private static final int BINARYSEARCH_THRESHOLD = 5000;
76     private static final int REVERSE_THRESHOLD = 18;
77     private static final int SHUFFLE_THRESHOLD = 5;
78     private static final int FILL_THRESHOLD = 25;
79     private static final int ROTATE_THRESHOLD = 100;
80     private static final int COPY_THRESHOLD = 10;
81     private static final int REPLACEALL_THRESHOLD = 11;
82     private static final int INDEXOFSUBLIST_THRESHOLD = 35;
83    
84     /**
85     * Sorts the specified list into ascending order, according to the
86     * <i>natural ordering</i> of its elements. All elements in the list must
87     * implement the <tt>Comparable</tt> interface. Furthermore, all elements
88     * in the list must be <i>mutually comparable</i> (that is,
89     * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt>
90     * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
91     *
92     * This sort is guaranteed to be <i>stable</i>: equal elements will
93     * not be reordered as a result of the sort.<p>
94     *
95     * The specified list must be modifiable, but need not be resizable.<p>
96     *
97     * The sorting algorithm is a modified mergesort (in which the merge is
98     * omitted if the highest element in the low sublist is less than the
99     * lowest element in the high sublist). This algorithm offers guaranteed
100 jsr166 1.4 * n log(n) performance.
101 dl 1.1 *
102     * This implementation dumps the specified list into an array, sorts
103     * the array, and iterates over the list resetting each element
104     * from the corresponding position in the array. This avoids the
105     * n<sup>2</sup> log(n) performance that would result from attempting
106     * to sort a linked list in place.
107     *
108     * @param list the list to be sorted.
109     * @throws ClassCastException if the list contains elements that are not
110     * <i>mutually comparable</i> (for example, strings and integers).
111     * @throws UnsupportedOperationException if the specified list's
112     * list-iterator does not support the <tt>set</tt> operation.
113     * @see Comparable
114     */
115     public static <T extends Comparable<? super T>> void sort(List<T> list) {
116     Object[] a = list.toArray();
117     Arrays.sort(a);
118     ListIterator<T> i = list.listIterator();
119     for (int j=0; j<a.length; j++) {
120     i.next();
121     i.set((T)a[j]);
122     }
123     }
124    
125     /**
126     * Sorts the specified list according to the order induced by the
127     * specified comparator. All elements in the list must be <i>mutually
128     * comparable</i> using the specified comparator (that is,
129     * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
130     * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
131     *
132     * This sort is guaranteed to be <i>stable</i>: equal elements will
133     * not be reordered as a result of the sort.<p>
134     *
135     * The sorting algorithm is a modified mergesort (in which the merge is
136     * omitted if the highest element in the low sublist is less than the
137     * lowest element in the high sublist). This algorithm offers guaranteed
138 jsr166 1.4 * n log(n) performance.
139 dl 1.1 *
140     * The specified list must be modifiable, but need not be resizable.
141     * This implementation dumps the specified list into an array, sorts
142     * the array, and iterates over the list resetting each element
143     * from the corresponding position in the array. This avoids the
144     * n<sup>2</sup> log(n) performance that would result from attempting
145     * to sort a linked list in place.
146     *
147     * @param list the list to be sorted.
148     * @param c the comparator to determine the order of the list. A
149     * <tt>null</tt> value indicates that the elements' <i>natural
150     * ordering</i> should be used.
151     * @throws ClassCastException if the list contains elements that are not
152     * <i>mutually comparable</i> using the specified comparator.
153     * @throws UnsupportedOperationException if the specified list's
154     * list-iterator does not support the <tt>set</tt> operation.
155     * @see Comparator
156     */
157     public static <T> void sort(List<T> list, Comparator<? super T> c) {
158     Object[] a = list.toArray();
159     Arrays.sort(a, (Comparator)c);
160     ListIterator i = list.listIterator();
161     for (int j=0; j<a.length; j++) {
162     i.next();
163     i.set(a[j]);
164     }
165     }
166    
167    
168     /**
169     * Searches the specified list for the specified object using the binary
170     * search algorithm. The list must be sorted into ascending order
171     * according to the <i>natural ordering</i> of its elements (as by the
172     * <tt>sort(List)</tt> method, above) prior to making this call. If it is
173     * not sorted, the results are undefined. If the list contains multiple
174     * elements equal to the specified object, there is no guarantee which one
175     * will be found.<p>
176     *
177     * This method runs in log(n) time for a "random access" list (which
178     * provides near-constant-time positional access). If the specified list
179     * does not implement the {@link RandomAccess} interface and is large,
180     * this method will do an iterator-based binary search that performs
181     * O(n) link traversals and O(log n) element comparisons.
182     *
183     * @param list the list to be searched.
184     * @param key the key to be searched for.
185 dl 1.2 * @return the index of the search key, if it is contained in the list;
186 dl 1.1 * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
187     * <i>insertion point</i> is defined as the point at which the
188     * key would be inserted into the list: the index of the first
189     * element greater than the key, or <tt>list.size()</tt>, if all
190     * elements in the list are less than the specified key. Note
191     * that this guarantees that the return value will be &gt;= 0 if
192     * and only if the key is found.
193     * @throws ClassCastException if the list contains elements that are not
194     * <i>mutually comparable</i> (for example, strings and
195     * integers), or the search key in not mutually comparable
196     * with the elements of the list.
197     * @see Comparable
198     * @see #sort(List)
199     */
200     public static <T>
201     int binarySearch(List<? extends Comparable<? super T>> list, T key) {
202     if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
203     return Collections.indexedBinarySearch(list, key);
204     else
205     return Collections.iteratorBinarySearch(list, key);
206     }
207    
208     private static <T>
209     int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
210     {
211     int low = 0;
212     int high = list.size()-1;
213    
214     while (low <= high) {
215     int mid = (low + high) >> 1;
216     Comparable<? super T> midVal = list.get(mid);
217     int cmp = midVal.compareTo(key);
218    
219     if (cmp < 0)
220     low = mid + 1;
221     else if (cmp > 0)
222     high = mid - 1;
223     else
224     return mid; // key found
225     }
226     return -(low + 1); // key not found
227     }
228    
229     private static <T>
230     int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
231     {
232     int low = 0;
233     int high = list.size()-1;
234     ListIterator<? extends Comparable<? super T>> i = list.listIterator();
235    
236     while (low <= high) {
237     int mid = (low + high) >> 1;
238     Comparable<? super T> midVal = get(i, mid);
239     int cmp = midVal.compareTo(key);
240    
241     if (cmp < 0)
242     low = mid + 1;
243     else if (cmp > 0)
244     high = mid - 1;
245     else
246     return mid; // key found
247     }
248     return -(low + 1); // key not found
249     }
250    
251     /**
252     * Gets the ith element from the given list by repositioning the specified
253     * list listIterator.
254     */
255     private static <T> T get(ListIterator<? extends T> i, int index) {
256     T obj = null;
257     int pos = i.nextIndex();
258     if (pos <= index) {
259     do {
260     obj = i.next();
261     } while (pos++ < index);
262     } else {
263     do {
264     obj = i.previous();
265     } while (--pos > index);
266     }
267     return obj;
268     }
269    
270     /**
271     * Searches the specified list for the specified object using the binary
272     * search algorithm. The list must be sorted into ascending order
273     * according to the specified comparator (as by the <tt>Sort(List,
274     * Comparator)</tt> method, above), prior to making this call. If it is
275     * not sorted, the results are undefined. If the list contains multiple
276     * elements equal to the specified object, there is no guarantee which one
277     * will be found.<p>
278     *
279     * This method runs in log(n) time for a "random access" list (which
280     * provides near-constant-time positional access). If the specified list
281     * does not implement the {@link RandomAccess} interface and is large,
282     * this method will do an iterator-based binary search that performs
283     * O(n) link traversals and O(log n) element comparisons.
284     *
285     * @param list the list to be searched.
286     * @param key the key to be searched for.
287     * @param c the comparator by which the list is ordered. A
288     * <tt>null</tt> value indicates that the elements' <i>natural
289     * ordering</i> should be used.
290 dl 1.2 * @return the index of the search key, if it is contained in the list;
291 dl 1.1 * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
292     * <i>insertion point</i> is defined as the point at which the
293     * key would be inserted into the list: the index of the first
294     * element greater than the key, or <tt>list.size()</tt>, if all
295     * elements in the list are less than the specified key. Note
296     * that this guarantees that the return value will be &gt;= 0 if
297     * and only if the key is found.
298     * @throws ClassCastException if the list contains elements that are not
299     * <i>mutually comparable</i> using the specified comparator,
300     * or the search key in not mutually comparable with the
301     * elements of the list using this comparator.
302     * @see Comparable
303     * @see #sort(List, Comparator)
304     */
305     public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
306     if (c==null)
307     return binarySearch((List) list, key);
308    
309     if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
310     return Collections.indexedBinarySearch(list, key, c);
311     else
312     return Collections.iteratorBinarySearch(list, key, c);
313     }
314    
315     private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
316     int low = 0;
317     int high = l.size()-1;
318    
319     while (low <= high) {
320     int mid = (low + high) >> 1;
321     T midVal = l.get(mid);
322     int cmp = c.compare(midVal, key);
323    
324     if (cmp < 0)
325     low = mid + 1;
326     else if (cmp > 0)
327     high = mid - 1;
328     else
329     return mid; // key found
330     }
331     return -(low + 1); // key not found
332     }
333    
334     private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
335     int low = 0;
336     int high = l.size()-1;
337     ListIterator<? extends T> i = l.listIterator();
338    
339     while (low <= high) {
340     int mid = (low + high) >> 1;
341     T midVal = get(i, mid);
342     int cmp = c.compare(midVal, key);
343    
344     if (cmp < 0)
345     low = mid + 1;
346     else if (cmp > 0)
347     high = mid - 1;
348     else
349     return mid; // key found
350     }
351     return -(low + 1); // key not found
352     }
353    
354     private interface SelfComparable extends Comparable<SelfComparable> {}
355    
356    
357     /**
358     * Reverses the order of the elements in the specified list.<p>
359     *
360     * This method runs in linear time.
361     *
362     * @param list the list whose elements are to be reversed.
363     * @throws UnsupportedOperationException if the specified list or
364 jsr166 1.4 * its list-iterator does not support the <tt>set</tt> operation.
365 dl 1.1 */
366     public static void reverse(List<?> list) {
367     int size = list.size();
368     if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
369     for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
370     swap(list, i, j);
371     } else {
372     ListIterator fwd = list.listIterator();
373     ListIterator rev = list.listIterator(size);
374     for (int i=0, mid=list.size()>>1; i<mid; i++) {
375     Object tmp = fwd.next();
376     fwd.set(rev.previous());
377     rev.set(tmp);
378     }
379     }
380     }
381    
382     /**
383     * Randomly permutes the specified list using a default source of
384     * randomness. All permutations occur with approximately equal
385     * likelihood.<p>
386     *
387     * The hedge "approximately" is used in the foregoing description because
388     * default source of randomness is only approximately an unbiased source
389     * of independently chosen bits. If it were a perfect source of randomly
390     * chosen bits, then the algorithm would choose permutations with perfect
391     * uniformity.<p>
392     *
393     * This implementation traverses the list backwards, from the last element
394     * up to the second, repeatedly swapping a randomly selected element into
395     * the "current position". Elements are randomly selected from the
396     * portion of the list that runs from the first element to the current
397     * position, inclusive.<p>
398     *
399     * This method runs in linear time. If the specified list does not
400     * implement the {@link RandomAccess} interface and is large, this
401     * implementation dumps the specified list into an array before shuffling
402     * it, and dumps the shuffled array back into the list. This avoids the
403     * quadratic behavior that would result from shuffling a "sequential
404     * access" list in place.
405     *
406     * @param list the list to be shuffled.
407     * @throws UnsupportedOperationException if the specified list or
408 jsr166 1.4 * its list-iterator does not support the <tt>set</tt> operation.
409 dl 1.1 */
410     public static void shuffle(List<?> list) {
411     shuffle(list, r);
412     }
413     private static Random r = new Random();
414    
415     /**
416     * Randomly permute the specified list using the specified source of
417     * randomness. All permutations occur with equal likelihood
418     * assuming that the source of randomness is fair.<p>
419     *
420     * This implementation traverses the list backwards, from the last element
421     * up to the second, repeatedly swapping a randomly selected element into
422     * the "current position". Elements are randomly selected from the
423     * portion of the list that runs from the first element to the current
424     * position, inclusive.<p>
425     *
426     * This method runs in linear time. If the specified list does not
427     * implement the {@link RandomAccess} interface and is large, this
428     * implementation dumps the specified list into an array before shuffling
429     * it, and dumps the shuffled array back into the list. This avoids the
430     * quadratic behavior that would result from shuffling a "sequential
431     * access" list in place.
432     *
433     * @param list the list to be shuffled.
434     * @param rnd the source of randomness to use to shuffle the list.
435     * @throws UnsupportedOperationException if the specified list or its
436     * list-iterator does not support the <tt>set</tt> operation.
437     */
438     public static void shuffle(List<?> list, Random rnd) {
439     int size = list.size();
440     if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
441     for (int i=size; i>1; i--)
442     swap(list, i-1, rnd.nextInt(i));
443     } else {
444     Object arr[] = list.toArray();
445    
446     // Shuffle array
447     for (int i=size; i>1; i--)
448     swap(arr, i-1, rnd.nextInt(i));
449    
450     // Dump array back into list
451     ListIterator it = list.listIterator();
452     for (int i=0; i<arr.length; i++) {
453     it.next();
454     it.set(arr[i]);
455     }
456     }
457     }
458    
459     /**
460     * Swaps the elements at the specified positions in the specified list.
461     * (If the specified positions are equal, invoking this method leaves
462     * the list unchanged.)
463     *
464     * @param list The list in which to swap elements.
465     * @param i the index of one element to be swapped.
466     * @param j the index of the other element to be swapped.
467     * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
468     * is out of range (i &lt; 0 || i &gt;= list.size()
469     * || j &lt; 0 || j &gt;= list.size()).
470     * @since 1.4
471     */
472     public static void swap(List<?> list, int i, int j) {
473     final List l = list;
474     l.set(i, l.set(j, l.get(i)));
475     }
476    
477     /**
478     * Swaps the two specified elements in the specified array.
479     */
480     private static void swap(Object[] arr, int i, int j) {
481     Object tmp = arr[i];
482     arr[i] = arr[j];
483     arr[j] = tmp;
484     }
485    
486     /**
487     * Replaces all of the elements of the specified list with the specified
488     * element. <p>
489     *
490     * This method runs in linear time.
491     *
492     * @param list the list to be filled with the specified element.
493     * @param obj The element with which to fill the specified list.
494     * @throws UnsupportedOperationException if the specified list or its
495     * list-iterator does not support the <tt>set</tt> operation.
496     */
497     public static <T> void fill(List<? super T> list, T obj) {
498     int size = list.size();
499    
500     if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
501     for (int i=0; i<size; i++)
502     list.set(i, obj);
503     } else {
504     ListIterator<? super T> itr = list.listIterator();
505     for (int i=0; i<size; i++) {
506     itr.next();
507     itr.set(obj);
508     }
509     }
510     }
511    
512     /**
513     * Copies all of the elements from one list into another. After the
514     * operation, the index of each copied element in the destination list
515     * will be identical to its index in the source list. The destination
516     * list must be at least as long as the source list. If it is longer, the
517     * remaining elements in the destination list are unaffected. <p>
518     *
519     * This method runs in linear time.
520     *
521     * @param dest The destination list.
522     * @param src The source list.
523     * @throws IndexOutOfBoundsException if the destination list is too small
524     * to contain the entire source List.
525     * @throws UnsupportedOperationException if the destination list's
526     * list-iterator does not support the <tt>set</tt> operation.
527     */
528     public static <T> void copy(List<? super T> dest, List<? extends T> src) {
529     int srcSize = src.size();
530     if (srcSize > dest.size())
531     throw new IndexOutOfBoundsException("Source does not fit in dest");
532    
533     if (srcSize < COPY_THRESHOLD ||
534     (src instanceof RandomAccess && dest instanceof RandomAccess)) {
535     for (int i=0; i<srcSize; i++)
536     dest.set(i, src.get(i));
537     } else {
538     ListIterator<? super T> di=dest.listIterator();
539     ListIterator<? extends T> si=src.listIterator();
540     for (int i=0; i<srcSize; i++) {
541     di.next();
542     di.set(si.next());
543     }
544     }
545     }
546    
547     /**
548     * Returns the minimum element of the given collection, according to the
549     * <i>natural ordering</i> of its elements. All elements in the
550     * collection must implement the <tt>Comparable</tt> interface.
551     * Furthermore, all elements in the collection must be <i>mutually
552     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
553     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
554     * <tt>e2</tt> in the collection).<p>
555     *
556     * This method iterates over the entire collection, hence it requires
557     * time proportional to the size of the collection.
558     *
559     * @param coll the collection whose minimum element is to be determined.
560     * @return the minimum element of the given collection, according
561     * to the <i>natural ordering</i> of its elements.
562     * @throws ClassCastException if the collection contains elements that are
563     * not <i>mutually comparable</i> (for example, strings and
564     * integers).
565     * @throws NoSuchElementException if the collection is empty.
566     * @see Comparable
567     */
568     public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
569     Iterator<? extends T> i = coll.iterator();
570     T candidate = i.next();
571    
572 jsr166 1.6 while (i.hasNext()) {
573 dl 1.1 T next = i.next();
574     if (next.compareTo(candidate) < 0)
575     candidate = next;
576     }
577     return candidate;
578     }
579    
580     /**
581     * Returns the minimum element of the given collection, according to the
582     * order induced by the specified comparator. All elements in the
583     * collection must be <i>mutually comparable</i> by the specified
584     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
585     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
586     * <tt>e2</tt> in the collection).<p>
587     *
588     * This method iterates over the entire collection, hence it requires
589     * time proportional to the size of the collection.
590     *
591     * @param coll the collection whose minimum element is to be determined.
592     * @param comp the comparator with which to determine the minimum element.
593     * A <tt>null</tt> value indicates that the elements' <i>natural
594     * ordering</i> should be used.
595     * @return the minimum element of the given collection, according
596     * to the specified comparator.
597     * @throws ClassCastException if the collection contains elements that are
598     * not <i>mutually comparable</i> using the specified comparator.
599     * @throws NoSuchElementException if the collection is empty.
600     * @see Comparable
601     */
602     public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
603     if (comp==null)
604     return (T)min((Collection<SelfComparable>) (Collection) coll);
605    
606     Iterator<? extends T> i = coll.iterator();
607     T candidate = i.next();
608    
609 jsr166 1.6 while (i.hasNext()) {
610 dl 1.1 T next = i.next();
611     if (comp.compare(next, candidate) < 0)
612     candidate = next;
613     }
614     return candidate;
615     }
616    
617     /**
618     * Returns the maximum element of the given collection, according to the
619     * <i>natural ordering</i> of its elements. All elements in the
620     * collection must implement the <tt>Comparable</tt> interface.
621     * Furthermore, all elements in the collection must be <i>mutually
622     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
623     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
624     * <tt>e2</tt> in the collection).<p>
625     *
626     * This method iterates over the entire collection, hence it requires
627     * time proportional to the size of the collection.
628     *
629     * @param coll the collection whose maximum element is to be determined.
630     * @return the maximum element of the given collection, according
631     * to the <i>natural ordering</i> of its elements.
632     * @throws ClassCastException if the collection contains elements that are
633     * not <i>mutually comparable</i> (for example, strings and
634     * integers).
635     * @throws NoSuchElementException if the collection is empty.
636     * @see Comparable
637     */
638     public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
639     Iterator<? extends T> i = coll.iterator();
640     T candidate = i.next();
641    
642 jsr166 1.6 while (i.hasNext()) {
643 dl 1.1 T next = i.next();
644     if (next.compareTo(candidate) > 0)
645     candidate = next;
646     }
647     return candidate;
648     }
649    
650     /**
651     * Returns the maximum element of the given collection, according to the
652     * order induced by the specified comparator. All elements in the
653     * collection must be <i>mutually comparable</i> by the specified
654     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
655     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
656     * <tt>e2</tt> in the collection).<p>
657     *
658     * This method iterates over the entire collection, hence it requires
659     * time proportional to the size of the collection.
660     *
661     * @param coll the collection whose maximum element is to be determined.
662     * @param comp the comparator with which to determine the maximum element.
663     * A <tt>null</tt> value indicates that the elements' <i>natural
664     * ordering</i> should be used.
665     * @return the maximum element of the given collection, according
666     * to the specified comparator.
667     * @throws ClassCastException if the collection contains elements that are
668     * not <i>mutually comparable</i> using the specified comparator.
669     * @throws NoSuchElementException if the collection is empty.
670     * @see Comparable
671     */
672     public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
673     if (comp==null)
674     return (T)max((Collection<SelfComparable>) (Collection) coll);
675    
676     Iterator<? extends T> i = coll.iterator();
677     T candidate = i.next();
678    
679 jsr166 1.6 while (i.hasNext()) {
680 dl 1.1 T next = i.next();
681     if (comp.compare(next, candidate) > 0)
682     candidate = next;
683     }
684     return candidate;
685     }
686    
687     /**
688     * Rotates the elements in the specified list by the specified distance.
689     * After calling this method, the element at index <tt>i</tt> will be
690     * the element previously at index <tt>(i - distance)</tt> mod
691     * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
692     * and <tt>list.size()-1</tt>, inclusive. (This method has no effect on
693     * the size of the list.)
694     *
695     * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
696     * After invoking <tt>Collections.rotate(list, 1)</tt> (or
697     * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
698     * <tt>[s, t, a, n, k]</tt>.
699     *
700     * <p>Note that this method can usefully be applied to sublists to
701     * move one or more elements within a list while preserving the
702     * order of the remaining elements. For example, the following idiom
703     * moves the element at index <tt>j</tt> forward to position
704     * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
705     * <pre>
706     * Collections.rotate(list.subList(j, k+1), -1);
707     * </pre>
708     * To make this concrete, suppose <tt>list</tt> comprises
709     * <tt>[a, b, c, d, e]</tt>. To move the element at index <tt>1</tt>
710     * (<tt>b</tt>) forward two positions, perform the following invocation:
711     * <pre>
712     * Collections.rotate(l.subList(1, 4), -1);
713     * </pre>
714     * The resulting list is <tt>[a, c, d, b, e]</tt>.
715 jsr166 1.4 *
716 dl 1.1 * <p>To move more than one element forward, increase the absolute value
717     * of the rotation distance. To move elements backward, use a positive
718     * shift distance.
719     *
720     * <p>If the specified list is small or implements the {@link
721     * RandomAccess} interface, this implementation exchanges the first
722     * element into the location it should go, and then repeatedly exchanges
723     * the displaced element into the location it should go until a displaced
724     * element is swapped into the first element. If necessary, the process
725     * is repeated on the second and successive elements, until the rotation
726     * is complete. If the specified list is large and doesn't implement the
727     * <tt>RandomAccess</tt> interface, this implementation breaks the
728     * list into two sublist views around index <tt>-distance mod size</tt>.
729     * Then the {@link #reverse(List)} method is invoked on each sublist view,
730     * and finally it is invoked on the entire list. For a more complete
731     * description of both algorithms, see Section 2.3 of Jon Bentley's
732     * <i>Programming Pearls</i> (Addison-Wesley, 1986).
733     *
734     * @param list the list to be rotated.
735     * @param distance the distance to rotate the list. There are no
736     * constraints on this value; it may be zero, negative, or
737     * greater than <tt>list.size()</tt>.
738     * @throws UnsupportedOperationException if the specified list or
739 jsr166 1.4 * its list-iterator does not support the <tt>set</tt> operation.
740 dl 1.1 * @since 1.4
741     */
742     public static void rotate(List<?> list, int distance) {
743     if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
744     rotate1((List)list, distance);
745     else
746     rotate2((List)list, distance);
747     }
748    
749     private static <T> void rotate1(List<T> list, int distance) {
750     int size = list.size();
751     if (size == 0)
752     return;
753     distance = distance % size;
754     if (distance < 0)
755     distance += size;
756     if (distance == 0)
757     return;
758    
759     for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
760     T displaced = list.get(cycleStart);
761     int i = cycleStart;
762     do {
763     i += distance;
764     if (i >= size)
765     i -= size;
766     displaced = list.set(i, displaced);
767     nMoved ++;
768     } while(i != cycleStart);
769     }
770     }
771    
772     private static void rotate2(List<?> list, int distance) {
773     int size = list.size();
774     if (size == 0)
775 jsr166 1.4 return;
776 dl 1.1 int mid = -distance % size;
777     if (mid < 0)
778     mid += size;
779     if (mid == 0)
780     return;
781    
782     reverse(list.subList(0, mid));
783     reverse(list.subList(mid, size));
784     reverse(list);
785     }
786    
787     /**
788     * Replaces all occurrences of one specified value in a list with another.
789     * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
790     * in <tt>list</tt> such that
791     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
792     * (This method has no effect on the size of the list.)
793     *
794     * @param list the list in which replacement is to occur.
795     * @param oldVal the old value to be replaced.
796     * @param newVal the new value with which <tt>oldVal</tt> is to be
797     * replaced.
798     * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
799     * <tt>e</tt> such that
800     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
801     * @throws UnsupportedOperationException if the specified list or
802 jsr166 1.4 * its list-iterator does not support the <tt>set</tt> operation.
803 dl 1.1 * @since 1.4
804     */
805     public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
806     boolean result = false;
807     int size = list.size();
808     if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
809     if (oldVal==null) {
810     for (int i=0; i<size; i++) {
811     if (list.get(i)==null) {
812     list.set(i, newVal);
813     result = true;
814     }
815     }
816     } else {
817     for (int i=0; i<size; i++) {
818     if (oldVal.equals(list.get(i))) {
819     list.set(i, newVal);
820     result = true;
821     }
822     }
823     }
824     } else {
825     ListIterator<T> itr=list.listIterator();
826     if (oldVal==null) {
827     for (int i=0; i<size; i++) {
828     if (itr.next()==null) {
829     itr.set(newVal);
830     result = true;
831     }
832     }
833     } else {
834     for (int i=0; i<size; i++) {
835     if (oldVal.equals(itr.next())) {
836     itr.set(newVal);
837     result = true;
838     }
839     }
840     }
841     }
842     return result;
843     }
844    
845     /**
846     * Returns the starting position of the first occurrence of the specified
847     * target list within the specified source list, or -1 if there is no
848     * such occurrence. More formally, returns the lowest index <tt>i</tt>
849     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
850     * or -1 if there is no such index. (Returns -1 if
851     * <tt>target.size() > source.size()</tt>.)
852     *
853     * <p>This implementation uses the "brute force" technique of scanning
854     * over the source list, looking for a match with the target at each
855     * location in turn.
856     *
857     * @param source the list in which to search for the first occurrence
858     * of <tt>target</tt>.
859     * @param target the list to search for as a subList of <tt>source</tt>.
860     * @return the starting position of the first occurrence of the specified
861     * target list within the specified source list, or -1 if there
862     * is no such occurrence.
863     * @since 1.4
864     */
865     public static int indexOfSubList(List<?> source, List<?> target) {
866     int sourceSize = source.size();
867     int targetSize = target.size();
868     int maxCandidate = sourceSize - targetSize;
869    
870     if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
871     (source instanceof RandomAccess&&target instanceof RandomAccess)) {
872     nextCand:
873     for (int candidate = 0; candidate <= maxCandidate; candidate++) {
874     for (int i=0, j=candidate; i<targetSize; i++, j++)
875     if (!eq(target.get(i), source.get(j)))
876     continue nextCand; // Element mismatch, try next cand
877     return candidate; // All elements of candidate matched target
878     }
879     } else { // Iterator version of above algorithm
880     ListIterator<?> si = source.listIterator();
881     nextCand:
882     for (int candidate = 0; candidate <= maxCandidate; candidate++) {
883     ListIterator<?> ti = target.listIterator();
884     for (int i=0; i<targetSize; i++) {
885     if (!eq(ti.next(), si.next())) {
886     // Back up source iterator to next candidate
887     for (int j=0; j<i; j++)
888     si.previous();
889     continue nextCand;
890     }
891     }
892     return candidate;
893     }
894     }
895     return -1; // No candidate matched the target
896     }
897    
898     /**
899     * Returns the starting position of the last occurrence of the specified
900     * target list within the specified source list, or -1 if there is no such
901     * occurrence. More formally, returns the highest index <tt>i</tt>
902     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
903     * or -1 if there is no such index. (Returns -1 if
904     * <tt>target.size() > source.size()</tt>.)
905     *
906     * <p>This implementation uses the "brute force" technique of iterating
907     * over the source list, looking for a match with the target at each
908     * location in turn.
909     *
910     * @param source the list in which to search for the last occurrence
911     * of <tt>target</tt>.
912     * @param target the list to search for as a subList of <tt>source</tt>.
913     * @return the starting position of the last occurrence of the specified
914     * target list within the specified source list, or -1 if there
915     * is no such occurrence.
916     * @since 1.4
917     */
918     public static int lastIndexOfSubList(List<?> source, List<?> target) {
919     int sourceSize = source.size();
920     int targetSize = target.size();
921     int maxCandidate = sourceSize - targetSize;
922    
923     if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
924     source instanceof RandomAccess) { // Index access version
925     nextCand:
926     for (int candidate = maxCandidate; candidate >= 0; candidate--) {
927     for (int i=0, j=candidate; i<targetSize; i++, j++)
928     if (!eq(target.get(i), source.get(j)))
929     continue nextCand; // Element mismatch, try next cand
930     return candidate; // All elements of candidate matched target
931     }
932     } else { // Iterator version of above algorithm
933     if (maxCandidate < 0)
934     return -1;
935     ListIterator<?> si = source.listIterator(maxCandidate);
936     nextCand:
937     for (int candidate = maxCandidate; candidate >= 0; candidate--) {
938     ListIterator<?> ti = target.listIterator();
939     for (int i=0; i<targetSize; i++) {
940     if (!eq(ti.next(), si.next())) {
941     if (candidate != 0) {
942     // Back up source iterator to next candidate
943     for (int j=0; j<=i+1; j++)
944     si.previous();
945     }
946     continue nextCand;
947     }
948     }
949     return candidate;
950     }
951     }
952     return -1; // No candidate matched the target
953     }
954    
955    
956     // Unmodifiable Wrappers
957    
958     /**
959     * Returns an unmodifiable view of the specified collection. This method
960     * allows modules to provide users with "read-only" access to internal
961     * collections. Query operations on the returned collection "read through"
962     * to the specified collection, and attempts to modify the returned
963     * collection, whether direct or via its iterator, result in an
964     * <tt>UnsupportedOperationException</tt>.<p>
965     *
966     * The returned collection does <i>not</i> pass the hashCode and equals
967     * operations through to the backing collection, but relies on
968     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
969     * is necessary to preserve the contracts of these operations in the case
970     * that the backing collection is a set or a list.<p>
971     *
972     * The returned collection will be serializable if the specified collection
973 jsr166 1.4 * is serializable.
974 dl 1.1 *
975     * @param c the collection for which an unmodifiable view is to be
976     * returned.
977     * @return an unmodifiable view of the specified collection.
978     */
979     public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
980     return new UnmodifiableCollection<T>(c);
981     }
982    
983     /**
984     * @serial include
985     */
986     static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
987     // use serialVersionUID from JDK 1.2.2 for interoperability
988     private static final long serialVersionUID = 1820017752578914078L;
989    
990     final Collection<? extends E> c;
991    
992     UnmodifiableCollection(Collection<? extends E> c) {
993     if (c==null)
994     throw new NullPointerException();
995     this.c = c;
996     }
997    
998     public int size() {return c.size();}
999     public boolean isEmpty() {return c.isEmpty();}
1000     public boolean contains(Object o) {return c.contains(o);}
1001     public Object[] toArray() {return c.toArray();}
1002     public <T> T[] toArray(T[] a) {return c.toArray(a);}
1003     public String toString() {return c.toString();}
1004    
1005     public Iterator<E> iterator() {
1006     return new Iterator<E>() {
1007     Iterator<? extends E> i = c.iterator();
1008    
1009     public boolean hasNext() {return i.hasNext();}
1010     public E next() {return i.next();}
1011     public void remove() {
1012     throw new UnsupportedOperationException();
1013     }
1014     };
1015     }
1016    
1017 jsr166 1.5 public boolean add(E e){
1018 dl 1.1 throw new UnsupportedOperationException();
1019     }
1020     public boolean remove(Object o) {
1021     throw new UnsupportedOperationException();
1022     }
1023    
1024     public boolean containsAll(Collection<?> coll) {
1025     return c.containsAll(coll);
1026     }
1027     public boolean addAll(Collection<? extends E> coll) {
1028     throw new UnsupportedOperationException();
1029     }
1030     public boolean removeAll(Collection<?> coll) {
1031     throw new UnsupportedOperationException();
1032     }
1033     public boolean retainAll(Collection<?> coll) {
1034     throw new UnsupportedOperationException();
1035     }
1036     public void clear() {
1037     throw new UnsupportedOperationException();
1038     }
1039     }
1040    
1041     /**
1042     * Returns an unmodifiable view of the specified set. This method allows
1043     * modules to provide users with "read-only" access to internal sets.
1044     * Query operations on the returned set "read through" to the specified
1045     * set, and attempts to modify the returned set, whether direct or via its
1046     * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1047     *
1048     * The returned set will be serializable if the specified set
1049 jsr166 1.4 * is serializable.
1050 dl 1.1 *
1051     * @param s the set for which an unmodifiable view is to be returned.
1052     * @return an unmodifiable view of the specified set.
1053     */
1054     public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1055     return new UnmodifiableSet<T>(s);
1056     }
1057    
1058     /**
1059     * @serial include
1060     */
1061     static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1062     implements Set<E>, Serializable {
1063     private static final long serialVersionUID = -9215047833775013803L;
1064    
1065     UnmodifiableSet(Set<? extends E> s) {super(s);}
1066     public boolean equals(Object o) {return c.equals(o);}
1067     public int hashCode() {return c.hashCode();}
1068     }
1069    
1070     /**
1071     * Returns an unmodifiable view of the specified sorted set. This method
1072     * allows modules to provide users with "read-only" access to internal
1073     * sorted sets. Query operations on the returned sorted set "read
1074     * through" to the specified sorted set. Attempts to modify the returned
1075     * sorted set, whether direct, via its iterator, or via its
1076     * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1077     * an <tt>UnsupportedOperationException</tt>.<p>
1078     *
1079     * The returned sorted set will be serializable if the specified sorted set
1080 jsr166 1.4 * is serializable.
1081 dl 1.1 *
1082     * @param s the sorted set for which an unmodifiable view is to be
1083 jsr166 1.4 * returned.
1084 dl 1.1 * @return an unmodifiable view of the specified sorted set.
1085     */
1086     public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1087     return new UnmodifiableSortedSet<T>(s);
1088     }
1089    
1090     /**
1091     * @serial include
1092     */
1093     static class UnmodifiableSortedSet<E>
1094     extends UnmodifiableSet<E>
1095     implements SortedSet<E>, Serializable {
1096     private static final long serialVersionUID = -4929149591599911165L;
1097     private final SortedSet<E> ss;
1098    
1099     UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1100    
1101     public Comparator<? super E> comparator() {return ss.comparator();}
1102    
1103     public SortedSet<E> subSet(E fromElement, E toElement) {
1104     return new UnmodifiableSortedSet<E>(ss.subSet(fromElement,toElement));
1105     }
1106     public SortedSet<E> headSet(E toElement) {
1107     return new UnmodifiableSortedSet<E>(ss.headSet(toElement));
1108     }
1109     public SortedSet<E> tailSet(E fromElement) {
1110     return new UnmodifiableSortedSet<E>(ss.tailSet(fromElement));
1111     }
1112    
1113     public E first() {return ss.first();}
1114     public E last() {return ss.last();}
1115     }
1116    
1117     /**
1118     * Returns an unmodifiable view of the specified list. This method allows
1119     * modules to provide users with "read-only" access to internal
1120     * lists. Query operations on the returned list "read through" to the
1121     * specified list, and attempts to modify the returned list, whether
1122     * direct or via its iterator, result in an
1123     * <tt>UnsupportedOperationException</tt>.<p>
1124     *
1125     * The returned list will be serializable if the specified list
1126     * is serializable. Similarly, the returned list will implement
1127     * {@link RandomAccess} if the specified list does.
1128     *
1129     * @param list the list for which an unmodifiable view is to be returned.
1130     * @return an unmodifiable view of the specified list.
1131     */
1132     public static <T> List<T> unmodifiableList(List<? extends T> list) {
1133     return (list instanceof RandomAccess ?
1134     new UnmodifiableRandomAccessList<T>(list) :
1135     new UnmodifiableList<T>(list));
1136     }
1137    
1138     /**
1139     * @serial include
1140     */
1141     static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1142     implements List<E> {
1143     static final long serialVersionUID = -283967356065247728L;
1144     final List<? extends E> list;
1145    
1146     UnmodifiableList(List<? extends E> list) {
1147     super(list);
1148     this.list = list;
1149     }
1150    
1151     public boolean equals(Object o) {return list.equals(o);}
1152     public int hashCode() {return list.hashCode();}
1153    
1154     public E get(int index) {return list.get(index);}
1155     public E set(int index, E element) {
1156     throw new UnsupportedOperationException();
1157     }
1158     public void add(int index, E element) {
1159     throw new UnsupportedOperationException();
1160     }
1161     public E remove(int index) {
1162     throw new UnsupportedOperationException();
1163     }
1164     public int indexOf(Object o) {return list.indexOf(o);}
1165     public int lastIndexOf(Object o) {return list.lastIndexOf(o);}
1166     public boolean addAll(int index, Collection<? extends E> c) {
1167     throw new UnsupportedOperationException();
1168     }
1169     public ListIterator<E> listIterator() {return listIterator(0);}
1170    
1171     public ListIterator<E> listIterator(final int index) {
1172     return new ListIterator<E>() {
1173     ListIterator<? extends E> i = list.listIterator(index);
1174    
1175     public boolean hasNext() {return i.hasNext();}
1176     public E next() {return i.next();}
1177     public boolean hasPrevious() {return i.hasPrevious();}
1178     public E previous() {return i.previous();}
1179     public int nextIndex() {return i.nextIndex();}
1180     public int previousIndex() {return i.previousIndex();}
1181    
1182     public void remove() {
1183     throw new UnsupportedOperationException();
1184     }
1185 jsr166 1.5 public void set(E e) {
1186 dl 1.1 throw new UnsupportedOperationException();
1187     }
1188 jsr166 1.5 public void add(E e) {
1189 dl 1.1 throw new UnsupportedOperationException();
1190     }
1191     };
1192     }
1193    
1194     public List<E> subList(int fromIndex, int toIndex) {
1195     return new UnmodifiableList<E>(list.subList(fromIndex, toIndex));
1196     }
1197    
1198     /**
1199     * UnmodifiableRandomAccessList instances are serialized as
1200     * UnmodifiableList instances to allow them to be deserialized
1201     * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1202     * This method inverts the transformation. As a beneficial
1203     * side-effect, it also grafts the RandomAccess marker onto
1204     * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1205     *
1206     * Note: Unfortunately, UnmodifiableRandomAccessList instances
1207     * serialized in 1.4.1 and deserialized in 1.4 will become
1208     * UnmodifiableList instances, as this method was missing in 1.4.
1209     */
1210     private Object readResolve() {
1211     return (list instanceof RandomAccess
1212     ? new UnmodifiableRandomAccessList<E>(list)
1213     : this);
1214     }
1215     }
1216    
1217     /**
1218     * @serial include
1219     */
1220     static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1221     implements RandomAccess
1222     {
1223     UnmodifiableRandomAccessList(List<? extends E> list) {
1224     super(list);
1225     }
1226    
1227     public List<E> subList(int fromIndex, int toIndex) {
1228     return new UnmodifiableRandomAccessList<E>(
1229     list.subList(fromIndex, toIndex));
1230     }
1231    
1232     private static final long serialVersionUID = -2542308836966382001L;
1233    
1234     /**
1235     * Allows instances to be deserialized in pre-1.4 JREs (which do
1236     * not have UnmodifiableRandomAccessList). UnmodifiableList has
1237     * a readResolve method that inverts this transformation upon
1238     * deserialization.
1239     */
1240     private Object writeReplace() {
1241     return new UnmodifiableList<E>(list);
1242     }
1243     }
1244    
1245     /**
1246     * Returns an unmodifiable view of the specified map. This method
1247     * allows modules to provide users with "read-only" access to internal
1248     * maps. Query operations on the returned map "read through"
1249     * to the specified map, and attempts to modify the returned
1250     * map, whether direct or via its collection views, result in an
1251     * <tt>UnsupportedOperationException</tt>.<p>
1252     *
1253     * The returned map will be serializable if the specified map
1254 jsr166 1.4 * is serializable.
1255 dl 1.1 *
1256     * @param m the map for which an unmodifiable view is to be returned.
1257     * @return an unmodifiable view of the specified map.
1258     */
1259     public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1260     return new UnmodifiableMap<K,V>(m);
1261     }
1262    
1263     /**
1264     * @serial include
1265     */
1266     private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1267     // use serialVersionUID from JDK 1.2.2 for interoperability
1268     private static final long serialVersionUID = -1034234728574286014L;
1269    
1270     private final Map<? extends K, ? extends V> m;
1271    
1272     UnmodifiableMap(Map<? extends K, ? extends V> m) {
1273     if (m==null)
1274     throw new NullPointerException();
1275     this.m = m;
1276     }
1277    
1278     public int size() {return m.size();}
1279     public boolean isEmpty() {return m.isEmpty();}
1280     public boolean containsKey(Object key) {return m.containsKey(key);}
1281     public boolean containsValue(Object val) {return m.containsValue(val);}
1282     public V get(Object key) {return m.get(key);}
1283    
1284     public V put(K key, V value) {
1285     throw new UnsupportedOperationException();
1286     }
1287     public V remove(Object key) {
1288     throw new UnsupportedOperationException();
1289     }
1290     public void putAll(Map<? extends K, ? extends V> t) {
1291     throw new UnsupportedOperationException();
1292     }
1293     public void clear() {
1294     throw new UnsupportedOperationException();
1295     }
1296    
1297     private transient Set<K> keySet = null;
1298     private transient Set<Map.Entry<K,V>> entrySet = null;
1299     private transient Collection<V> values = null;
1300    
1301     public Set<K> keySet() {
1302     if (keySet==null)
1303     keySet = unmodifiableSet(m.keySet());
1304     return keySet;
1305     }
1306    
1307     public Set<Map.Entry<K,V>> entrySet() {
1308     if (entrySet==null)
1309     entrySet = new UnmodifiableEntrySet<K,V>(m.entrySet());
1310     return entrySet;
1311     }
1312    
1313     public Collection<V> values() {
1314     if (values==null)
1315     values = unmodifiableCollection(m.values());
1316     return values;
1317     }
1318    
1319     public boolean equals(Object o) {return m.equals(o);}
1320     public int hashCode() {return m.hashCode();}
1321     public String toString() {return m.toString();}
1322    
1323     /**
1324     * We need this class in addition to UnmodifiableSet as
1325     * Map.Entries themselves permit modification of the backing Map
1326     * via their setValue operation. This class is subtle: there are
1327     * many possible attacks that must be thwarted.
1328     *
1329     * @serial include
1330     */
1331     static class UnmodifiableEntrySet<K,V>
1332     extends UnmodifiableSet<Map.Entry<K,V>> {
1333     private static final long serialVersionUID = 7854390611657943733L;
1334    
1335     UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1336 jsr166 1.4 super((Set)s);
1337 dl 1.1 }
1338     public Iterator<Map.Entry<K,V>> iterator() {
1339     return new Iterator<Map.Entry<K,V>>() {
1340     Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1341    
1342     public boolean hasNext() {
1343     return i.hasNext();
1344     }
1345     public Map.Entry<K,V> next() {
1346     return new UnmodifiableEntry<K,V>(i.next());
1347     }
1348     public void remove() {
1349     throw new UnsupportedOperationException();
1350     }
1351     };
1352     }
1353    
1354     public Object[] toArray() {
1355     Object[] a = c.toArray();
1356     for (int i=0; i<a.length; i++)
1357     a[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)a[i]);
1358     return a;
1359     }
1360    
1361     public <T> T[] toArray(T[] a) {
1362     // We don't pass a to c.toArray, to avoid window of
1363     // vulnerability wherein an unscrupulous multithreaded client
1364     // could get his hands on raw (unwrapped) Entries from c.
1365     Object[] arr =
1366     c.toArray(
1367     a.length==0 ? a :
1368     (T[])java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), 0));
1369    
1370     for (int i=0; i<arr.length; i++)
1371     arr[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)arr[i]);
1372    
1373     if (arr.length > a.length)
1374     return (T[])arr;
1375    
1376     System.arraycopy(arr, 0, a, 0, arr.length);
1377     if (a.length > arr.length)
1378     a[arr.length] = null;
1379     return a;
1380     }
1381    
1382     /**
1383     * This method is overridden to protect the backing set against
1384     * an object with a nefarious equals function that senses
1385     * that the equality-candidate is Map.Entry and calls its
1386     * setValue method.
1387     */
1388     public boolean contains(Object o) {
1389     if (!(o instanceof Map.Entry))
1390     return false;
1391     return c.contains(new UnmodifiableEntry<K,V>((Map.Entry<K,V>) o));
1392     }
1393    
1394     /**
1395     * The next two methods are overridden to protect against
1396     * an unscrupulous List whose contains(Object o) method senses
1397     * when o is a Map.Entry, and calls o.setValue.
1398     */
1399     public boolean containsAll(Collection<?> coll) {
1400     Iterator<?> e = coll.iterator();
1401     while (e.hasNext())
1402     if (!contains(e.next())) // Invokes safe contains() above
1403     return false;
1404     return true;
1405     }
1406     public boolean equals(Object o) {
1407     if (o == this)
1408     return true;
1409    
1410     if (!(o instanceof Set))
1411     return false;
1412     Set s = (Set) o;
1413     if (s.size() != c.size())
1414     return false;
1415     return containsAll(s); // Invokes safe containsAll() above
1416     }
1417    
1418     /**
1419     * This "wrapper class" serves two purposes: it prevents
1420     * the client from modifying the backing Map, by short-circuiting
1421     * the setValue method, and it protects the backing Map against
1422     * an ill-behaved Map.Entry that attempts to modify another
1423     * Map Entry when asked to perform an equality check.
1424     */
1425     private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1426     private Map.Entry<? extends K, ? extends V> e;
1427    
1428     UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1429    
1430     public K getKey() {return e.getKey();}
1431     public V getValue() {return e.getValue();}
1432     public V setValue(V value) {
1433     throw new UnsupportedOperationException();
1434     }
1435     public int hashCode() {return e.hashCode();}
1436     public boolean equals(Object o) {
1437     if (!(o instanceof Map.Entry))
1438     return false;
1439     Map.Entry t = (Map.Entry)o;
1440     return eq(e.getKey(), t.getKey()) &&
1441     eq(e.getValue(), t.getValue());
1442     }
1443     public String toString() {return e.toString();}
1444     }
1445     }
1446     }
1447    
1448     /**
1449     * Returns an unmodifiable view of the specified sorted map. This method
1450     * allows modules to provide users with "read-only" access to internal
1451     * sorted maps. Query operations on the returned sorted map "read through"
1452     * to the specified sorted map. Attempts to modify the returned
1453     * sorted map, whether direct, via its collection views, or via its
1454     * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1455     * an <tt>UnsupportedOperationException</tt>.<p>
1456     *
1457     * The returned sorted map will be serializable if the specified sorted map
1458 jsr166 1.4 * is serializable.
1459 dl 1.1 *
1460     * @param m the sorted map for which an unmodifiable view is to be
1461 jsr166 1.4 * returned.
1462 dl 1.1 * @return an unmodifiable view of the specified sorted map.
1463     */
1464     public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1465     return new UnmodifiableSortedMap<K,V>(m);
1466     }
1467    
1468     /**
1469     * @serial include
1470     */
1471     static class UnmodifiableSortedMap<K,V>
1472     extends UnmodifiableMap<K,V>
1473     implements SortedMap<K,V>, Serializable {
1474     private static final long serialVersionUID = -8806743815996713206L;
1475    
1476     private final SortedMap<K, ? extends V> sm;
1477    
1478     UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1479    
1480     public Comparator<? super K> comparator() {return sm.comparator();}
1481    
1482     public SortedMap<K,V> subMap(K fromKey, K toKey) {
1483     return new UnmodifiableSortedMap<K,V>(sm.subMap(fromKey, toKey));
1484     }
1485     public SortedMap<K,V> headMap(K toKey) {
1486     return new UnmodifiableSortedMap<K,V>(sm.headMap(toKey));
1487     }
1488     public SortedMap<K,V> tailMap(K fromKey) {
1489     return new UnmodifiableSortedMap<K,V>(sm.tailMap(fromKey));
1490     }
1491    
1492     public K firstKey() {return sm.firstKey();}
1493     public K lastKey() {return sm.lastKey();}
1494     }
1495    
1496    
1497     // Synch Wrappers
1498    
1499     /**
1500     * Returns a synchronized (thread-safe) collection backed by the specified
1501     * collection. In order to guarantee serial access, it is critical that
1502     * <strong>all</strong> access to the backing collection is accomplished
1503     * through the returned collection.<p>
1504     *
1505     * It is imperative that the user manually synchronize on the returned
1506     * collection when iterating over it:
1507     * <pre>
1508     * Collection c = Collections.synchronizedCollection(myCollection);
1509     * ...
1510     * synchronized(c) {
1511     * Iterator i = c.iterator(); // Must be in the synchronized block
1512     * while (i.hasNext())
1513     * foo(i.next());
1514     * }
1515     * </pre>
1516     * Failure to follow this advice may result in non-deterministic behavior.
1517     *
1518     * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1519     * and <tt>equals</tt> operations through to the backing collection, but
1520     * relies on <tt>Object</tt>'s equals and hashCode methods. This is
1521     * necessary to preserve the contracts of these operations in the case
1522     * that the backing collection is a set or a list.<p>
1523     *
1524     * The returned collection will be serializable if the specified collection
1525 jsr166 1.4 * is serializable.
1526 dl 1.1 *
1527     * @param c the collection to be "wrapped" in a synchronized collection.
1528     * @return a synchronized view of the specified collection.
1529     */
1530     public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1531     return new SynchronizedCollection<T>(c);
1532     }
1533    
1534     static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1535     return new SynchronizedCollection<T>(c, mutex);
1536     }
1537    
1538     /**
1539     * @serial include
1540     */
1541     static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1542     // use serialVersionUID from JDK 1.2.2 for interoperability
1543     private static final long serialVersionUID = 3053995032091335093L;
1544    
1545     final Collection<E> c; // Backing Collection
1546     final Object mutex; // Object on which to synchronize
1547    
1548     SynchronizedCollection(Collection<E> c) {
1549     if (c==null)
1550     throw new NullPointerException();
1551     this.c = c;
1552     mutex = this;
1553     }
1554     SynchronizedCollection(Collection<E> c, Object mutex) {
1555     this.c = c;
1556     this.mutex = mutex;
1557     }
1558    
1559     public int size() {
1560     synchronized(mutex) {return c.size();}
1561     }
1562     public boolean isEmpty() {
1563     synchronized(mutex) {return c.isEmpty();}
1564     }
1565     public boolean contains(Object o) {
1566     synchronized(mutex) {return c.contains(o);}
1567     }
1568     public Object[] toArray() {
1569     synchronized(mutex) {return c.toArray();}
1570     }
1571     public <T> T[] toArray(T[] a) {
1572     synchronized(mutex) {return c.toArray(a);}
1573     }
1574    
1575     public Iterator<E> iterator() {
1576     return c.iterator(); // Must be manually synched by user!
1577     }
1578    
1579 jsr166 1.5 public boolean add(E e) {
1580     synchronized(mutex) {return c.add(e);}
1581 dl 1.1 }
1582     public boolean remove(Object o) {
1583     synchronized(mutex) {return c.remove(o);}
1584     }
1585    
1586     public boolean containsAll(Collection<?> coll) {
1587     synchronized(mutex) {return c.containsAll(coll);}
1588     }
1589     public boolean addAll(Collection<? extends E> coll) {
1590     synchronized(mutex) {return c.addAll(coll);}
1591     }
1592     public boolean removeAll(Collection<?> coll) {
1593     synchronized(mutex) {return c.removeAll(coll);}
1594     }
1595     public boolean retainAll(Collection<?> coll) {
1596     synchronized(mutex) {return c.retainAll(coll);}
1597     }
1598     public void clear() {
1599     synchronized(mutex) {c.clear();}
1600     }
1601     public String toString() {
1602     synchronized(mutex) {return c.toString();}
1603     }
1604     private void writeObject(ObjectOutputStream s) throws IOException {
1605     synchronized(mutex) {s.defaultWriteObject();}
1606     }
1607     }
1608    
1609     /**
1610     * Returns a synchronized (thread-safe) set backed by the specified
1611     * set. In order to guarantee serial access, it is critical that
1612     * <strong>all</strong> access to the backing set is accomplished
1613     * through the returned set.<p>
1614     *
1615     * It is imperative that the user manually synchronize on the returned
1616     * set when iterating over it:
1617     * <pre>
1618     * Set s = Collections.synchronizedSet(new HashSet());
1619     * ...
1620     * synchronized(s) {
1621     * Iterator i = s.iterator(); // Must be in the synchronized block
1622     * while (i.hasNext())
1623     * foo(i.next());
1624     * }
1625     * </pre>
1626     * Failure to follow this advice may result in non-deterministic behavior.
1627     *
1628     * <p>The returned set will be serializable if the specified set is
1629     * serializable.
1630     *
1631     * @param s the set to be "wrapped" in a synchronized set.
1632     * @return a synchronized view of the specified set.
1633     */
1634     public static <T> Set<T> synchronizedSet(Set<T> s) {
1635     return new SynchronizedSet<T>(s);
1636     }
1637    
1638     static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1639     return new SynchronizedSet<T>(s, mutex);
1640     }
1641    
1642     /**
1643     * @serial include
1644     */
1645     static class SynchronizedSet<E>
1646     extends SynchronizedCollection<E>
1647     implements Set<E> {
1648     private static final long serialVersionUID = 487447009682186044L;
1649    
1650     SynchronizedSet(Set<E> s) {
1651     super(s);
1652     }
1653     SynchronizedSet(Set<E> s, Object mutex) {
1654     super(s, mutex);
1655     }
1656    
1657     public boolean equals(Object o) {
1658     synchronized(mutex) {return c.equals(o);}
1659     }
1660     public int hashCode() {
1661     synchronized(mutex) {return c.hashCode();}
1662     }
1663     }
1664    
1665     /**
1666     * Returns a synchronized (thread-safe) sorted set backed by the specified
1667     * sorted set. In order to guarantee serial access, it is critical that
1668     * <strong>all</strong> access to the backing sorted set is accomplished
1669     * through the returned sorted set (or its views).<p>
1670     *
1671     * It is imperative that the user manually synchronize on the returned
1672     * sorted set when iterating over it or any of its <tt>subSet</tt>,
1673     * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1674     * <pre>
1675 jsr166 1.4 * SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1676 dl 1.1 * ...
1677     * synchronized(s) {
1678     * Iterator i = s.iterator(); // Must be in the synchronized block
1679     * while (i.hasNext())
1680     * foo(i.next());
1681     * }
1682     * </pre>
1683     * or:
1684     * <pre>
1685 jsr166 1.4 * SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1686 dl 1.1 * SortedSet s2 = s.headSet(foo);
1687     * ...
1688     * synchronized(s) { // Note: s, not s2!!!
1689     * Iterator i = s2.iterator(); // Must be in the synchronized block
1690     * while (i.hasNext())
1691     * foo(i.next());
1692     * }
1693     * </pre>
1694     * Failure to follow this advice may result in non-deterministic behavior.
1695     *
1696     * <p>The returned sorted set will be serializable if the specified
1697     * sorted set is serializable.
1698     *
1699     * @param s the sorted set to be "wrapped" in a synchronized sorted set.
1700     * @return a synchronized view of the specified sorted set.
1701     */
1702     public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1703     return new SynchronizedSortedSet<T>(s);
1704     }
1705    
1706     /**
1707     * @serial include
1708     */
1709     static class SynchronizedSortedSet<E>
1710     extends SynchronizedSet<E>
1711     implements SortedSet<E>
1712     {
1713     private static final long serialVersionUID = 8695801310862127406L;
1714    
1715     final private SortedSet<E> ss;
1716    
1717     SynchronizedSortedSet(SortedSet<E> s) {
1718     super(s);
1719     ss = s;
1720     }
1721     SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1722     super(s, mutex);
1723     ss = s;
1724     }
1725    
1726     public Comparator<? super E> comparator() {
1727     synchronized(mutex) {return ss.comparator();}
1728     }
1729    
1730     public SortedSet<E> subSet(E fromElement, E toElement) {
1731     synchronized(mutex) {
1732     return new SynchronizedSortedSet<E>(
1733     ss.subSet(fromElement, toElement), mutex);
1734     }
1735     }
1736     public SortedSet<E> headSet(E toElement) {
1737     synchronized(mutex) {
1738     return new SynchronizedSortedSet<E>(ss.headSet(toElement), mutex);
1739     }
1740     }
1741     public SortedSet<E> tailSet(E fromElement) {
1742     synchronized(mutex) {
1743     return new SynchronizedSortedSet<E>(ss.tailSet(fromElement),mutex);
1744     }
1745     }
1746    
1747     public E first() {
1748     synchronized(mutex) {return ss.first();}
1749     }
1750     public E last() {
1751     synchronized(mutex) {return ss.last();}
1752     }
1753     }
1754    
1755     /**
1756     * Returns a synchronized (thread-safe) list backed by the specified
1757     * list. In order to guarantee serial access, it is critical that
1758     * <strong>all</strong> access to the backing list is accomplished
1759     * through the returned list.<p>
1760     *
1761     * It is imperative that the user manually synchronize on the returned
1762     * list when iterating over it:
1763     * <pre>
1764     * List list = Collections.synchronizedList(new ArrayList());
1765     * ...
1766     * synchronized(list) {
1767     * Iterator i = list.iterator(); // Must be in synchronized block
1768     * while (i.hasNext())
1769     * foo(i.next());
1770     * }
1771     * </pre>
1772     * Failure to follow this advice may result in non-deterministic behavior.
1773     *
1774     * <p>The returned list will be serializable if the specified list is
1775     * serializable.
1776     *
1777     * @param list the list to be "wrapped" in a synchronized list.
1778     * @return a synchronized view of the specified list.
1779     */
1780     public static <T> List<T> synchronizedList(List<T> list) {
1781     return (list instanceof RandomAccess ?
1782     new SynchronizedRandomAccessList<T>(list) :
1783     new SynchronizedList<T>(list));
1784     }
1785    
1786     static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1787     return (list instanceof RandomAccess ?
1788     new SynchronizedRandomAccessList<T>(list, mutex) :
1789     new SynchronizedList<T>(list, mutex));
1790     }
1791    
1792     /**
1793     * @serial include
1794     */
1795     static class SynchronizedList<E>
1796     extends SynchronizedCollection<E>
1797     implements List<E> {
1798     static final long serialVersionUID = -7754090372962971524L;
1799    
1800     final List<E> list;
1801    
1802     SynchronizedList(List<E> list) {
1803     super(list);
1804     this.list = list;
1805     }
1806     SynchronizedList(List<E> list, Object mutex) {
1807     super(list, mutex);
1808     this.list = list;
1809     }
1810    
1811     public boolean equals(Object o) {
1812     synchronized(mutex) {return list.equals(o);}
1813     }
1814     public int hashCode() {
1815     synchronized(mutex) {return list.hashCode();}
1816     }
1817    
1818     public E get(int index) {
1819     synchronized(mutex) {return list.get(index);}
1820     }
1821     public E set(int index, E element) {
1822     synchronized(mutex) {return list.set(index, element);}
1823     }
1824     public void add(int index, E element) {
1825     synchronized(mutex) {list.add(index, element);}
1826     }
1827     public E remove(int index) {
1828     synchronized(mutex) {return list.remove(index);}
1829     }
1830    
1831     public int indexOf(Object o) {
1832     synchronized(mutex) {return list.indexOf(o);}
1833     }
1834     public int lastIndexOf(Object o) {
1835     synchronized(mutex) {return list.lastIndexOf(o);}
1836     }
1837    
1838     public boolean addAll(int index, Collection<? extends E> c) {
1839     synchronized(mutex) {return list.addAll(index, c);}
1840     }
1841    
1842     public ListIterator<E> listIterator() {
1843     return list.listIterator(); // Must be manually synched by user
1844     }
1845    
1846     public ListIterator<E> listIterator(int index) {
1847     return list.listIterator(index); // Must be manually synched by user
1848     }
1849    
1850     public List<E> subList(int fromIndex, int toIndex) {
1851     synchronized(mutex) {
1852     return new SynchronizedList<E>(list.subList(fromIndex, toIndex),
1853     mutex);
1854     }
1855     }
1856    
1857     /**
1858     * SynchronizedRandomAccessList instances are serialized as
1859     * SynchronizedList instances to allow them to be deserialized
1860     * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1861     * This method inverts the transformation. As a beneficial
1862     * side-effect, it also grafts the RandomAccess marker onto
1863     * SynchronizedList instances that were serialized in pre-1.4 JREs.
1864     *
1865     * Note: Unfortunately, SynchronizedRandomAccessList instances
1866     * serialized in 1.4.1 and deserialized in 1.4 will become
1867     * SynchronizedList instances, as this method was missing in 1.4.
1868     */
1869     private Object readResolve() {
1870     return (list instanceof RandomAccess
1871     ? new SynchronizedRandomAccessList<E>(list)
1872     : this);
1873     }
1874     }
1875    
1876     /**
1877     * @serial include
1878     */
1879     static class SynchronizedRandomAccessList<E>
1880     extends SynchronizedList<E>
1881     implements RandomAccess {
1882    
1883     SynchronizedRandomAccessList(List<E> list) {
1884     super(list);
1885     }
1886    
1887     SynchronizedRandomAccessList(List<E> list, Object mutex) {
1888     super(list, mutex);
1889     }
1890    
1891     public List<E> subList(int fromIndex, int toIndex) {
1892     synchronized(mutex) {
1893     return new SynchronizedRandomAccessList<E>(
1894     list.subList(fromIndex, toIndex), mutex);
1895     }
1896     }
1897    
1898     static final long serialVersionUID = 1530674583602358482L;
1899    
1900     /**
1901     * Allows instances to be deserialized in pre-1.4 JREs (which do
1902     * not have SynchronizedRandomAccessList). SynchronizedList has
1903     * a readResolve method that inverts this transformation upon
1904     * deserialization.
1905     */
1906     private Object writeReplace() {
1907     return new SynchronizedList<E>(list);
1908     }
1909     }
1910    
1911     /**
1912     * Returns a synchronized (thread-safe) map backed by the specified
1913     * map. In order to guarantee serial access, it is critical that
1914     * <strong>all</strong> access to the backing map is accomplished
1915     * through the returned map.<p>
1916     *
1917     * It is imperative that the user manually synchronize on the returned
1918     * map when iterating over any of its collection views:
1919     * <pre>
1920     * Map m = Collections.synchronizedMap(new HashMap());
1921     * ...
1922     * Set s = m.keySet(); // Needn't be in synchronized block
1923     * ...
1924     * synchronized(m) { // Synchronizing on m, not s!
1925     * Iterator i = s.iterator(); // Must be in synchronized block
1926     * while (i.hasNext())
1927     * foo(i.next());
1928     * }
1929     * </pre>
1930     * Failure to follow this advice may result in non-deterministic behavior.
1931     *
1932     * <p>The returned map will be serializable if the specified map is
1933     * serializable.
1934     *
1935     * @param m the map to be "wrapped" in a synchronized map.
1936     * @return a synchronized view of the specified map.
1937     */
1938     public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
1939     return new SynchronizedMap<K,V>(m);
1940     }
1941    
1942     /**
1943     * @serial include
1944     */
1945     private static class SynchronizedMap<K,V>
1946     implements Map<K,V>, Serializable {
1947     // use serialVersionUID from JDK 1.2.2 for interoperability
1948     private static final long serialVersionUID = 1978198479659022715L;
1949    
1950     private final Map<K,V> m; // Backing Map
1951     final Object mutex; // Object on which to synchronize
1952    
1953     SynchronizedMap(Map<K,V> m) {
1954     if (m==null)
1955     throw new NullPointerException();
1956     this.m = m;
1957     mutex = this;
1958     }
1959    
1960     SynchronizedMap(Map<K,V> m, Object mutex) {
1961     this.m = m;
1962     this.mutex = mutex;
1963     }
1964    
1965     public int size() {
1966     synchronized(mutex) {return m.size();}
1967     }
1968     public boolean isEmpty(){
1969     synchronized(mutex) {return m.isEmpty();}
1970     }
1971     public boolean containsKey(Object key) {
1972     synchronized(mutex) {return m.containsKey(key);}
1973     }
1974     public boolean containsValue(Object value){
1975     synchronized(mutex) {return m.containsValue(value);}
1976     }
1977     public V get(Object key) {
1978     synchronized(mutex) {return m.get(key);}
1979     }
1980    
1981     public V put(K key, V value) {
1982     synchronized(mutex) {return m.put(key, value);}
1983     }
1984     public V remove(Object key) {
1985     synchronized(mutex) {return m.remove(key);}
1986     }
1987     public void putAll(Map<? extends K, ? extends V> map) {
1988     synchronized(mutex) {m.putAll(map);}
1989     }
1990     public void clear() {
1991     synchronized(mutex) {m.clear();}
1992     }
1993    
1994     private transient Set<K> keySet = null;
1995     private transient Set<Map.Entry<K,V>> entrySet = null;
1996     private transient Collection<V> values = null;
1997    
1998     public Set<K> keySet() {
1999     synchronized(mutex) {
2000     if (keySet==null)
2001     keySet = new SynchronizedSet<K>(m.keySet(), mutex);
2002     return keySet;
2003     }
2004     }
2005    
2006     public Set<Map.Entry<K,V>> entrySet() {
2007     synchronized(mutex) {
2008     if (entrySet==null)
2009 jsr166 1.4 entrySet = new SynchronizedSet<Map.Entry<K,V>>(m.entrySet(), mutex);
2010 dl 1.1 return entrySet;
2011     }
2012     }
2013    
2014     public Collection<V> values() {
2015     synchronized(mutex) {
2016     if (values==null)
2017     values = new SynchronizedCollection<V>(m.values(), mutex);
2018     return values;
2019     }
2020     }
2021    
2022     public boolean equals(Object o) {
2023     synchronized(mutex) {return m.equals(o);}
2024     }
2025     public int hashCode() {
2026     synchronized(mutex) {return m.hashCode();}
2027     }
2028     public String toString() {
2029     synchronized(mutex) {return m.toString();}
2030     }
2031     private void writeObject(ObjectOutputStream s) throws IOException {
2032     synchronized(mutex) {s.defaultWriteObject();}
2033     }
2034     }
2035    
2036     /**
2037     * Returns a synchronized (thread-safe) sorted map backed by the specified
2038     * sorted map. In order to guarantee serial access, it is critical that
2039     * <strong>all</strong> access to the backing sorted map is accomplished
2040     * through the returned sorted map (or its views).<p>
2041     *
2042     * It is imperative that the user manually synchronize on the returned
2043     * sorted map when iterating over any of its collection views, or the
2044     * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2045     * <tt>tailMap</tt> views.
2046     * <pre>
2047 jsr166 1.4 * SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2048 dl 1.1 * ...
2049     * Set s = m.keySet(); // Needn't be in synchronized block
2050     * ...
2051     * synchronized(m) { // Synchronizing on m, not s!
2052     * Iterator i = s.iterator(); // Must be in synchronized block
2053     * while (i.hasNext())
2054     * foo(i.next());
2055     * }
2056     * </pre>
2057     * or:
2058     * <pre>
2059 jsr166 1.4 * SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2060 dl 1.1 * SortedMap m2 = m.subMap(foo, bar);
2061     * ...
2062     * Set s2 = m2.keySet(); // Needn't be in synchronized block
2063     * ...
2064     * synchronized(m) { // Synchronizing on m, not m2 or s2!
2065     * Iterator i = s.iterator(); // Must be in synchronized block
2066     * while (i.hasNext())
2067     * foo(i.next());
2068     * }
2069     * </pre>
2070     * Failure to follow this advice may result in non-deterministic behavior.
2071     *
2072     * <p>The returned sorted map will be serializable if the specified
2073     * sorted map is serializable.
2074     *
2075     * @param m the sorted map to be "wrapped" in a synchronized sorted map.
2076     * @return a synchronized view of the specified sorted map.
2077     */
2078     public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2079     return new SynchronizedSortedMap<K,V>(m);
2080     }
2081    
2082    
2083     /**
2084     * @serial include
2085     */
2086     static class SynchronizedSortedMap<K,V>
2087     extends SynchronizedMap<K,V>
2088     implements SortedMap<K,V>
2089     {
2090     private static final long serialVersionUID = -8798146769416483793L;
2091    
2092     private final SortedMap<K,V> sm;
2093    
2094     SynchronizedSortedMap(SortedMap<K,V> m) {
2095     super(m);
2096     sm = m;
2097     }
2098     SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2099     super(m, mutex);
2100     sm = m;
2101     }
2102    
2103     public Comparator<? super K> comparator() {
2104     synchronized(mutex) {return sm.comparator();}
2105     }
2106    
2107     public SortedMap<K,V> subMap(K fromKey, K toKey) {
2108     synchronized(mutex) {
2109     return new SynchronizedSortedMap<K,V>(
2110     sm.subMap(fromKey, toKey), mutex);
2111     }
2112     }
2113     public SortedMap<K,V> headMap(K toKey) {
2114     synchronized(mutex) {
2115     return new SynchronizedSortedMap<K,V>(sm.headMap(toKey), mutex);
2116     }
2117     }
2118     public SortedMap<K,V> tailMap(K fromKey) {
2119     synchronized(mutex) {
2120     return new SynchronizedSortedMap<K,V>(sm.tailMap(fromKey),mutex);
2121     }
2122     }
2123    
2124     public K firstKey() {
2125     synchronized(mutex) {return sm.firstKey();}
2126     }
2127     public K lastKey() {
2128     synchronized(mutex) {return sm.lastKey();}
2129     }
2130     }
2131    
2132     // Dynamically typesafe collection wrappers
2133    
2134     /**
2135     * Returns a dynamically typesafe view of the specified collection. Any
2136     * attempt to insert an element of the wrong type will result in an
2137     * immediate <tt>ClassCastException</tt>. Assuming a collection contains
2138     * no incorrectly typed elements prior to the time a dynamically typesafe
2139     * view is generated, and that all subsequent access to the collection
2140     * takes place through the view, it is <i>guaranteed</i> that the
2141     * collection cannot contain an incorrectly typed element.
2142     *
2143     * <p>The generics mechanism in the language provides compile-time
2144     * (static) type checking, but it is possible to defeat this mechanism
2145     * with unchecked casts. Usually this is not a problem, as the compiler
2146     * issues warnings on all such unchecked operations. There are, however,
2147     * times when static type checking alone is not sufficient. For example,
2148     * suppose a collection is passed to a third-party library and it is
2149     * imperative that the library code not corrupt the collection by
2150     * inserting an element of the wrong type.
2151     *
2152     * <p>Another use of dynamically typesafe views is debugging. Suppose a
2153     * program fails with a <tt>ClassCastException</tt>, indicating that an
2154     * incorrectly typed element was put into a parameterized collection.
2155     * Unfortunately, the exception can occur at any time after the erroneous
2156     * element is inserted, so it typically provides little or no information
2157     * as to the real source of the problem. If the problem is reproducible,
2158     * one can quickly determine its source by temporarily modifying the
2159     * program to wrap the collection with a dynamically typesafe view.
2160     * For example, this declaration:
2161     * <pre>
2162     * Collection&lt;String&gt; c = new HashSet&lt;String&gt;();
2163     * </pre>
2164     * may be replaced temporarily by this one:
2165     * <pre>
2166     * Collection&lt;String&gt; c = Collections.checkedCollection(
2167     * new HashSet&lt;String&gt;(), String.class);
2168     * </pre>
2169     * Running the program again will cause it to fail at the point where
2170     * an incorrectly typed element is inserted into the collection, clearly
2171     * identifying the source of the problem. Once the problem is fixed, the
2172     * modified declaration may be reverted back to the original.
2173     *
2174     * <p>The returned collection does <i>not</i> pass the hashCode and equals
2175     * operations through to the backing collection, but relies on
2176     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
2177     * is necessary to preserve the contracts of these operations in the case
2178     * that the backing collection is a set or a list.
2179     *
2180     * <p>The returned collection will be serializable if the specified
2181     * collection is serializable.
2182     *
2183     * @param c the collection for which a dynamically typesafe view is to be
2184     * returned
2185     * @param type the type of element that <tt>c</tt> is permitted to hold
2186     * @return a dynamically typesafe view of the specified collection
2187     * @since 1.5
2188     */
2189     public static <E> Collection<E> checkedCollection(Collection<E> c,
2190     Class<E> type) {
2191     return new CheckedCollection<E>(c, type);
2192     }
2193 jsr166 1.4
2194 dl 1.1 /**
2195     * @serial include
2196     */
2197     static class CheckedCollection<E> implements Collection<E>, Serializable {
2198     private static final long serialVersionUID = 1578914078182001775L;
2199    
2200     final Collection<E> c;
2201     final Class<E> type;
2202    
2203     void typeCheck(Object o) {
2204     if (!type.isInstance(o))
2205     throw new ClassCastException("Attempt to insert " +
2206     o.getClass() + " element into collection with element type "
2207     + type);
2208     }
2209    
2210     CheckedCollection(Collection<E> c, Class<E> type) {
2211     if (c==null || type == null)
2212     throw new NullPointerException();
2213     this.c = c;
2214     this.type = type;
2215     }
2216    
2217     public int size() { return c.size(); }
2218     public boolean isEmpty() { return c.isEmpty(); }
2219     public boolean contains(Object o) { return c.contains(o); }
2220     public Object[] toArray() { return c.toArray(); }
2221     public <T> T[] toArray(T[] a) { return c.toArray(a); }
2222     public String toString() { return c.toString(); }
2223     public Iterator<E> iterator() { return c.iterator(); }
2224     public boolean remove(Object o) { return c.remove(o); }
2225     public boolean containsAll(Collection<?> coll) {
2226     return c.containsAll(coll);
2227     }
2228     public boolean removeAll(Collection<?> coll) {
2229     return c.removeAll(coll);
2230     }
2231     public boolean retainAll(Collection<?> coll) {
2232     return c.retainAll(coll);
2233     }
2234     public void clear() {
2235     c.clear();
2236     }
2237    
2238 jsr166 1.5 public boolean add(E e){
2239     typeCheck(e);
2240     return c.add(e);
2241 dl 1.1 }
2242    
2243     public boolean addAll(Collection<? extends E> coll) {
2244     /*
2245     * Dump coll into an array of the required type. This serves
2246     * three purposes: it insulates us from concurrent changes in
2247     * the contents of coll, it type-checks all of the elements in
2248 jsr166 1.6 * coll, and it provides all-or-nothing semantics (which we
2249 dl 1.1 * wouldn't get if we type-checked each element as we added it).
2250     */
2251     E[] a = null;
2252     try {
2253     a = coll.toArray(zeroLengthElementArray());
2254 jsr166 1.6 } catch (ArrayStoreException e) {
2255 dl 1.1 throw new ClassCastException();
2256     }
2257    
2258     boolean result = false;
2259     for (E e : a)
2260     result |= c.add(e);
2261     return result;
2262     }
2263    
2264     private E[] zeroLengthElementArray = null; // Lazily initialized
2265    
2266     /*
2267 jsr166 1.4 * We don't need locking or volatile, because it's OK if we create
2268 dl 1.1 * several zeroLengthElementArrays, and they're immutable.
2269     */
2270     E[] zeroLengthElementArray() {
2271     if (zeroLengthElementArray == null)
2272     zeroLengthElementArray = (E[]) Array.newInstance(type, 0);
2273     return zeroLengthElementArray;
2274     }
2275     }
2276    
2277     /**
2278     * Returns a dynamically typesafe view of the specified set.
2279     * Any attempt to insert an element of the wrong type will result in
2280     * an immediate <tt>ClassCastException</tt>. Assuming a set contains
2281     * no incorrectly typed elements prior to the time a dynamically typesafe
2282     * view is generated, and that all subsequent access to the set
2283     * takes place through the view, it is <i>guaranteed</i> that the
2284     * set cannot contain an incorrectly typed element.
2285     *
2286     * <p>A discussion of the use of dynamically typesafe views may be
2287     * found in the documentation for the {@link #checkedCollection checkedCollection}
2288     * method.
2289     *
2290     * <p>The returned set will be serializable if the specified set is
2291     * serializable.
2292     *
2293     * @param s the set for which a dynamically typesafe view is to be
2294     * returned
2295     * @param type the type of element that <tt>s</tt> is permitted to hold
2296     * @return a dynamically typesafe view of the specified set
2297     * @since 1.5
2298     */
2299     public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2300     return new CheckedSet<E>(s, type);
2301     }
2302 jsr166 1.4
2303 dl 1.1 /**
2304     * @serial include
2305     */
2306     static class CheckedSet<E> extends CheckedCollection<E>
2307     implements Set<E>, Serializable
2308     {
2309     private static final long serialVersionUID = 4694047833775013803L;
2310    
2311     CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2312    
2313     public boolean equals(Object o) { return c.equals(o); }
2314     public int hashCode() { return c.hashCode(); }
2315     }
2316    
2317     /**
2318     * Returns a dynamically typesafe view of the specified sorted set. Any
2319     * attempt to insert an element of the wrong type will result in an
2320     * immediate <tt>ClassCastException</tt>. Assuming a sorted set contains
2321     * no incorrectly typed elements prior to the time a dynamically typesafe
2322     * view is generated, and that all subsequent access to the sorted set
2323     * takes place through the view, it is <i>guaranteed</i> that the sorted
2324     * set cannot contain an incorrectly typed element.
2325     *
2326     * <p>A discussion of the use of dynamically typesafe views may be
2327     * found in the documentation for the {@link #checkedCollection checkedCollection}
2328     * method.
2329     *
2330     * <p>The returned sorted set will be serializable if the specified sorted
2331     * set is serializable.
2332     *
2333     * @param s the sorted set for which a dynamically typesafe view is to be
2334     * returned
2335     * @param type the type of element that <tt>s</tt> is permitted to hold
2336     * @return a dynamically typesafe view of the specified sorted set
2337     * @since 1.5
2338     */
2339     public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2340     Class<E> type) {
2341     return new CheckedSortedSet<E>(s, type);
2342     }
2343    
2344     /**
2345     * @serial include
2346     */
2347     static class CheckedSortedSet<E> extends CheckedSet<E>
2348     implements SortedSet<E>, Serializable
2349     {
2350     private static final long serialVersionUID = 1599911165492914959L;
2351     private final SortedSet<E> ss;
2352    
2353     CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2354     super(s, type);
2355     ss = s;
2356     }
2357    
2358     public Comparator<? super E> comparator() { return ss.comparator(); }
2359     public E first() { return ss.first(); }
2360     public E last() { return ss.last(); }
2361    
2362     public SortedSet<E> subSet(E fromElement, E toElement) {
2363     return new CheckedSortedSet<E>(ss.subSet(fromElement,toElement),
2364     type);
2365     }
2366     public SortedSet<E> headSet(E toElement) {
2367     return new CheckedSortedSet<E>(ss.headSet(toElement), type);
2368     }
2369     public SortedSet<E> tailSet(E fromElement) {
2370     return new CheckedSortedSet<E>(ss.tailSet(fromElement), type);
2371     }
2372     }
2373    
2374     /**
2375     * Returns a dynamically typesafe view of the specified list.
2376     * Any attempt to insert an element of the wrong type will result in
2377     * an immediate <tt>ClassCastException</tt>. Assuming a list contains
2378     * no incorrectly typed elements prior to the time a dynamically typesafe
2379     * view is generated, and that all subsequent access to the list
2380     * takes place through the view, it is <i>guaranteed</i> that the
2381     * list cannot contain an incorrectly typed element.
2382     *
2383     * <p>A discussion of the use of dynamically typesafe views may be
2384     * found in the documentation for the {@link #checkedCollection checkedCollection}
2385     * method.
2386     *
2387     * <p>The returned list will be serializable if the specified list is
2388     * serializable.
2389     *
2390     * @param list the list for which a dynamically typesafe view is to be
2391     * returned
2392     * @param type the type of element that <tt>list</tt> is permitted to hold
2393     * @return a dynamically typesafe view of the specified list
2394     * @since 1.5
2395     */
2396     public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2397     return (list instanceof RandomAccess ?
2398     new CheckedRandomAccessList<E>(list, type) :
2399     new CheckedList<E>(list, type));
2400     }
2401    
2402     /**
2403     * @serial include
2404     */
2405     static class CheckedList<E> extends CheckedCollection<E>
2406     implements List<E>
2407     {
2408     static final long serialVersionUID = 65247728283967356L;
2409     final List<E> list;
2410    
2411     CheckedList(List<E> list, Class<E> type) {
2412     super(list, type);
2413     this.list = list;
2414     }
2415    
2416     public boolean equals(Object o) { return list.equals(o); }
2417     public int hashCode() { return list.hashCode(); }
2418     public E get(int index) { return list.get(index); }
2419     public E remove(int index) { return list.remove(index); }
2420     public int indexOf(Object o) { return list.indexOf(o); }
2421     public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2422    
2423     public E set(int index, E element) {
2424     typeCheck(element);
2425     return list.set(index, element);
2426     }
2427    
2428     public void add(int index, E element) {
2429     typeCheck(element);
2430     list.add(index, element);
2431     }
2432    
2433     public boolean addAll(int index, Collection<? extends E> c) {
2434     // See CheckCollection.addAll, above, for an explanation
2435     E[] a = null;
2436     try {
2437     a = c.toArray(zeroLengthElementArray());
2438 jsr166 1.6 } catch (ArrayStoreException e) {
2439 dl 1.1 throw new ClassCastException();
2440     }
2441    
2442     return list.addAll(index, Arrays.asList(a));
2443     }
2444     public ListIterator<E> listIterator() { return listIterator(0); }
2445    
2446     public ListIterator<E> listIterator(final int index) {
2447     return new ListIterator<E>() {
2448     ListIterator<E> i = list.listIterator(index);
2449    
2450     public boolean hasNext() { return i.hasNext(); }
2451     public E next() { return i.next(); }
2452     public boolean hasPrevious() { return i.hasPrevious(); }
2453     public E previous() { return i.previous(); }
2454     public int nextIndex() { return i.nextIndex(); }
2455     public int previousIndex() { return i.previousIndex(); }
2456     public void remove() { i.remove(); }
2457    
2458 jsr166 1.5 public void set(E e) {
2459     typeCheck(e);
2460     i.set(e);
2461 dl 1.1 }
2462    
2463 jsr166 1.5 public void add(E e) {
2464     typeCheck(e);
2465     i.add(e);
2466 dl 1.1 }
2467     };
2468     }
2469    
2470     public List<E> subList(int fromIndex, int toIndex) {
2471     return new CheckedList<E>(list.subList(fromIndex, toIndex), type);
2472     }
2473     }
2474    
2475     /**
2476     * @serial include
2477     */
2478     static class CheckedRandomAccessList<E> extends CheckedList<E>
2479     implements RandomAccess
2480     {
2481     private static final long serialVersionUID = 1638200125423088369L;
2482    
2483     CheckedRandomAccessList(List<E> list, Class<E> type) {
2484     super(list, type);
2485     }
2486    
2487     public List<E> subList(int fromIndex, int toIndex) {
2488     return new CheckedRandomAccessList<E>(
2489     list.subList(fromIndex, toIndex), type);
2490     }
2491     }
2492    
2493     /**
2494     * Returns a dynamically typesafe view of the specified map. Any attempt
2495     * to insert a mapping whose key or value have the wrong type will result
2496     * in an immediate <tt>ClassCastException</tt>. Similarly, any attempt to
2497     * modify the value currently associated with a key will result in an
2498     * immediate <tt>ClassCastException</tt>, whether the modification is
2499     * attempted directly through the map itself, or through a {@link
2500     * Map.Entry} instance obtained from the map's {@link Map#entrySet()
2501     * entry set} view.
2502     *
2503     * <p>Assuming a map contains no incorrectly typed keys or values
2504     * prior to the time a dynamically typesafe view is generated, and
2505     * that all subsequent access to the map takes place through the view
2506     * (or one of its collection views), it is <i>guaranteed</i> that the
2507     * map cannot contain an incorrectly typed key or value.
2508     *
2509     * <p>A discussion of the use of dynamically typesafe views may be
2510     * found in the documentation for the {@link #checkedCollection checkedCollection}
2511     * method.
2512     *
2513     * <p>The returned map will be serializable if the specified map is
2514     * serializable.
2515     *
2516     * @param m the map for which a dynamically typesafe view is to be
2517     * returned
2518     * @param keyType the type of key that <tt>m</tt> is permitted to hold
2519     * @param valueType the type of value that <tt>m</tt> is permitted to hold
2520     * @return a dynamically typesafe view of the specified map
2521     * @since 1.5
2522     */
2523     public static <K, V> Map<K, V> checkedMap(Map<K, V> m, Class<K> keyType,
2524     Class<V> valueType) {
2525     return new CheckedMap<K,V>(m, keyType, valueType);
2526     }
2527    
2528    
2529     /**
2530     * @serial include
2531     */
2532     private static class CheckedMap<K,V> implements Map<K,V>,
2533     Serializable
2534     {
2535     private static final long serialVersionUID = 5742860141034234728L;
2536    
2537     private final Map<K, V> m;
2538     final Class<K> keyType;
2539     final Class<V> valueType;
2540    
2541     private void typeCheck(Object key, Object value) {
2542     if (!keyType.isInstance(key))
2543     throw new ClassCastException("Attempt to insert " +
2544     key.getClass() + " key into collection with key type "
2545     + keyType);
2546    
2547     if (!valueType.isInstance(value))
2548     throw new ClassCastException("Attempt to insert " +
2549     value.getClass() +" value into collection with value type "
2550     + valueType);
2551     }
2552    
2553     CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2554     if (m == null || keyType == null || valueType == null)
2555     throw new NullPointerException();
2556     this.m = m;
2557     this.keyType = keyType;
2558     this.valueType = valueType;
2559     }
2560    
2561     public int size() { return m.size(); }
2562     public boolean isEmpty() { return m.isEmpty(); }
2563     public boolean containsKey(Object key) { return m.containsKey(key); }
2564     public boolean containsValue(Object v) { return m.containsValue(v); }
2565     public V get(Object key) { return m.get(key); }
2566     public V remove(Object key) { return m.remove(key); }
2567     public void clear() { m.clear(); }
2568     public Set<K> keySet() { return m.keySet(); }
2569     public Collection<V> values() { return m.values(); }
2570     public boolean equals(Object o) { return m.equals(o); }
2571     public int hashCode() { return m.hashCode(); }
2572     public String toString() { return m.toString(); }
2573    
2574     public V put(K key, V value) {
2575     typeCheck(key, value);
2576     return m.put(key, value);
2577     }
2578    
2579     public void putAll(Map<? extends K, ? extends V> t) {
2580     // See CheckCollection.addAll, above, for an explanation
2581     K[] keys = null;
2582     try {
2583     keys = t.keySet().toArray(zeroLengthKeyArray());
2584 jsr166 1.6 } catch (ArrayStoreException e) {
2585 dl 1.1 throw new ClassCastException();
2586     }
2587     V[] values = null;
2588     try {
2589     values = t.values().toArray(zeroLengthValueArray());
2590 jsr166 1.6 } catch (ArrayStoreException e) {
2591 dl 1.1 throw new ClassCastException();
2592     }
2593    
2594     if (keys.length != values.length)
2595     throw new ConcurrentModificationException();
2596    
2597     for (int i = 0; i < keys.length; i++)
2598     m.put(keys[i], values[i]);
2599     }
2600    
2601     // Lazily initialized
2602     private K[] zeroLengthKeyArray = null;
2603     private V[] zeroLengthValueArray = null;
2604    
2605     /*
2606 jsr166 1.4 * We don't need locking or volatile, because it's OK if we create
2607 dl 1.1 * several zeroLengthValueArrays, and they're immutable.
2608     */
2609     private K[] zeroLengthKeyArray() {
2610     if (zeroLengthKeyArray == null)
2611     zeroLengthKeyArray = (K[]) Array.newInstance(keyType, 0);
2612     return zeroLengthKeyArray;
2613     }
2614     private V[] zeroLengthValueArray() {
2615     if (zeroLengthValueArray == null)
2616     zeroLengthValueArray = (V[]) Array.newInstance(valueType, 0);
2617     return zeroLengthValueArray;
2618     }
2619    
2620     private transient Set<Map.Entry<K,V>> entrySet = null;
2621    
2622     public Set<Map.Entry<K,V>> entrySet() {
2623     if (entrySet==null)
2624     entrySet = new CheckedEntrySet<K,V>(m.entrySet(), valueType);
2625     return entrySet;
2626     }
2627    
2628     /**
2629     * We need this class in addition to CheckedSet as Map.Entry permits
2630     * modification of the backing Map via the setValue operation. This
2631     * class is subtle: there are many possible attacks that must be
2632     * thwarted.
2633     *
2634     * @serial exclude
2635     */
2636     static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2637     Set<Map.Entry<K,V>> s;
2638     Class<V> valueType;
2639    
2640     CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2641     this.s = s;
2642     this.valueType = valueType;
2643     }
2644    
2645     public int size() { return s.size(); }
2646     public boolean isEmpty() { return s.isEmpty(); }
2647     public String toString() { return s.toString(); }
2648     public int hashCode() { return s.hashCode(); }
2649     public boolean remove(Object o) { return s.remove(o); }
2650     public boolean removeAll(Collection<?> coll) {
2651     return s.removeAll(coll);
2652     }
2653     public boolean retainAll(Collection<?> coll) {
2654     return s.retainAll(coll);
2655     }
2656     public void clear() {
2657     s.clear();
2658     }
2659    
2660 jsr166 1.5 public boolean add(Map.Entry<K, V> e){
2661 dl 1.1 throw new UnsupportedOperationException();
2662     }
2663     public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2664     throw new UnsupportedOperationException();
2665     }
2666    
2667    
2668     public Iterator<Map.Entry<K,V>> iterator() {
2669     return new Iterator<Map.Entry<K,V>>() {
2670     Iterator<Map.Entry<K, V>> i = s.iterator();
2671    
2672     public boolean hasNext() { return i.hasNext(); }
2673     public void remove() { i.remove(); }
2674    
2675     public Map.Entry<K,V> next() {
2676     return new CheckedEntry<K,V>(i.next(), valueType);
2677     }
2678     };
2679     }
2680    
2681     public Object[] toArray() {
2682     Object[] source = s.toArray();
2683    
2684     /*
2685     * Ensure that we don't get an ArrayStoreException even if
2686     * s.toArray returns an array of something other than Object
2687     */
2688     Object[] dest = (CheckedEntry.class.isInstance(
2689     source.getClass().getComponentType()) ? source :
2690     new Object[source.length]);
2691    
2692     for (int i = 0; i < source.length; i++)
2693     dest[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)source[i],
2694     valueType);
2695     return dest;
2696     }
2697    
2698     public <T> T[] toArray(T[] a) {
2699     // We don't pass a to s.toArray, to avoid window of
2700     // vulnerability wherein an unscrupulous multithreaded client
2701     // could get his hands on raw (unwrapped) Entries from s.
2702     Object[] arr = s.toArray(a.length==0 ? a :
2703     (T[])Array.newInstance(a.getClass().getComponentType(), 0));
2704    
2705     for (int i=0; i<arr.length; i++)
2706     arr[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)arr[i],
2707     valueType);
2708     if (arr.length > a.length)
2709     return (T[])arr;
2710    
2711     System.arraycopy(arr, 0, a, 0, arr.length);
2712     if (a.length > arr.length)
2713     a[arr.length] = null;
2714     return a;
2715     }
2716    
2717     /**
2718     * This method is overridden to protect the backing set against
2719     * an object with a nefarious equals function that senses
2720     * that the equality-candidate is Map.Entry and calls its
2721     * setValue method.
2722     */
2723     public boolean contains(Object o) {
2724     if (!(o instanceof Map.Entry))
2725     return false;
2726     return s.contains(
2727     new CheckedEntry<K,V>((Map.Entry<K,V>) o, valueType));
2728     }
2729    
2730     /**
2731     * The next two methods are overridden to protect against
2732     * an unscrupulous collection whose contains(Object o) method
2733     * senses when o is a Map.Entry, and calls o.setValue.
2734     */
2735     public boolean containsAll(Collection<?> coll) {
2736     Iterator<?> e = coll.iterator();
2737     while (e.hasNext())
2738     if (!contains(e.next())) // Invokes safe contains() above
2739     return false;
2740     return true;
2741     }
2742    
2743     public boolean equals(Object o) {
2744     if (o == this)
2745     return true;
2746     if (!(o instanceof Set))
2747     return false;
2748     Set<?> that = (Set<?>) o;
2749     if (that.size() != s.size())
2750     return false;
2751     return containsAll(that); // Invokes safe containsAll() above
2752     }
2753    
2754     /**
2755     * This "wrapper class" serves two purposes: it prevents
2756     * the client from modifying the backing Map, by short-circuiting
2757     * the setValue method, and it protects the backing Map against
2758     * an ill-behaved Map.Entry that attempts to modify another
2759     * Map Entry when asked to perform an equality check.
2760     */
2761     private static class CheckedEntry<K,V> implements Map.Entry<K,V> {
2762     private Map.Entry<K, V> e;
2763     private Class<V> valueType;
2764    
2765     CheckedEntry(Map.Entry<K, V> e, Class<V> valueType) {
2766     this.e = e;
2767     this.valueType = valueType;
2768     }
2769    
2770     public K getKey() { return e.getKey(); }
2771     public V getValue() { return e.getValue(); }
2772     public int hashCode() { return e.hashCode(); }
2773     public String toString() { return e.toString(); }
2774    
2775    
2776     public V setValue(V value) {
2777     if (!valueType.isInstance(value))
2778     throw new ClassCastException("Attempt to insert " +
2779     value.getClass() +
2780     " value into collection with value type " + valueType);
2781     return e.setValue(value);
2782     }
2783    
2784     public boolean equals(Object o) {
2785     if (!(o instanceof Map.Entry))
2786     return false;
2787     Map.Entry t = (Map.Entry)o;
2788     return eq(e.getKey(), t.getKey()) &&
2789     eq(e.getValue(), t.getValue());
2790     }
2791     }
2792     }
2793     }
2794    
2795     /**
2796     * Returns a dynamically typesafe view of the specified sorted map. Any
2797     * attempt to insert a mapping whose key or value have the wrong type will
2798     * result in an immediate <tt>ClassCastException</tt>. Similarly, any
2799     * attempt to modify the value currently associated with a key will result
2800     * in an immediate <tt>ClassCastException</tt>, whether the modification
2801     * is attempted directly through the map itself, or through a {@link
2802     * Map.Entry} instance obtained from the map's {@link Map#entrySet() entry
2803     * set} view.
2804     *
2805     * <p>Assuming a map contains no incorrectly typed keys or values
2806     * prior to the time a dynamically typesafe view is generated, and
2807     * that all subsequent access to the map takes place through the view
2808     * (or one of its collection views), it is <i>guaranteed</i> that the
2809     * map cannot contain an incorrectly typed key or value.
2810     *
2811     * <p>A discussion of the use of dynamically typesafe views may be
2812     * found in the documentation for the {@link #checkedCollection checkedCollection}
2813     * method.
2814     *
2815     * <p>The returned map will be serializable if the specified map is
2816     * serializable.
2817     *
2818     * @param m the map for which a dynamically typesafe view is to be
2819     * returned
2820     * @param keyType the type of key that <tt>m</tt> is permitted to hold
2821     * @param valueType the type of value that <tt>m</tt> is permitted to hold
2822     * @return a dynamically typesafe view of the specified map
2823     * @since 1.5
2824     */
2825     public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
2826     Class<K> keyType,
2827     Class<V> valueType) {
2828     return new CheckedSortedMap<K,V>(m, keyType, valueType);
2829     }
2830    
2831     /**
2832     * @serial include
2833     */
2834     static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
2835     implements SortedMap<K,V>, Serializable
2836     {
2837     private static final long serialVersionUID = 1599671320688067438L;
2838    
2839     private final SortedMap<K, V> sm;
2840    
2841     CheckedSortedMap(SortedMap<K, V> m,
2842     Class<K> keyType, Class<V> valueType) {
2843     super(m, keyType, valueType);
2844     sm = m;
2845     }
2846    
2847     public Comparator<? super K> comparator() { return sm.comparator(); }
2848     public K firstKey() { return sm.firstKey(); }
2849     public K lastKey() { return sm.lastKey(); }
2850    
2851     public SortedMap<K,V> subMap(K fromKey, K toKey) {
2852     return new CheckedSortedMap<K,V>(sm.subMap(fromKey, toKey),
2853     keyType, valueType);
2854     }
2855    
2856     public SortedMap<K,V> headMap(K toKey) {
2857     return new CheckedSortedMap<K,V>(sm.headMap(toKey),
2858     keyType, valueType);
2859     }
2860    
2861     public SortedMap<K,V> tailMap(K fromKey) {
2862     return new CheckedSortedMap<K,V>(sm.tailMap(fromKey),
2863     keyType, valueType);
2864     }
2865     }
2866    
2867     // Miscellaneous
2868    
2869     /**
2870     * The empty set (immutable). This set is serializable.
2871     *
2872     * @see #emptySet()
2873     */
2874     public static final Set EMPTY_SET = new EmptySet();
2875    
2876     /**
2877     * Returns the empty set (immutable). This set is serializable.
2878     * Unlike the like-named field, this method is parameterized.
2879     *
2880     * <p>This example illustrates the type-safe way to obtain an empty set:
2881     * <pre>
2882     * Set&lt;String&gt; s = Collections.emptySet();
2883     * </pre>
2884     * Implementation note: Implementations of this method need not
2885     * create a separate <tt>Set</tt> object for each call. Using this
2886     * method is likely to have comparable cost to using the like-named
2887     * field. (Unlike this method, the field does not provide type safety.)
2888     *
2889     * @see #EMPTY_SET
2890     * @since 1.5
2891     */
2892     public static final <T> Set<T> emptySet() {
2893     return (Set<T>) EMPTY_SET;
2894     }
2895    
2896     /**
2897     * @serial include
2898     */
2899     private static class EmptySet extends AbstractSet<Object> implements Serializable {
2900     // use serialVersionUID from JDK 1.2.2 for interoperability
2901     private static final long serialVersionUID = 1582296315990362920L;
2902    
2903     public Iterator<Object> iterator() {
2904     return new Iterator<Object>() {
2905     public boolean hasNext() {
2906     return false;
2907     }
2908     public Object next() {
2909     throw new NoSuchElementException();
2910     }
2911     public void remove() {
2912     throw new UnsupportedOperationException();
2913     }
2914     };
2915     }
2916    
2917     public int size() {return 0;}
2918    
2919     public boolean contains(Object obj) {return false;}
2920    
2921     // Preserves singleton property
2922     private Object readResolve() {
2923     return EMPTY_SET;
2924     }
2925     }
2926    
2927     /**
2928     * The empty list (immutable). This list is serializable.
2929     *
2930     * @see #emptyList()
2931     */
2932     public static final List EMPTY_LIST = new EmptyList();
2933    
2934     /**
2935     * Returns the empty list (immutable). This list is serializable.
2936     *
2937     * <p>This example illustrates the type-safe way to obtain an empty list:
2938     * <pre>
2939     * List&lt;String&gt; s = Collections.emptyList();
2940     * </pre>
2941     * Implementation note: Implementations of this method need not
2942     * create a separate <tt>List</tt> object for each call. Using this
2943     * method is likely to have comparable cost to using the like-named
2944     * field. (Unlike this method, the field does not provide type safety.)
2945     *
2946     * @see #EMPTY_LIST
2947     * @since 1.5
2948     */
2949     public static final <T> List<T> emptyList() {
2950     return (List<T>) EMPTY_LIST;
2951     }
2952    
2953     /**
2954     * @serial include
2955     */
2956     private static class EmptyList
2957     extends AbstractList<Object>
2958     implements RandomAccess, Serializable {
2959     // use serialVersionUID from JDK 1.2.2 for interoperability
2960     private static final long serialVersionUID = 8842843931221139166L;
2961    
2962     public int size() {return 0;}
2963    
2964     public boolean contains(Object obj) {return false;}
2965    
2966     public Object get(int index) {
2967     throw new IndexOutOfBoundsException("Index: "+index);
2968     }
2969    
2970     // Preserves singleton property
2971     private Object readResolve() {
2972     return EMPTY_LIST;
2973     }
2974     }
2975    
2976     /**
2977     * The empty map (immutable). This map is serializable.
2978     *
2979     * @see #emptyMap()
2980     * @since 1.3
2981     */
2982     public static final Map EMPTY_MAP = new EmptyMap();
2983    
2984     /**
2985     * Returns the empty map (immutable). This map is serializable.
2986     *
2987     * <p>This example illustrates the type-safe way to obtain an empty set:
2988     * <pre>
2989     * Map&lt;String, Date&gt; s = Collections.emptyMap();
2990     * </pre>
2991     * Implementation note: Implementations of this method need not
2992     * create a separate <tt>Map</tt> object for each call. Using this
2993     * method is likely to have comparable cost to using the like-named
2994     * field. (Unlike this method, the field does not provide type safety.)
2995     *
2996     * @see #EMPTY_MAP
2997     * @since 1.5
2998     */
2999     public static final <K,V> Map<K,V> emptyMap() {
3000     return (Map<K,V>) EMPTY_MAP;
3001     }
3002    
3003     private static class EmptyMap
3004     extends AbstractMap<Object,Object>
3005     implements Serializable {
3006    
3007     private static final long serialVersionUID = 6428348081105594320L;
3008    
3009     public int size() {return 0;}
3010    
3011     public boolean isEmpty() {return true;}
3012    
3013     public boolean containsKey(Object key) {return false;}
3014    
3015     public boolean containsValue(Object value) {return false;}
3016    
3017     public Object get(Object key) {return null;}
3018    
3019     public Set<Object> keySet() {return Collections.<Object>emptySet();}
3020    
3021     public Collection<Object> values() {return Collections.<Object>emptySet();}
3022    
3023     public Set<Map.Entry<Object,Object>> entrySet() {
3024     return Collections.emptySet();
3025     }
3026    
3027     public boolean equals(Object o) {
3028     return (o instanceof Map) && ((Map)o).size()==0;
3029     }
3030    
3031     public int hashCode() {return 0;}
3032    
3033     // Preserves singleton property
3034     private Object readResolve() {
3035     return EMPTY_MAP;
3036     }
3037     }
3038    
3039     /**
3040     * Returns an immutable set containing only the specified object.
3041     * The returned set is serializable.
3042     *
3043     * @param o the sole object to be stored in the returned set.
3044     * @return an immutable set containing only the specified object.
3045     */
3046     public static <T> Set<T> singleton(T o) {
3047     return new SingletonSet<T>(o);
3048     }
3049    
3050     /**
3051     * @serial include
3052     */
3053     private static class SingletonSet<E>
3054     extends AbstractSet<E>
3055     implements Serializable
3056     {
3057     // use serialVersionUID from JDK 1.2.2 for interoperability
3058     private static final long serialVersionUID = 3193687207550431679L;
3059    
3060     final private E element;
3061    
3062 jsr166 1.5 SingletonSet(E e) {element = e;}
3063 dl 1.1
3064     public Iterator<E> iterator() {
3065     return new Iterator<E>() {
3066     private boolean hasNext = true;
3067     public boolean hasNext() {
3068     return hasNext;
3069     }
3070     public E next() {
3071     if (hasNext) {
3072     hasNext = false;
3073     return element;
3074     }
3075     throw new NoSuchElementException();
3076     }
3077     public void remove() {
3078     throw new UnsupportedOperationException();
3079     }
3080     };
3081     }
3082    
3083     public int size() {return 1;}
3084    
3085     public boolean contains(Object o) {return eq(o, element);}
3086     }
3087    
3088     /**
3089     * Returns an immutable list containing only the specified object.
3090     * The returned list is serializable.
3091     *
3092     * @param o the sole object to be stored in the returned list.
3093     * @return an immutable list containing only the specified object.
3094     * @since 1.3
3095     */
3096     public static <T> List<T> singletonList(T o) {
3097     return new SingletonList<T>(o);
3098     }
3099    
3100     private static class SingletonList<E>
3101     extends AbstractList<E>
3102     implements RandomAccess, Serializable {
3103    
3104     static final long serialVersionUID = 3093736618740652951L;
3105    
3106     private final E element;
3107    
3108     SingletonList(E obj) {element = obj;}
3109    
3110     public int size() {return 1;}
3111    
3112     public boolean contains(Object obj) {return eq(obj, element);}
3113    
3114     public E get(int index) {
3115     if (index != 0)
3116     throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3117     return element;
3118     }
3119     }
3120    
3121     /**
3122     * Returns an immutable map, mapping only the specified key to the
3123     * specified value. The returned map is serializable.
3124     *
3125     * @param key the sole key to be stored in the returned map.
3126     * @param value the value to which the returned map maps <tt>key</tt>.
3127     * @return an immutable map containing only the specified key-value
3128     * mapping.
3129     * @since 1.3
3130     */
3131     public static <K,V> Map<K,V> singletonMap(K key, V value) {
3132     return new SingletonMap<K,V>(key, value);
3133     }
3134    
3135     private static class SingletonMap<K,V>
3136     extends AbstractMap<K,V>
3137     implements Serializable {
3138     private static final long serialVersionUID = -6979724477215052911L;
3139    
3140     private final K k;
3141     private final V v;
3142    
3143     SingletonMap(K key, V value) {
3144     k = key;
3145     v = value;
3146     }
3147    
3148     public int size() {return 1;}
3149    
3150     public boolean isEmpty() {return false;}
3151    
3152     public boolean containsKey(Object key) {return eq(key, k);}
3153    
3154     public boolean containsValue(Object value) {return eq(value, v);}
3155    
3156     public V get(Object key) {return (eq(key, k) ? v : null);}
3157    
3158     private transient Set<K> keySet = null;
3159     private transient Set<Map.Entry<K,V>> entrySet = null;
3160     private transient Collection<V> values = null;
3161    
3162     public Set<K> keySet() {
3163     if (keySet==null)
3164     keySet = singleton(k);
3165     return keySet;
3166     }
3167    
3168     public Set<Map.Entry<K,V>> entrySet() {
3169     if (entrySet==null)
3170 jsr166 1.4 entrySet = Collections.<Map.Entry<K,V>>singleton(
3171     new SimpleImmutableEntry<K,V>(k, v));
3172 dl 1.1 return entrySet;
3173     }
3174    
3175     public Collection<V> values() {
3176     if (values==null)
3177     values = singleton(v);
3178     return values;
3179     }
3180    
3181     }
3182    
3183     /**
3184     * Returns an immutable list consisting of <tt>n</tt> copies of the
3185     * specified object. The newly allocated data object is tiny (it contains
3186     * a single reference to the data object). This method is useful in
3187     * combination with the <tt>List.addAll</tt> method to grow lists.
3188     * The returned list is serializable.
3189     *
3190     * @param n the number of elements in the returned list.
3191     * @param o the element to appear repeatedly in the returned list.
3192     * @return an immutable list consisting of <tt>n</tt> copies of the
3193     * specified object.
3194     * @throws IllegalArgumentException if n &lt; 0.
3195     * @see List#addAll(Collection)
3196     * @see List#addAll(int, Collection)
3197     */
3198     public static <T> List<T> nCopies(int n, T o) {
3199     return new CopiesList<T>(n, o);
3200     }
3201    
3202     /**
3203     * @serial include
3204     */
3205     private static class CopiesList<E>
3206     extends AbstractList<E>
3207     implements RandomAccess, Serializable
3208     {
3209     static final long serialVersionUID = 2739099268398711800L;
3210    
3211     int n;
3212     E element;
3213    
3214 jsr166 1.5 CopiesList(int n, E e) {
3215 dl 1.1 if (n < 0)
3216     throw new IllegalArgumentException("List length = " + n);
3217     this.n = n;
3218 jsr166 1.5 element = e;
3219 dl 1.1 }
3220    
3221     public int size() {
3222     return n;
3223     }
3224    
3225     public boolean contains(Object obj) {
3226     return n != 0 && eq(obj, element);
3227     }
3228    
3229     public E get(int index) {
3230     if (index<0 || index>=n)
3231     throw new IndexOutOfBoundsException("Index: "+index+
3232     ", Size: "+n);
3233     return element;
3234     }
3235     }
3236    
3237     /**
3238     * Returns a comparator that imposes the reverse of the <i>natural
3239     * ordering</i> on a collection of objects that implement the
3240     * <tt>Comparable</tt> interface. (The natural ordering is the ordering
3241     * imposed by the objects' own <tt>compareTo</tt> method.) This enables a
3242     * simple idiom for sorting (or maintaining) collections (or arrays) of
3243     * objects that implement the <tt>Comparable</tt> interface in
3244     * reverse-natural-order. For example, suppose a is an array of
3245     * strings. Then: <pre>
3246     * Arrays.sort(a, Collections.reverseOrder());
3247     * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
3248     *
3249     * The returned comparator is serializable.
3250     *
3251     * @return a comparator that imposes the reverse of the <i>natural
3252     * ordering</i> on a collection of objects that implement
3253     * the <tt>Comparable</tt> interface.
3254     * @see Comparable
3255     */
3256     public static <T> Comparator<T> reverseOrder() {
3257     return (Comparator<T>) REVERSE_ORDER;
3258     }
3259    
3260     private static final Comparator REVERSE_ORDER = new ReverseComparator();
3261    
3262     /**
3263     * @serial include
3264     */
3265     private static class ReverseComparator<T>
3266     implements Comparator<Comparable<Object>>, Serializable {
3267    
3268     // use serialVersionUID from JDK 1.2.2 for interoperability
3269     private static final long serialVersionUID = 7207038068494060240L;
3270    
3271     public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3272     return c2.compareTo(c1);
3273     }
3274     }
3275    
3276     /**
3277     * Returns a comparator that imposes the reverse ordering of the specified
3278     * comparator. If the specified comparator is null, this method is
3279     * equivalent to {@link #reverseOrder()} (in other words, it returns a
3280     * comparator that imposes the reverse of the <i>natural ordering</i> on a
3281     * collection of objects that implement the Comparable interface).
3282     *
3283     * <p>The returned comparator is serializable (assuming the specified
3284     * comparator is also serializable or null).
3285     *
3286     * @return a comparator that imposes the reverse ordering of the
3287     * specified comparator.
3288     * @since 1.5
3289     */
3290     public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3291     if (cmp == null)
3292     return new ReverseComparator(); // Unchecked warning!!
3293 jsr166 1.4
3294 dl 1.1 return new ReverseComparator2<T>(cmp);
3295     }
3296 jsr166 1.4
3297 dl 1.1 /**
3298     * @serial include
3299     */
3300     private static class ReverseComparator2<T> implements Comparator<T>,
3301     Serializable
3302     {
3303     private static final long serialVersionUID = 4374092139857L;
3304 jsr166 1.4
3305 dl 1.1 /**
3306     * The comparator specified in the static factory. This will never
3307     * be null, as the static factory returns a ReverseComparator
3308     * instance if its argument is null.
3309     *
3310     * @serial
3311     */
3312     private Comparator<T> cmp;
3313 jsr166 1.4
3314 dl 1.1 ReverseComparator2(Comparator<T> cmp) {
3315     assert cmp != null;
3316     this.cmp = cmp;
3317     }
3318 jsr166 1.4
3319 dl 1.1 public int compare(T t1, T t2) {
3320     return cmp.compare(t2, t1);
3321     }
3322     }
3323    
3324     /**
3325     * Returns an enumeration over the specified collection. This provides
3326     * interoperability with legacy APIs that require an enumeration
3327     * as input.
3328     *
3329     * @param c the collection for which an enumeration is to be returned.
3330     * @return an enumeration over the specified collection.
3331     * @see Enumeration
3332     */
3333     public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3334     return new Enumeration<T>() {
3335     Iterator<T> i = c.iterator();
3336    
3337     public boolean hasMoreElements() {
3338     return i.hasNext();
3339     }
3340    
3341     public T nextElement() {
3342     return i.next();
3343     }
3344     };
3345     }
3346    
3347     /**
3348     * Returns an array list containing the elements returned by the
3349     * specified enumeration in the order they are returned by the
3350     * enumeration. This method provides interoperability between
3351     * legacy APIs that return enumerations and new APIs that require
3352     * collections.
3353     *
3354     * @param e enumeration providing elements for the returned
3355     * array list
3356     * @return an array list containing the elements returned
3357     * by the specified enumeration.
3358     * @since 1.4
3359     * @see Enumeration
3360     * @see ArrayList
3361     */
3362     public static <T> ArrayList<T> list(Enumeration<T> e) {
3363     ArrayList<T> l = new ArrayList<T>();
3364     while (e.hasMoreElements())
3365     l.add(e.nextElement());
3366     return l;
3367     }
3368    
3369     /**
3370     * Returns true if the specified arguments are equal, or both null.
3371     */
3372     private static boolean eq(Object o1, Object o2) {
3373     return (o1==null ? o2==null : o1.equals(o2));
3374     }
3375    
3376     /**
3377     * Returns the number of elements in the specified collection equal to the
3378     * specified object. More formally, returns the number of elements
3379     * <tt>e</tt> in the collection such that
3380     * <tt>(o == null ? e == null : o.equals(e))</tt>.
3381     *
3382     * @param c the collection in which to determine the frequency
3383     * of <tt>o</tt>
3384     * @param o the object whose frequency is to be determined
3385     * @throws NullPointerException if <tt>c</tt> is null
3386     * @since 1.5
3387     */
3388     public static int frequency(Collection<?> c, Object o) {
3389     int result = 0;
3390     if (o == null) {
3391     for (Object e : c)
3392     if (e == null)
3393     result++;
3394     } else {
3395     for (Object e : c)
3396     if (o.equals(e))
3397     result++;
3398     }
3399     return result;
3400     }
3401    
3402     /**
3403     * Returns <tt>true</tt> if the two specified collections have no
3404     * elements in common.
3405     *
3406     * <p>Care must be exercised if this method is used on collections that
3407     * do not comply with the general contract for <tt>Collection</tt>.
3408     * Implementations may elect to iterate over either collection and test
3409     * for containment in the other collection (or to perform any equivalent
3410     * computation). If either collection uses a nonstandard equality test
3411     * (as does a {@link SortedSet} whose ordering is not <i>compatible with
3412     * equals</i>, or the key set of an {@link IdentityHashMap}), both
3413     * collections must use the same nonstandard equality test, or the
3414     * result of this method is undefined.
3415     *
3416     * <p>Note that it is permissible to pass the same collection in both
3417     * parameters, in which case the method will return true if and only if
3418     * the collection is empty.
3419     *
3420     * @param c1 a collection
3421     * @param c2 a collection
3422     * @throws NullPointerException if either collection is null
3423     * @since 1.5
3424     */
3425     public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
3426     /*
3427     * We're going to iterate through c1 and test for inclusion in c2.
3428     * If c1 is a Set and c2 isn't, swap the collections. Otherwise,
3429     * place the shorter collection in c1. Hopefully this heuristic
3430     * will minimize the cost of the operation.
3431     */
3432     if ((c1 instanceof Set) && !(c2 instanceof Set) ||
3433     (c1.size() > c2.size())) {
3434     Collection<?> tmp = c1;
3435     c1 = c2;
3436     c2 = tmp;
3437     }
3438 jsr166 1.4
3439 dl 1.1 for (Object e : c1)
3440     if (c2.contains(e))
3441     return false;
3442     return true;
3443     }
3444    
3445     /**
3446     * Adds all of the specified elements to the specified collection.
3447     * Elements to be added may be specified individually or as an array.
3448     * The behavior of this convenience method is identical to that of
3449     * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
3450     * to run significantly faster under most implementations.
3451     *
3452     * <p>When elements are specified individually, this method provides a
3453     * convenient way to add a few elements to an existing collection:
3454     * <pre>
3455     * Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
3456     * </pre>
3457     *
3458     * @param c the collection into which <tt>elements</tt> are to be inserted
3459     * @param a the elements to insert into <tt>c</tt>
3460     * @return <tt>true</tt> if the collection changed as a result of the call
3461     * @throws UnsupportedOperationException if <tt>c</tt> does not support
3462 jsr166 1.4 * the <tt>add</tt> operation.
3463 dl 1.1 * @throws NullPointerException if <tt>elements</tt> contains one or more
3464 jsr166 1.6 * null values and <tt>c</tt> does not permit null elements, or
3465 dl 1.1 * if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
3466 jsr166 1.6 * @throws IllegalArgumentException if some property of a value in
3467 dl 1.1 * <tt>elements</tt> prevents it from being added to <tt>c</tt>
3468     * @see Collection#addAll(Collection)
3469     * @since 1.5
3470     */
3471     public static <T> boolean addAll(Collection<? super T> c, T... a) {
3472     boolean result = false;
3473     for (T e : a)
3474     result |= c.add(e);
3475     return result;
3476     }
3477    
3478     /**
3479     * Returns a set backed by the specified map. The resulting set displays
3480     * the same ordering, concurrency, and performance characteristics as the
3481     * backing map. In essence, this factory method provides a {@link Set}
3482     * implementation corresponding to any {@link Map} implementation. There
3483     * is no need to use this method on a {@link Map} implementation that
3484     * already has a corresponding {@link Set} implementation (such as {@link
3485     * HashMap} or {@link TreeMap}).
3486     *
3487     * <p>Each method invocation on the set returned by this method results in
3488     * exactly one method invocation on the backing map or its <tt>keySet</tt>
3489     * view, with one exception. The <tt>addAll</tt> method is implemented
3490     * as a sequence of <tt>put</tt> invocations on the backing map.
3491     *
3492     * <p>The specified map must be empty at the time this method is invoked,
3493     * and should not be accessed directly after this method returns. These
3494     * conditions are ensured if the map is created empty, passed directly
3495     * to this method, and no reference to the map is retained, as illustrated
3496     * in the following code fragment:
3497     * <pre>
3498     * Set&lt;Object&gt; weakHashSet = Collections.asSet(
3499     * new WeakHashMap&lt;Object, Boolean&gt;());
3500     * </pre>
3501     *
3502     * @param map the backing map
3503     * @return the set backed by the map
3504     * @throws IllegalArgumentException if <tt>map</tt> is not empty
3505     */
3506     public static <E> Set<E> asSet(Map<E, Boolean> map) {
3507     return new MapAsSet<E>(map);
3508     }
3509    
3510     private static class MapAsSet<E> extends AbstractSet<E>
3511     implements Set<E>, Serializable
3512     {
3513     private final Map<E, Boolean> m; // The backing map
3514     private transient Set<E> keySet; // Its keySet
3515    
3516     MapAsSet(Map<E, Boolean> map) {
3517     if (!map.isEmpty())
3518     throw new IllegalArgumentException("Map is non-empty");
3519     m = map;
3520     keySet = map.keySet();
3521     }
3522    
3523     public int size() { return m.size(); }
3524     public boolean isEmpty() { return m.isEmpty(); }
3525     public boolean contains(Object o) { return m.containsKey(o); }
3526     public Iterator<E> iterator() { return keySet.iterator(); }
3527     public Object[] toArray() { return keySet.toArray(); }
3528     public <T> T[] toArray(T[] a) { return keySet.toArray(a); }
3529     public boolean add(E e) {
3530     return m.put(e, Boolean.TRUE) == null;
3531     }
3532     public boolean remove(Object o) { return m.remove(o) != null; }
3533    
3534     public boolean removeAll(Collection<?> c) {
3535     return keySet.removeAll(c);
3536     }
3537     public boolean retainAll(Collection<?> c) {
3538     return keySet.retainAll(c);
3539     }
3540     public void clear() { m.clear(); }
3541     public boolean equals(Object o) { return keySet.equals(o); }
3542     public int hashCode() { return keySet.hashCode(); }
3543    
3544     private static final long serialVersionUID = 2454657854757543876L;
3545    
3546     private void readObject(java.io.ObjectInputStream s)
3547     throws IOException, ClassNotFoundException
3548     {
3549     s.defaultReadObject();
3550     keySet = m.keySet();
3551     }
3552     }
3553    
3554     /**
3555     * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
3556     * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
3557     * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
3558     * view can be useful when you would like to use a method
3559     * requiring a <tt>Queue</tt> but you need Lifo ordering.
3560     * @param deque the Deque
3561     * @return the queue
3562     * @since 1.6
3563     */
3564     public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
3565     return new AsLIFOQueue<T>(deque);
3566     }
3567    
3568 jsr166 1.4 static class AsLIFOQueue<E> extends AbstractQueue<E>
3569 dl 1.1 implements Queue<E>, Serializable {
3570 dl 1.8 private static final long serialVersionUID = 1802017725587941708L;
3571 dl 1.1 private final Deque<E> q;
3572     AsLIFOQueue(Deque<E> q) { this.q = q; }
3573 jsr166 1.5 public boolean offer(E e) { return q.offerFirst(e); }
3574 dl 1.1 public E poll() { return q.pollFirst(); }
3575     public E remove() { return q.removeFirst(); }
3576     public E peek() { return q.peekFirst(); }
3577     public E element() { return q.getFirst(); }
3578     public int size() { return q.size(); }
3579     public boolean isEmpty() { return q.isEmpty(); }
3580     public boolean contains(Object o) { return q.contains(o); }
3581     public Iterator<E> iterator() { return q.iterator(); }
3582     public Object[] toArray() { return q.toArray(); }
3583     public <T> T[] toArray(T[] a) { return q.toArray(a); }
3584 jsr166 1.5 public boolean add(E e) { return q.offerFirst(e); }
3585 dl 1.1 public boolean remove(Object o) { return q.remove(o); }
3586     public void clear() { q.clear(); }
3587     }
3588     }