ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Collections.java
Revision: 1.9
Committed: Fri May 27 03:44:18 2005 UTC (19 years, 1 month ago) by jsr166
Branch: MAIN
Changes since 1.8: +4 -1 lines
Log Message:
sync with Mustang

File Contents

# User Rev Content
1 dl 1.1 /*
2     * %W% %E%
3     *
4 jsr166 1.3 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 dl 1.1 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6     */
7    
8     package java.util;
9     import java.io.Serializable;
10     import java.io.ObjectOutputStream;
11     import java.io.IOException;
12     import java.lang.reflect.Array;
13    
14     /**
15     * This class consists exclusively of static methods that operate on or return
16     * collections. It contains polymorphic algorithms that operate on
17     * collections, "wrappers", which return a new collection backed by a
18     * specified collection, and a few other odds and ends.
19     *
20     * <p>The methods of this class all throw a <tt>NullPointerException</tt>
21     * if the collections or class objects provided to them are null.
22     *
23     * <p>The documentation for the polymorphic algorithms contained in this class
24     * generally includes a brief description of the <i>implementation</i>. Such
25     * descriptions should be regarded as <i>implementation notes</i>, rather than
26     * parts of the <i>specification</i>. Implementors should feel free to
27     * substitute other algorithms, so long as the specification itself is adhered
28     * to. (For example, the algorithm used by <tt>sort</tt> does not have to be
29     * a mergesort, but it does have to be <i>stable</i>.)
30     *
31     * <p>The "destructive" algorithms contained in this class, that is, the
32     * algorithms that modify the collection on which they operate, are specified
33     * to throw <tt>UnsupportedOperationException</tt> if the collection does not
34     * support the appropriate mutation primitive(s), such as the <tt>set</tt>
35     * method. These algorithms may, but are not required to, throw this
36     * exception if an invocation would have no effect on the collection. For
37     * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
38     * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
39     *
40 jsr166 1.4 * <p>This class is a member of the
41 dl 1.1 * <a href="{@docRoot}/../guide/collections/index.html">
42     * Java Collections Framework</a>.
43     *
44     * @author Josh Bloch
45     * @author Neal Gafter
46     * @version %I%, %G%
47     * @see Collection
48     * @see Set
49     * @see List
50     * @see Map
51     * @since 1.2
52     */
53    
54     public class Collections {
55     // Suppresses default constructor, ensuring non-instantiability.
56     private Collections() {
57     }
58    
59     // Algorithms
60    
61     /*
62     * Tuning parameters for algorithms - Many of the List algorithms have
63     * two implementations, one of which is appropriate for RandomAccess
64     * lists, the other for "sequential." Often, the random access variant
65     * yields better performance on small sequential access lists. The
66 jsr166 1.7 * tuning parameters below determine the cutoff point for what constitutes
67 dl 1.1 * a "small" sequential access list for each algorithm. The values below
68     * were empirically determined to work well for LinkedList. Hopefully
69     * they should be reasonable for other sequential access List
70     * implementations. Those doing performance work on this code would
71     * do well to validate the values of these parameters from time to time.
72     * (The first word of each tuning parameter name is the algorithm to which
73     * it applies.)
74     */
75     private static final int BINARYSEARCH_THRESHOLD = 5000;
76     private static final int REVERSE_THRESHOLD = 18;
77     private static final int SHUFFLE_THRESHOLD = 5;
78     private static final int FILL_THRESHOLD = 25;
79     private static final int ROTATE_THRESHOLD = 100;
80     private static final int COPY_THRESHOLD = 10;
81     private static final int REPLACEALL_THRESHOLD = 11;
82     private static final int INDEXOFSUBLIST_THRESHOLD = 35;
83    
84     /**
85     * Sorts the specified list into ascending order, according to the
86     * <i>natural ordering</i> of its elements. All elements in the list must
87     * implement the <tt>Comparable</tt> interface. Furthermore, all elements
88     * in the list must be <i>mutually comparable</i> (that is,
89     * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt>
90     * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
91     *
92     * This sort is guaranteed to be <i>stable</i>: equal elements will
93     * not be reordered as a result of the sort.<p>
94     *
95     * The specified list must be modifiable, but need not be resizable.<p>
96     *
97     * The sorting algorithm is a modified mergesort (in which the merge is
98     * omitted if the highest element in the low sublist is less than the
99     * lowest element in the high sublist). This algorithm offers guaranteed
100 jsr166 1.4 * n log(n) performance.
101 dl 1.1 *
102     * This implementation dumps the specified list into an array, sorts
103     * the array, and iterates over the list resetting each element
104     * from the corresponding position in the array. This avoids the
105     * n<sup>2</sup> log(n) performance that would result from attempting
106     * to sort a linked list in place.
107     *
108     * @param list the list to be sorted.
109     * @throws ClassCastException if the list contains elements that are not
110     * <i>mutually comparable</i> (for example, strings and integers).
111     * @throws UnsupportedOperationException if the specified list's
112     * list-iterator does not support the <tt>set</tt> operation.
113     * @see Comparable
114     */
115     public static <T extends Comparable<? super T>> void sort(List<T> list) {
116     Object[] a = list.toArray();
117     Arrays.sort(a);
118     ListIterator<T> i = list.listIterator();
119     for (int j=0; j<a.length; j++) {
120     i.next();
121     i.set((T)a[j]);
122     }
123     }
124    
125     /**
126     * Sorts the specified list according to the order induced by the
127     * specified comparator. All elements in the list must be <i>mutually
128     * comparable</i> using the specified comparator (that is,
129     * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
130     * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
131     *
132     * This sort is guaranteed to be <i>stable</i>: equal elements will
133     * not be reordered as a result of the sort.<p>
134     *
135     * The sorting algorithm is a modified mergesort (in which the merge is
136     * omitted if the highest element in the low sublist is less than the
137     * lowest element in the high sublist). This algorithm offers guaranteed
138 jsr166 1.4 * n log(n) performance.
139 dl 1.1 *
140     * The specified list must be modifiable, but need not be resizable.
141     * This implementation dumps the specified list into an array, sorts
142     * the array, and iterates over the list resetting each element
143     * from the corresponding position in the array. This avoids the
144     * n<sup>2</sup> log(n) performance that would result from attempting
145     * to sort a linked list in place.
146     *
147     * @param list the list to be sorted.
148     * @param c the comparator to determine the order of the list. A
149     * <tt>null</tt> value indicates that the elements' <i>natural
150     * ordering</i> should be used.
151     * @throws ClassCastException if the list contains elements that are not
152     * <i>mutually comparable</i> using the specified comparator.
153     * @throws UnsupportedOperationException if the specified list's
154     * list-iterator does not support the <tt>set</tt> operation.
155     * @see Comparator
156     */
157     public static <T> void sort(List<T> list, Comparator<? super T> c) {
158     Object[] a = list.toArray();
159     Arrays.sort(a, (Comparator)c);
160     ListIterator i = list.listIterator();
161     for (int j=0; j<a.length; j++) {
162     i.next();
163     i.set(a[j]);
164     }
165     }
166    
167    
168     /**
169     * Searches the specified list for the specified object using the binary
170     * search algorithm. The list must be sorted into ascending order
171     * according to the <i>natural ordering</i> of its elements (as by the
172     * <tt>sort(List)</tt> method, above) prior to making this call. If it is
173     * not sorted, the results are undefined. If the list contains multiple
174     * elements equal to the specified object, there is no guarantee which one
175     * will be found.<p>
176     *
177     * This method runs in log(n) time for a "random access" list (which
178     * provides near-constant-time positional access). If the specified list
179     * does not implement the {@link RandomAccess} interface and is large,
180     * this method will do an iterator-based binary search that performs
181     * O(n) link traversals and O(log n) element comparisons.
182     *
183     * @param list the list to be searched.
184     * @param key the key to be searched for.
185 dl 1.2 * @return the index of the search key, if it is contained in the list;
186 dl 1.1 * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
187     * <i>insertion point</i> is defined as the point at which the
188     * key would be inserted into the list: the index of the first
189     * element greater than the key, or <tt>list.size()</tt>, if all
190     * elements in the list are less than the specified key. Note
191     * that this guarantees that the return value will be &gt;= 0 if
192     * and only if the key is found.
193     * @throws ClassCastException if the list contains elements that are not
194     * <i>mutually comparable</i> (for example, strings and
195     * integers), or the search key in not mutually comparable
196     * with the elements of the list.
197     * @see Comparable
198     * @see #sort(List)
199     */
200     public static <T>
201     int binarySearch(List<? extends Comparable<? super T>> list, T key) {
202     if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
203     return Collections.indexedBinarySearch(list, key);
204     else
205     return Collections.iteratorBinarySearch(list, key);
206     }
207    
208     private static <T>
209     int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
210     {
211     int low = 0;
212     int high = list.size()-1;
213    
214     while (low <= high) {
215     int mid = (low + high) >> 1;
216     Comparable<? super T> midVal = list.get(mid);
217     int cmp = midVal.compareTo(key);
218    
219     if (cmp < 0)
220     low = mid + 1;
221     else if (cmp > 0)
222     high = mid - 1;
223     else
224     return mid; // key found
225     }
226     return -(low + 1); // key not found
227     }
228    
229     private static <T>
230     int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
231     {
232     int low = 0;
233     int high = list.size()-1;
234     ListIterator<? extends Comparable<? super T>> i = list.listIterator();
235    
236     while (low <= high) {
237     int mid = (low + high) >> 1;
238     Comparable<? super T> midVal = get(i, mid);
239     int cmp = midVal.compareTo(key);
240    
241     if (cmp < 0)
242     low = mid + 1;
243     else if (cmp > 0)
244     high = mid - 1;
245     else
246     return mid; // key found
247     }
248     return -(low + 1); // key not found
249     }
250    
251     /**
252     * Gets the ith element from the given list by repositioning the specified
253     * list listIterator.
254     */
255     private static <T> T get(ListIterator<? extends T> i, int index) {
256     T obj = null;
257     int pos = i.nextIndex();
258     if (pos <= index) {
259     do {
260     obj = i.next();
261     } while (pos++ < index);
262     } else {
263     do {
264     obj = i.previous();
265     } while (--pos > index);
266     }
267     return obj;
268     }
269    
270     /**
271     * Searches the specified list for the specified object using the binary
272     * search algorithm. The list must be sorted into ascending order
273     * according to the specified comparator (as by the <tt>Sort(List,
274     * Comparator)</tt> method, above), prior to making this call. If it is
275     * not sorted, the results are undefined. If the list contains multiple
276     * elements equal to the specified object, there is no guarantee which one
277     * will be found.<p>
278     *
279     * This method runs in log(n) time for a "random access" list (which
280     * provides near-constant-time positional access). If the specified list
281     * does not implement the {@link RandomAccess} interface and is large,
282     * this method will do an iterator-based binary search that performs
283     * O(n) link traversals and O(log n) element comparisons.
284     *
285     * @param list the list to be searched.
286     * @param key the key to be searched for.
287     * @param c the comparator by which the list is ordered. A
288     * <tt>null</tt> value indicates that the elements' <i>natural
289     * ordering</i> should be used.
290 dl 1.2 * @return the index of the search key, if it is contained in the list;
291 dl 1.1 * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
292     * <i>insertion point</i> is defined as the point at which the
293     * key would be inserted into the list: the index of the first
294     * element greater than the key, or <tt>list.size()</tt>, if all
295     * elements in the list are less than the specified key. Note
296     * that this guarantees that the return value will be &gt;= 0 if
297     * and only if the key is found.
298     * @throws ClassCastException if the list contains elements that are not
299     * <i>mutually comparable</i> using the specified comparator,
300     * or the search key in not mutually comparable with the
301     * elements of the list using this comparator.
302     * @see Comparable
303     * @see #sort(List, Comparator)
304     */
305     public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
306     if (c==null)
307     return binarySearch((List) list, key);
308    
309     if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
310     return Collections.indexedBinarySearch(list, key, c);
311     else
312     return Collections.iteratorBinarySearch(list, key, c);
313     }
314    
315     private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
316     int low = 0;
317     int high = l.size()-1;
318    
319     while (low <= high) {
320     int mid = (low + high) >> 1;
321     T midVal = l.get(mid);
322     int cmp = c.compare(midVal, key);
323    
324     if (cmp < 0)
325     low = mid + 1;
326     else if (cmp > 0)
327     high = mid - 1;
328     else
329     return mid; // key found
330     }
331     return -(low + 1); // key not found
332     }
333    
334     private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
335     int low = 0;
336     int high = l.size()-1;
337     ListIterator<? extends T> i = l.listIterator();
338    
339     while (low <= high) {
340     int mid = (low + high) >> 1;
341     T midVal = get(i, mid);
342     int cmp = c.compare(midVal, key);
343    
344     if (cmp < 0)
345     low = mid + 1;
346     else if (cmp > 0)
347     high = mid - 1;
348     else
349     return mid; // key found
350     }
351     return -(low + 1); // key not found
352     }
353    
354     private interface SelfComparable extends Comparable<SelfComparable> {}
355    
356    
357     /**
358     * Reverses the order of the elements in the specified list.<p>
359     *
360     * This method runs in linear time.
361     *
362     * @param list the list whose elements are to be reversed.
363     * @throws UnsupportedOperationException if the specified list or
364 jsr166 1.4 * its list-iterator does not support the <tt>set</tt> operation.
365 dl 1.1 */
366     public static void reverse(List<?> list) {
367     int size = list.size();
368     if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
369     for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
370     swap(list, i, j);
371     } else {
372     ListIterator fwd = list.listIterator();
373     ListIterator rev = list.listIterator(size);
374     for (int i=0, mid=list.size()>>1; i<mid; i++) {
375     Object tmp = fwd.next();
376     fwd.set(rev.previous());
377     rev.set(tmp);
378     }
379     }
380     }
381    
382     /**
383     * Randomly permutes the specified list using a default source of
384     * randomness. All permutations occur with approximately equal
385     * likelihood.<p>
386     *
387     * The hedge "approximately" is used in the foregoing description because
388     * default source of randomness is only approximately an unbiased source
389     * of independently chosen bits. If it were a perfect source of randomly
390     * chosen bits, then the algorithm would choose permutations with perfect
391     * uniformity.<p>
392     *
393     * This implementation traverses the list backwards, from the last element
394     * up to the second, repeatedly swapping a randomly selected element into
395     * the "current position". Elements are randomly selected from the
396     * portion of the list that runs from the first element to the current
397     * position, inclusive.<p>
398     *
399     * This method runs in linear time. If the specified list does not
400     * implement the {@link RandomAccess} interface and is large, this
401     * implementation dumps the specified list into an array before shuffling
402     * it, and dumps the shuffled array back into the list. This avoids the
403     * quadratic behavior that would result from shuffling a "sequential
404     * access" list in place.
405     *
406     * @param list the list to be shuffled.
407     * @throws UnsupportedOperationException if the specified list or
408 jsr166 1.4 * its list-iterator does not support the <tt>set</tt> operation.
409 dl 1.1 */
410     public static void shuffle(List<?> list) {
411 jsr166 1.9 if (r == null) {
412     r = new Random();
413     }
414 dl 1.1 shuffle(list, r);
415     }
416 jsr166 1.9 private static Random r;
417 dl 1.1
418     /**
419     * Randomly permute the specified list using the specified source of
420     * randomness. All permutations occur with equal likelihood
421     * assuming that the source of randomness is fair.<p>
422     *
423     * This implementation traverses the list backwards, from the last element
424     * up to the second, repeatedly swapping a randomly selected element into
425     * the "current position". Elements are randomly selected from the
426     * portion of the list that runs from the first element to the current
427     * position, inclusive.<p>
428     *
429     * This method runs in linear time. If the specified list does not
430     * implement the {@link RandomAccess} interface and is large, this
431     * implementation dumps the specified list into an array before shuffling
432     * it, and dumps the shuffled array back into the list. This avoids the
433     * quadratic behavior that would result from shuffling a "sequential
434     * access" list in place.
435     *
436     * @param list the list to be shuffled.
437     * @param rnd the source of randomness to use to shuffle the list.
438     * @throws UnsupportedOperationException if the specified list or its
439     * list-iterator does not support the <tt>set</tt> operation.
440     */
441     public static void shuffle(List<?> list, Random rnd) {
442     int size = list.size();
443     if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
444     for (int i=size; i>1; i--)
445     swap(list, i-1, rnd.nextInt(i));
446     } else {
447     Object arr[] = list.toArray();
448    
449     // Shuffle array
450     for (int i=size; i>1; i--)
451     swap(arr, i-1, rnd.nextInt(i));
452    
453     // Dump array back into list
454     ListIterator it = list.listIterator();
455     for (int i=0; i<arr.length; i++) {
456     it.next();
457     it.set(arr[i]);
458     }
459     }
460     }
461    
462     /**
463     * Swaps the elements at the specified positions in the specified list.
464     * (If the specified positions are equal, invoking this method leaves
465     * the list unchanged.)
466     *
467     * @param list The list in which to swap elements.
468     * @param i the index of one element to be swapped.
469     * @param j the index of the other element to be swapped.
470     * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
471     * is out of range (i &lt; 0 || i &gt;= list.size()
472     * || j &lt; 0 || j &gt;= list.size()).
473     * @since 1.4
474     */
475     public static void swap(List<?> list, int i, int j) {
476     final List l = list;
477     l.set(i, l.set(j, l.get(i)));
478     }
479    
480     /**
481     * Swaps the two specified elements in the specified array.
482     */
483     private static void swap(Object[] arr, int i, int j) {
484     Object tmp = arr[i];
485     arr[i] = arr[j];
486     arr[j] = tmp;
487     }
488    
489     /**
490     * Replaces all of the elements of the specified list with the specified
491     * element. <p>
492     *
493     * This method runs in linear time.
494     *
495     * @param list the list to be filled with the specified element.
496     * @param obj The element with which to fill the specified list.
497     * @throws UnsupportedOperationException if the specified list or its
498     * list-iterator does not support the <tt>set</tt> operation.
499     */
500     public static <T> void fill(List<? super T> list, T obj) {
501     int size = list.size();
502    
503     if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
504     for (int i=0; i<size; i++)
505     list.set(i, obj);
506     } else {
507     ListIterator<? super T> itr = list.listIterator();
508     for (int i=0; i<size; i++) {
509     itr.next();
510     itr.set(obj);
511     }
512     }
513     }
514    
515     /**
516     * Copies all of the elements from one list into another. After the
517     * operation, the index of each copied element in the destination list
518     * will be identical to its index in the source list. The destination
519     * list must be at least as long as the source list. If it is longer, the
520     * remaining elements in the destination list are unaffected. <p>
521     *
522     * This method runs in linear time.
523     *
524     * @param dest The destination list.
525     * @param src The source list.
526     * @throws IndexOutOfBoundsException if the destination list is too small
527     * to contain the entire source List.
528     * @throws UnsupportedOperationException if the destination list's
529     * list-iterator does not support the <tt>set</tt> operation.
530     */
531     public static <T> void copy(List<? super T> dest, List<? extends T> src) {
532     int srcSize = src.size();
533     if (srcSize > dest.size())
534     throw new IndexOutOfBoundsException("Source does not fit in dest");
535    
536     if (srcSize < COPY_THRESHOLD ||
537     (src instanceof RandomAccess && dest instanceof RandomAccess)) {
538     for (int i=0; i<srcSize; i++)
539     dest.set(i, src.get(i));
540     } else {
541     ListIterator<? super T> di=dest.listIterator();
542     ListIterator<? extends T> si=src.listIterator();
543     for (int i=0; i<srcSize; i++) {
544     di.next();
545     di.set(si.next());
546     }
547     }
548     }
549    
550     /**
551     * Returns the minimum element of the given collection, according to the
552     * <i>natural ordering</i> of its elements. All elements in the
553     * collection must implement the <tt>Comparable</tt> interface.
554     * Furthermore, all elements in the collection must be <i>mutually
555     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
556     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
557     * <tt>e2</tt> in the collection).<p>
558     *
559     * This method iterates over the entire collection, hence it requires
560     * time proportional to the size of the collection.
561     *
562     * @param coll the collection whose minimum element is to be determined.
563     * @return the minimum element of the given collection, according
564     * to the <i>natural ordering</i> of its elements.
565     * @throws ClassCastException if the collection contains elements that are
566     * not <i>mutually comparable</i> (for example, strings and
567     * integers).
568     * @throws NoSuchElementException if the collection is empty.
569     * @see Comparable
570     */
571     public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
572     Iterator<? extends T> i = coll.iterator();
573     T candidate = i.next();
574    
575 jsr166 1.6 while (i.hasNext()) {
576 dl 1.1 T next = i.next();
577     if (next.compareTo(candidate) < 0)
578     candidate = next;
579     }
580     return candidate;
581     }
582    
583     /**
584     * Returns the minimum element of the given collection, according to the
585     * order induced by the specified comparator. All elements in the
586     * collection must be <i>mutually comparable</i> by the specified
587     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
588     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
589     * <tt>e2</tt> in the collection).<p>
590     *
591     * This method iterates over the entire collection, hence it requires
592     * time proportional to the size of the collection.
593     *
594     * @param coll the collection whose minimum element is to be determined.
595     * @param comp the comparator with which to determine the minimum element.
596     * A <tt>null</tt> value indicates that the elements' <i>natural
597     * ordering</i> should be used.
598     * @return the minimum element of the given collection, according
599     * to the specified comparator.
600     * @throws ClassCastException if the collection contains elements that are
601     * not <i>mutually comparable</i> using the specified comparator.
602     * @throws NoSuchElementException if the collection is empty.
603     * @see Comparable
604     */
605     public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
606     if (comp==null)
607     return (T)min((Collection<SelfComparable>) (Collection) coll);
608    
609     Iterator<? extends T> i = coll.iterator();
610     T candidate = i.next();
611    
612 jsr166 1.6 while (i.hasNext()) {
613 dl 1.1 T next = i.next();
614     if (comp.compare(next, candidate) < 0)
615     candidate = next;
616     }
617     return candidate;
618     }
619    
620     /**
621     * Returns the maximum element of the given collection, according to the
622     * <i>natural ordering</i> of its elements. All elements in the
623     * collection must implement the <tt>Comparable</tt> interface.
624     * Furthermore, all elements in the collection must be <i>mutually
625     * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
626     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
627     * <tt>e2</tt> in the collection).<p>
628     *
629     * This method iterates over the entire collection, hence it requires
630     * time proportional to the size of the collection.
631     *
632     * @param coll the collection whose maximum element is to be determined.
633     * @return the maximum element of the given collection, according
634     * to the <i>natural ordering</i> of its elements.
635     * @throws ClassCastException if the collection contains elements that are
636     * not <i>mutually comparable</i> (for example, strings and
637     * integers).
638     * @throws NoSuchElementException if the collection is empty.
639     * @see Comparable
640     */
641     public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
642     Iterator<? extends T> i = coll.iterator();
643     T candidate = i.next();
644    
645 jsr166 1.6 while (i.hasNext()) {
646 dl 1.1 T next = i.next();
647     if (next.compareTo(candidate) > 0)
648     candidate = next;
649     }
650     return candidate;
651     }
652    
653     /**
654     * Returns the maximum element of the given collection, according to the
655     * order induced by the specified comparator. All elements in the
656     * collection must be <i>mutually comparable</i> by the specified
657     * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
658     * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
659     * <tt>e2</tt> in the collection).<p>
660     *
661     * This method iterates over the entire collection, hence it requires
662     * time proportional to the size of the collection.
663     *
664     * @param coll the collection whose maximum element is to be determined.
665     * @param comp the comparator with which to determine the maximum element.
666     * A <tt>null</tt> value indicates that the elements' <i>natural
667     * ordering</i> should be used.
668     * @return the maximum element of the given collection, according
669     * to the specified comparator.
670     * @throws ClassCastException if the collection contains elements that are
671     * not <i>mutually comparable</i> using the specified comparator.
672     * @throws NoSuchElementException if the collection is empty.
673     * @see Comparable
674     */
675     public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
676     if (comp==null)
677     return (T)max((Collection<SelfComparable>) (Collection) coll);
678    
679     Iterator<? extends T> i = coll.iterator();
680     T candidate = i.next();
681    
682 jsr166 1.6 while (i.hasNext()) {
683 dl 1.1 T next = i.next();
684     if (comp.compare(next, candidate) > 0)
685     candidate = next;
686     }
687     return candidate;
688     }
689    
690     /**
691     * Rotates the elements in the specified list by the specified distance.
692     * After calling this method, the element at index <tt>i</tt> will be
693     * the element previously at index <tt>(i - distance)</tt> mod
694     * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
695     * and <tt>list.size()-1</tt>, inclusive. (This method has no effect on
696     * the size of the list.)
697     *
698     * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
699     * After invoking <tt>Collections.rotate(list, 1)</tt> (or
700     * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
701     * <tt>[s, t, a, n, k]</tt>.
702     *
703     * <p>Note that this method can usefully be applied to sublists to
704     * move one or more elements within a list while preserving the
705     * order of the remaining elements. For example, the following idiom
706     * moves the element at index <tt>j</tt> forward to position
707     * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
708     * <pre>
709     * Collections.rotate(list.subList(j, k+1), -1);
710     * </pre>
711     * To make this concrete, suppose <tt>list</tt> comprises
712     * <tt>[a, b, c, d, e]</tt>. To move the element at index <tt>1</tt>
713     * (<tt>b</tt>) forward two positions, perform the following invocation:
714     * <pre>
715     * Collections.rotate(l.subList(1, 4), -1);
716     * </pre>
717     * The resulting list is <tt>[a, c, d, b, e]</tt>.
718 jsr166 1.4 *
719 dl 1.1 * <p>To move more than one element forward, increase the absolute value
720     * of the rotation distance. To move elements backward, use a positive
721     * shift distance.
722     *
723     * <p>If the specified list is small or implements the {@link
724     * RandomAccess} interface, this implementation exchanges the first
725     * element into the location it should go, and then repeatedly exchanges
726     * the displaced element into the location it should go until a displaced
727     * element is swapped into the first element. If necessary, the process
728     * is repeated on the second and successive elements, until the rotation
729     * is complete. If the specified list is large and doesn't implement the
730     * <tt>RandomAccess</tt> interface, this implementation breaks the
731     * list into two sublist views around index <tt>-distance mod size</tt>.
732     * Then the {@link #reverse(List)} method is invoked on each sublist view,
733     * and finally it is invoked on the entire list. For a more complete
734     * description of both algorithms, see Section 2.3 of Jon Bentley's
735     * <i>Programming Pearls</i> (Addison-Wesley, 1986).
736     *
737     * @param list the list to be rotated.
738     * @param distance the distance to rotate the list. There are no
739     * constraints on this value; it may be zero, negative, or
740     * greater than <tt>list.size()</tt>.
741     * @throws UnsupportedOperationException if the specified list or
742 jsr166 1.4 * its list-iterator does not support the <tt>set</tt> operation.
743 dl 1.1 * @since 1.4
744     */
745     public static void rotate(List<?> list, int distance) {
746     if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
747     rotate1((List)list, distance);
748     else
749     rotate2((List)list, distance);
750     }
751    
752     private static <T> void rotate1(List<T> list, int distance) {
753     int size = list.size();
754     if (size == 0)
755     return;
756     distance = distance % size;
757     if (distance < 0)
758     distance += size;
759     if (distance == 0)
760     return;
761    
762     for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
763     T displaced = list.get(cycleStart);
764     int i = cycleStart;
765     do {
766     i += distance;
767     if (i >= size)
768     i -= size;
769     displaced = list.set(i, displaced);
770     nMoved ++;
771     } while(i != cycleStart);
772     }
773     }
774    
775     private static void rotate2(List<?> list, int distance) {
776     int size = list.size();
777     if (size == 0)
778 jsr166 1.4 return;
779 dl 1.1 int mid = -distance % size;
780     if (mid < 0)
781     mid += size;
782     if (mid == 0)
783     return;
784    
785     reverse(list.subList(0, mid));
786     reverse(list.subList(mid, size));
787     reverse(list);
788     }
789    
790     /**
791     * Replaces all occurrences of one specified value in a list with another.
792     * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
793     * in <tt>list</tt> such that
794     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
795     * (This method has no effect on the size of the list.)
796     *
797     * @param list the list in which replacement is to occur.
798     * @param oldVal the old value to be replaced.
799     * @param newVal the new value with which <tt>oldVal</tt> is to be
800     * replaced.
801     * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
802     * <tt>e</tt> such that
803     * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
804     * @throws UnsupportedOperationException if the specified list or
805 jsr166 1.4 * its list-iterator does not support the <tt>set</tt> operation.
806 dl 1.1 * @since 1.4
807     */
808     public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
809     boolean result = false;
810     int size = list.size();
811     if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
812     if (oldVal==null) {
813     for (int i=0; i<size; i++) {
814     if (list.get(i)==null) {
815     list.set(i, newVal);
816     result = true;
817     }
818     }
819     } else {
820     for (int i=0; i<size; i++) {
821     if (oldVal.equals(list.get(i))) {
822     list.set(i, newVal);
823     result = true;
824     }
825     }
826     }
827     } else {
828     ListIterator<T> itr=list.listIterator();
829     if (oldVal==null) {
830     for (int i=0; i<size; i++) {
831     if (itr.next()==null) {
832     itr.set(newVal);
833     result = true;
834     }
835     }
836     } else {
837     for (int i=0; i<size; i++) {
838     if (oldVal.equals(itr.next())) {
839     itr.set(newVal);
840     result = true;
841     }
842     }
843     }
844     }
845     return result;
846     }
847    
848     /**
849     * Returns the starting position of the first occurrence of the specified
850     * target list within the specified source list, or -1 if there is no
851     * such occurrence. More formally, returns the lowest index <tt>i</tt>
852     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
853     * or -1 if there is no such index. (Returns -1 if
854     * <tt>target.size() > source.size()</tt>.)
855     *
856     * <p>This implementation uses the "brute force" technique of scanning
857     * over the source list, looking for a match with the target at each
858     * location in turn.
859     *
860     * @param source the list in which to search for the first occurrence
861     * of <tt>target</tt>.
862     * @param target the list to search for as a subList of <tt>source</tt>.
863     * @return the starting position of the first occurrence of the specified
864     * target list within the specified source list, or -1 if there
865     * is no such occurrence.
866     * @since 1.4
867     */
868     public static int indexOfSubList(List<?> source, List<?> target) {
869     int sourceSize = source.size();
870     int targetSize = target.size();
871     int maxCandidate = sourceSize - targetSize;
872    
873     if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
874     (source instanceof RandomAccess&&target instanceof RandomAccess)) {
875     nextCand:
876     for (int candidate = 0; candidate <= maxCandidate; candidate++) {
877     for (int i=0, j=candidate; i<targetSize; i++, j++)
878     if (!eq(target.get(i), source.get(j)))
879     continue nextCand; // Element mismatch, try next cand
880     return candidate; // All elements of candidate matched target
881     }
882     } else { // Iterator version of above algorithm
883     ListIterator<?> si = source.listIterator();
884     nextCand:
885     for (int candidate = 0; candidate <= maxCandidate; candidate++) {
886     ListIterator<?> ti = target.listIterator();
887     for (int i=0; i<targetSize; i++) {
888     if (!eq(ti.next(), si.next())) {
889     // Back up source iterator to next candidate
890     for (int j=0; j<i; j++)
891     si.previous();
892     continue nextCand;
893     }
894     }
895     return candidate;
896     }
897     }
898     return -1; // No candidate matched the target
899     }
900    
901     /**
902     * Returns the starting position of the last occurrence of the specified
903     * target list within the specified source list, or -1 if there is no such
904     * occurrence. More formally, returns the highest index <tt>i</tt>
905     * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
906     * or -1 if there is no such index. (Returns -1 if
907     * <tt>target.size() > source.size()</tt>.)
908     *
909     * <p>This implementation uses the "brute force" technique of iterating
910     * over the source list, looking for a match with the target at each
911     * location in turn.
912     *
913     * @param source the list in which to search for the last occurrence
914     * of <tt>target</tt>.
915     * @param target the list to search for as a subList of <tt>source</tt>.
916     * @return the starting position of the last occurrence of the specified
917     * target list within the specified source list, or -1 if there
918     * is no such occurrence.
919     * @since 1.4
920     */
921     public static int lastIndexOfSubList(List<?> source, List<?> target) {
922     int sourceSize = source.size();
923     int targetSize = target.size();
924     int maxCandidate = sourceSize - targetSize;
925    
926     if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
927     source instanceof RandomAccess) { // Index access version
928     nextCand:
929     for (int candidate = maxCandidate; candidate >= 0; candidate--) {
930     for (int i=0, j=candidate; i<targetSize; i++, j++)
931     if (!eq(target.get(i), source.get(j)))
932     continue nextCand; // Element mismatch, try next cand
933     return candidate; // All elements of candidate matched target
934     }
935     } else { // Iterator version of above algorithm
936     if (maxCandidate < 0)
937     return -1;
938     ListIterator<?> si = source.listIterator(maxCandidate);
939     nextCand:
940     for (int candidate = maxCandidate; candidate >= 0; candidate--) {
941     ListIterator<?> ti = target.listIterator();
942     for (int i=0; i<targetSize; i++) {
943     if (!eq(ti.next(), si.next())) {
944     if (candidate != 0) {
945     // Back up source iterator to next candidate
946     for (int j=0; j<=i+1; j++)
947     si.previous();
948     }
949     continue nextCand;
950     }
951     }
952     return candidate;
953     }
954     }
955     return -1; // No candidate matched the target
956     }
957    
958    
959     // Unmodifiable Wrappers
960    
961     /**
962     * Returns an unmodifiable view of the specified collection. This method
963     * allows modules to provide users with "read-only" access to internal
964     * collections. Query operations on the returned collection "read through"
965     * to the specified collection, and attempts to modify the returned
966     * collection, whether direct or via its iterator, result in an
967     * <tt>UnsupportedOperationException</tt>.<p>
968     *
969     * The returned collection does <i>not</i> pass the hashCode and equals
970     * operations through to the backing collection, but relies on
971     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
972     * is necessary to preserve the contracts of these operations in the case
973     * that the backing collection is a set or a list.<p>
974     *
975     * The returned collection will be serializable if the specified collection
976 jsr166 1.4 * is serializable.
977 dl 1.1 *
978     * @param c the collection for which an unmodifiable view is to be
979     * returned.
980     * @return an unmodifiable view of the specified collection.
981     */
982     public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
983     return new UnmodifiableCollection<T>(c);
984     }
985    
986     /**
987     * @serial include
988     */
989     static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
990     // use serialVersionUID from JDK 1.2.2 for interoperability
991     private static final long serialVersionUID = 1820017752578914078L;
992    
993     final Collection<? extends E> c;
994    
995     UnmodifiableCollection(Collection<? extends E> c) {
996     if (c==null)
997     throw new NullPointerException();
998     this.c = c;
999     }
1000    
1001     public int size() {return c.size();}
1002     public boolean isEmpty() {return c.isEmpty();}
1003     public boolean contains(Object o) {return c.contains(o);}
1004     public Object[] toArray() {return c.toArray();}
1005     public <T> T[] toArray(T[] a) {return c.toArray(a);}
1006     public String toString() {return c.toString();}
1007    
1008     public Iterator<E> iterator() {
1009     return new Iterator<E>() {
1010     Iterator<? extends E> i = c.iterator();
1011    
1012     public boolean hasNext() {return i.hasNext();}
1013     public E next() {return i.next();}
1014     public void remove() {
1015     throw new UnsupportedOperationException();
1016     }
1017     };
1018     }
1019    
1020 jsr166 1.5 public boolean add(E e){
1021 dl 1.1 throw new UnsupportedOperationException();
1022     }
1023     public boolean remove(Object o) {
1024     throw new UnsupportedOperationException();
1025     }
1026    
1027     public boolean containsAll(Collection<?> coll) {
1028     return c.containsAll(coll);
1029     }
1030     public boolean addAll(Collection<? extends E> coll) {
1031     throw new UnsupportedOperationException();
1032     }
1033     public boolean removeAll(Collection<?> coll) {
1034     throw new UnsupportedOperationException();
1035     }
1036     public boolean retainAll(Collection<?> coll) {
1037     throw new UnsupportedOperationException();
1038     }
1039     public void clear() {
1040     throw new UnsupportedOperationException();
1041     }
1042     }
1043    
1044     /**
1045     * Returns an unmodifiable view of the specified set. This method allows
1046     * modules to provide users with "read-only" access to internal sets.
1047     * Query operations on the returned set "read through" to the specified
1048     * set, and attempts to modify the returned set, whether direct or via its
1049     * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1050     *
1051     * The returned set will be serializable if the specified set
1052 jsr166 1.4 * is serializable.
1053 dl 1.1 *
1054     * @param s the set for which an unmodifiable view is to be returned.
1055     * @return an unmodifiable view of the specified set.
1056     */
1057     public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1058     return new UnmodifiableSet<T>(s);
1059     }
1060    
1061     /**
1062     * @serial include
1063     */
1064     static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1065     implements Set<E>, Serializable {
1066     private static final long serialVersionUID = -9215047833775013803L;
1067    
1068     UnmodifiableSet(Set<? extends E> s) {super(s);}
1069     public boolean equals(Object o) {return c.equals(o);}
1070     public int hashCode() {return c.hashCode();}
1071     }
1072    
1073     /**
1074     * Returns an unmodifiable view of the specified sorted set. This method
1075     * allows modules to provide users with "read-only" access to internal
1076     * sorted sets. Query operations on the returned sorted set "read
1077     * through" to the specified sorted set. Attempts to modify the returned
1078     * sorted set, whether direct, via its iterator, or via its
1079     * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1080     * an <tt>UnsupportedOperationException</tt>.<p>
1081     *
1082     * The returned sorted set will be serializable if the specified sorted set
1083 jsr166 1.4 * is serializable.
1084 dl 1.1 *
1085     * @param s the sorted set for which an unmodifiable view is to be
1086 jsr166 1.4 * returned.
1087 dl 1.1 * @return an unmodifiable view of the specified sorted set.
1088     */
1089     public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1090     return new UnmodifiableSortedSet<T>(s);
1091     }
1092    
1093     /**
1094     * @serial include
1095     */
1096     static class UnmodifiableSortedSet<E>
1097     extends UnmodifiableSet<E>
1098     implements SortedSet<E>, Serializable {
1099     private static final long serialVersionUID = -4929149591599911165L;
1100     private final SortedSet<E> ss;
1101    
1102     UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1103    
1104     public Comparator<? super E> comparator() {return ss.comparator();}
1105    
1106     public SortedSet<E> subSet(E fromElement, E toElement) {
1107     return new UnmodifiableSortedSet<E>(ss.subSet(fromElement,toElement));
1108     }
1109     public SortedSet<E> headSet(E toElement) {
1110     return new UnmodifiableSortedSet<E>(ss.headSet(toElement));
1111     }
1112     public SortedSet<E> tailSet(E fromElement) {
1113     return new UnmodifiableSortedSet<E>(ss.tailSet(fromElement));
1114     }
1115    
1116     public E first() {return ss.first();}
1117     public E last() {return ss.last();}
1118     }
1119    
1120     /**
1121     * Returns an unmodifiable view of the specified list. This method allows
1122     * modules to provide users with "read-only" access to internal
1123     * lists. Query operations on the returned list "read through" to the
1124     * specified list, and attempts to modify the returned list, whether
1125     * direct or via its iterator, result in an
1126     * <tt>UnsupportedOperationException</tt>.<p>
1127     *
1128     * The returned list will be serializable if the specified list
1129     * is serializable. Similarly, the returned list will implement
1130     * {@link RandomAccess} if the specified list does.
1131     *
1132     * @param list the list for which an unmodifiable view is to be returned.
1133     * @return an unmodifiable view of the specified list.
1134     */
1135     public static <T> List<T> unmodifiableList(List<? extends T> list) {
1136     return (list instanceof RandomAccess ?
1137     new UnmodifiableRandomAccessList<T>(list) :
1138     new UnmodifiableList<T>(list));
1139     }
1140    
1141     /**
1142     * @serial include
1143     */
1144     static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1145     implements List<E> {
1146     static final long serialVersionUID = -283967356065247728L;
1147     final List<? extends E> list;
1148    
1149     UnmodifiableList(List<? extends E> list) {
1150     super(list);
1151     this.list = list;
1152     }
1153    
1154     public boolean equals(Object o) {return list.equals(o);}
1155     public int hashCode() {return list.hashCode();}
1156    
1157     public E get(int index) {return list.get(index);}
1158     public E set(int index, E element) {
1159     throw new UnsupportedOperationException();
1160     }
1161     public void add(int index, E element) {
1162     throw new UnsupportedOperationException();
1163     }
1164     public E remove(int index) {
1165     throw new UnsupportedOperationException();
1166     }
1167     public int indexOf(Object o) {return list.indexOf(o);}
1168     public int lastIndexOf(Object o) {return list.lastIndexOf(o);}
1169     public boolean addAll(int index, Collection<? extends E> c) {
1170     throw new UnsupportedOperationException();
1171     }
1172     public ListIterator<E> listIterator() {return listIterator(0);}
1173    
1174     public ListIterator<E> listIterator(final int index) {
1175     return new ListIterator<E>() {
1176     ListIterator<? extends E> i = list.listIterator(index);
1177    
1178     public boolean hasNext() {return i.hasNext();}
1179     public E next() {return i.next();}
1180     public boolean hasPrevious() {return i.hasPrevious();}
1181     public E previous() {return i.previous();}
1182     public int nextIndex() {return i.nextIndex();}
1183     public int previousIndex() {return i.previousIndex();}
1184    
1185     public void remove() {
1186     throw new UnsupportedOperationException();
1187     }
1188 jsr166 1.5 public void set(E e) {
1189 dl 1.1 throw new UnsupportedOperationException();
1190     }
1191 jsr166 1.5 public void add(E e) {
1192 dl 1.1 throw new UnsupportedOperationException();
1193     }
1194     };
1195     }
1196    
1197     public List<E> subList(int fromIndex, int toIndex) {
1198     return new UnmodifiableList<E>(list.subList(fromIndex, toIndex));
1199     }
1200    
1201     /**
1202     * UnmodifiableRandomAccessList instances are serialized as
1203     * UnmodifiableList instances to allow them to be deserialized
1204     * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1205     * This method inverts the transformation. As a beneficial
1206     * side-effect, it also grafts the RandomAccess marker onto
1207     * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1208     *
1209     * Note: Unfortunately, UnmodifiableRandomAccessList instances
1210     * serialized in 1.4.1 and deserialized in 1.4 will become
1211     * UnmodifiableList instances, as this method was missing in 1.4.
1212     */
1213     private Object readResolve() {
1214     return (list instanceof RandomAccess
1215     ? new UnmodifiableRandomAccessList<E>(list)
1216     : this);
1217     }
1218     }
1219    
1220     /**
1221     * @serial include
1222     */
1223     static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1224     implements RandomAccess
1225     {
1226     UnmodifiableRandomAccessList(List<? extends E> list) {
1227     super(list);
1228     }
1229    
1230     public List<E> subList(int fromIndex, int toIndex) {
1231     return new UnmodifiableRandomAccessList<E>(
1232     list.subList(fromIndex, toIndex));
1233     }
1234    
1235     private static final long serialVersionUID = -2542308836966382001L;
1236    
1237     /**
1238     * Allows instances to be deserialized in pre-1.4 JREs (which do
1239     * not have UnmodifiableRandomAccessList). UnmodifiableList has
1240     * a readResolve method that inverts this transformation upon
1241     * deserialization.
1242     */
1243     private Object writeReplace() {
1244     return new UnmodifiableList<E>(list);
1245     }
1246     }
1247    
1248     /**
1249     * Returns an unmodifiable view of the specified map. This method
1250     * allows modules to provide users with "read-only" access to internal
1251     * maps. Query operations on the returned map "read through"
1252     * to the specified map, and attempts to modify the returned
1253     * map, whether direct or via its collection views, result in an
1254     * <tt>UnsupportedOperationException</tt>.<p>
1255     *
1256     * The returned map will be serializable if the specified map
1257 jsr166 1.4 * is serializable.
1258 dl 1.1 *
1259     * @param m the map for which an unmodifiable view is to be returned.
1260     * @return an unmodifiable view of the specified map.
1261     */
1262     public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1263     return new UnmodifiableMap<K,V>(m);
1264     }
1265    
1266     /**
1267     * @serial include
1268     */
1269     private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1270     // use serialVersionUID from JDK 1.2.2 for interoperability
1271     private static final long serialVersionUID = -1034234728574286014L;
1272    
1273     private final Map<? extends K, ? extends V> m;
1274    
1275     UnmodifiableMap(Map<? extends K, ? extends V> m) {
1276     if (m==null)
1277     throw new NullPointerException();
1278     this.m = m;
1279     }
1280    
1281     public int size() {return m.size();}
1282     public boolean isEmpty() {return m.isEmpty();}
1283     public boolean containsKey(Object key) {return m.containsKey(key);}
1284     public boolean containsValue(Object val) {return m.containsValue(val);}
1285     public V get(Object key) {return m.get(key);}
1286    
1287     public V put(K key, V value) {
1288     throw new UnsupportedOperationException();
1289     }
1290     public V remove(Object key) {
1291     throw new UnsupportedOperationException();
1292     }
1293     public void putAll(Map<? extends K, ? extends V> t) {
1294     throw new UnsupportedOperationException();
1295     }
1296     public void clear() {
1297     throw new UnsupportedOperationException();
1298     }
1299    
1300     private transient Set<K> keySet = null;
1301     private transient Set<Map.Entry<K,V>> entrySet = null;
1302     private transient Collection<V> values = null;
1303    
1304     public Set<K> keySet() {
1305     if (keySet==null)
1306     keySet = unmodifiableSet(m.keySet());
1307     return keySet;
1308     }
1309    
1310     public Set<Map.Entry<K,V>> entrySet() {
1311     if (entrySet==null)
1312     entrySet = new UnmodifiableEntrySet<K,V>(m.entrySet());
1313     return entrySet;
1314     }
1315    
1316     public Collection<V> values() {
1317     if (values==null)
1318     values = unmodifiableCollection(m.values());
1319     return values;
1320     }
1321    
1322     public boolean equals(Object o) {return m.equals(o);}
1323     public int hashCode() {return m.hashCode();}
1324     public String toString() {return m.toString();}
1325    
1326     /**
1327     * We need this class in addition to UnmodifiableSet as
1328     * Map.Entries themselves permit modification of the backing Map
1329     * via their setValue operation. This class is subtle: there are
1330     * many possible attacks that must be thwarted.
1331     *
1332     * @serial include
1333     */
1334     static class UnmodifiableEntrySet<K,V>
1335     extends UnmodifiableSet<Map.Entry<K,V>> {
1336     private static final long serialVersionUID = 7854390611657943733L;
1337    
1338     UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1339 jsr166 1.4 super((Set)s);
1340 dl 1.1 }
1341     public Iterator<Map.Entry<K,V>> iterator() {
1342     return new Iterator<Map.Entry<K,V>>() {
1343     Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1344    
1345     public boolean hasNext() {
1346     return i.hasNext();
1347     }
1348     public Map.Entry<K,V> next() {
1349     return new UnmodifiableEntry<K,V>(i.next());
1350     }
1351     public void remove() {
1352     throw new UnsupportedOperationException();
1353     }
1354     };
1355     }
1356    
1357     public Object[] toArray() {
1358     Object[] a = c.toArray();
1359     for (int i=0; i<a.length; i++)
1360     a[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)a[i]);
1361     return a;
1362     }
1363    
1364     public <T> T[] toArray(T[] a) {
1365     // We don't pass a to c.toArray, to avoid window of
1366     // vulnerability wherein an unscrupulous multithreaded client
1367     // could get his hands on raw (unwrapped) Entries from c.
1368     Object[] arr =
1369     c.toArray(
1370     a.length==0 ? a :
1371     (T[])java.lang.reflect.Array.newInstance(a.getClass().getComponentType(), 0));
1372    
1373     for (int i=0; i<arr.length; i++)
1374     arr[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)arr[i]);
1375    
1376     if (arr.length > a.length)
1377     return (T[])arr;
1378    
1379     System.arraycopy(arr, 0, a, 0, arr.length);
1380     if (a.length > arr.length)
1381     a[arr.length] = null;
1382     return a;
1383     }
1384    
1385     /**
1386     * This method is overridden to protect the backing set against
1387     * an object with a nefarious equals function that senses
1388     * that the equality-candidate is Map.Entry and calls its
1389     * setValue method.
1390     */
1391     public boolean contains(Object o) {
1392     if (!(o instanceof Map.Entry))
1393     return false;
1394     return c.contains(new UnmodifiableEntry<K,V>((Map.Entry<K,V>) o));
1395     }
1396    
1397     /**
1398     * The next two methods are overridden to protect against
1399     * an unscrupulous List whose contains(Object o) method senses
1400     * when o is a Map.Entry, and calls o.setValue.
1401     */
1402     public boolean containsAll(Collection<?> coll) {
1403     Iterator<?> e = coll.iterator();
1404     while (e.hasNext())
1405     if (!contains(e.next())) // Invokes safe contains() above
1406     return false;
1407     return true;
1408     }
1409     public boolean equals(Object o) {
1410     if (o == this)
1411     return true;
1412    
1413     if (!(o instanceof Set))
1414     return false;
1415     Set s = (Set) o;
1416     if (s.size() != c.size())
1417     return false;
1418     return containsAll(s); // Invokes safe containsAll() above
1419     }
1420    
1421     /**
1422     * This "wrapper class" serves two purposes: it prevents
1423     * the client from modifying the backing Map, by short-circuiting
1424     * the setValue method, and it protects the backing Map against
1425     * an ill-behaved Map.Entry that attempts to modify another
1426     * Map Entry when asked to perform an equality check.
1427     */
1428     private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1429     private Map.Entry<? extends K, ? extends V> e;
1430    
1431     UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1432    
1433     public K getKey() {return e.getKey();}
1434     public V getValue() {return e.getValue();}
1435     public V setValue(V value) {
1436     throw new UnsupportedOperationException();
1437     }
1438     public int hashCode() {return e.hashCode();}
1439     public boolean equals(Object o) {
1440     if (!(o instanceof Map.Entry))
1441     return false;
1442     Map.Entry t = (Map.Entry)o;
1443     return eq(e.getKey(), t.getKey()) &&
1444     eq(e.getValue(), t.getValue());
1445     }
1446     public String toString() {return e.toString();}
1447     }
1448     }
1449     }
1450    
1451     /**
1452     * Returns an unmodifiable view of the specified sorted map. This method
1453     * allows modules to provide users with "read-only" access to internal
1454     * sorted maps. Query operations on the returned sorted map "read through"
1455     * to the specified sorted map. Attempts to modify the returned
1456     * sorted map, whether direct, via its collection views, or via its
1457     * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1458     * an <tt>UnsupportedOperationException</tt>.<p>
1459     *
1460     * The returned sorted map will be serializable if the specified sorted map
1461 jsr166 1.4 * is serializable.
1462 dl 1.1 *
1463     * @param m the sorted map for which an unmodifiable view is to be
1464 jsr166 1.4 * returned.
1465 dl 1.1 * @return an unmodifiable view of the specified sorted map.
1466     */
1467     public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1468     return new UnmodifiableSortedMap<K,V>(m);
1469     }
1470    
1471     /**
1472     * @serial include
1473     */
1474     static class UnmodifiableSortedMap<K,V>
1475     extends UnmodifiableMap<K,V>
1476     implements SortedMap<K,V>, Serializable {
1477     private static final long serialVersionUID = -8806743815996713206L;
1478    
1479     private final SortedMap<K, ? extends V> sm;
1480    
1481     UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1482    
1483     public Comparator<? super K> comparator() {return sm.comparator();}
1484    
1485     public SortedMap<K,V> subMap(K fromKey, K toKey) {
1486     return new UnmodifiableSortedMap<K,V>(sm.subMap(fromKey, toKey));
1487     }
1488     public SortedMap<K,V> headMap(K toKey) {
1489     return new UnmodifiableSortedMap<K,V>(sm.headMap(toKey));
1490     }
1491     public SortedMap<K,V> tailMap(K fromKey) {
1492     return new UnmodifiableSortedMap<K,V>(sm.tailMap(fromKey));
1493     }
1494    
1495     public K firstKey() {return sm.firstKey();}
1496     public K lastKey() {return sm.lastKey();}
1497     }
1498    
1499    
1500     // Synch Wrappers
1501    
1502     /**
1503     * Returns a synchronized (thread-safe) collection backed by the specified
1504     * collection. In order to guarantee serial access, it is critical that
1505     * <strong>all</strong> access to the backing collection is accomplished
1506     * through the returned collection.<p>
1507     *
1508     * It is imperative that the user manually synchronize on the returned
1509     * collection when iterating over it:
1510     * <pre>
1511     * Collection c = Collections.synchronizedCollection(myCollection);
1512     * ...
1513     * synchronized(c) {
1514     * Iterator i = c.iterator(); // Must be in the synchronized block
1515     * while (i.hasNext())
1516     * foo(i.next());
1517     * }
1518     * </pre>
1519     * Failure to follow this advice may result in non-deterministic behavior.
1520     *
1521     * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1522     * and <tt>equals</tt> operations through to the backing collection, but
1523     * relies on <tt>Object</tt>'s equals and hashCode methods. This is
1524     * necessary to preserve the contracts of these operations in the case
1525     * that the backing collection is a set or a list.<p>
1526     *
1527     * The returned collection will be serializable if the specified collection
1528 jsr166 1.4 * is serializable.
1529 dl 1.1 *
1530     * @param c the collection to be "wrapped" in a synchronized collection.
1531     * @return a synchronized view of the specified collection.
1532     */
1533     public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1534     return new SynchronizedCollection<T>(c);
1535     }
1536    
1537     static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1538     return new SynchronizedCollection<T>(c, mutex);
1539     }
1540    
1541     /**
1542     * @serial include
1543     */
1544     static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1545     // use serialVersionUID from JDK 1.2.2 for interoperability
1546     private static final long serialVersionUID = 3053995032091335093L;
1547    
1548     final Collection<E> c; // Backing Collection
1549     final Object mutex; // Object on which to synchronize
1550    
1551     SynchronizedCollection(Collection<E> c) {
1552     if (c==null)
1553     throw new NullPointerException();
1554     this.c = c;
1555     mutex = this;
1556     }
1557     SynchronizedCollection(Collection<E> c, Object mutex) {
1558     this.c = c;
1559     this.mutex = mutex;
1560     }
1561    
1562     public int size() {
1563     synchronized(mutex) {return c.size();}
1564     }
1565     public boolean isEmpty() {
1566     synchronized(mutex) {return c.isEmpty();}
1567     }
1568     public boolean contains(Object o) {
1569     synchronized(mutex) {return c.contains(o);}
1570     }
1571     public Object[] toArray() {
1572     synchronized(mutex) {return c.toArray();}
1573     }
1574     public <T> T[] toArray(T[] a) {
1575     synchronized(mutex) {return c.toArray(a);}
1576     }
1577    
1578     public Iterator<E> iterator() {
1579     return c.iterator(); // Must be manually synched by user!
1580     }
1581    
1582 jsr166 1.5 public boolean add(E e) {
1583     synchronized(mutex) {return c.add(e);}
1584 dl 1.1 }
1585     public boolean remove(Object o) {
1586     synchronized(mutex) {return c.remove(o);}
1587     }
1588    
1589     public boolean containsAll(Collection<?> coll) {
1590     synchronized(mutex) {return c.containsAll(coll);}
1591     }
1592     public boolean addAll(Collection<? extends E> coll) {
1593     synchronized(mutex) {return c.addAll(coll);}
1594     }
1595     public boolean removeAll(Collection<?> coll) {
1596     synchronized(mutex) {return c.removeAll(coll);}
1597     }
1598     public boolean retainAll(Collection<?> coll) {
1599     synchronized(mutex) {return c.retainAll(coll);}
1600     }
1601     public void clear() {
1602     synchronized(mutex) {c.clear();}
1603     }
1604     public String toString() {
1605     synchronized(mutex) {return c.toString();}
1606     }
1607     private void writeObject(ObjectOutputStream s) throws IOException {
1608     synchronized(mutex) {s.defaultWriteObject();}
1609     }
1610     }
1611    
1612     /**
1613     * Returns a synchronized (thread-safe) set backed by the specified
1614     * set. In order to guarantee serial access, it is critical that
1615     * <strong>all</strong> access to the backing set is accomplished
1616     * through the returned set.<p>
1617     *
1618     * It is imperative that the user manually synchronize on the returned
1619     * set when iterating over it:
1620     * <pre>
1621     * Set s = Collections.synchronizedSet(new HashSet());
1622     * ...
1623     * synchronized(s) {
1624     * Iterator i = s.iterator(); // Must be in the synchronized block
1625     * while (i.hasNext())
1626     * foo(i.next());
1627     * }
1628     * </pre>
1629     * Failure to follow this advice may result in non-deterministic behavior.
1630     *
1631     * <p>The returned set will be serializable if the specified set is
1632     * serializable.
1633     *
1634     * @param s the set to be "wrapped" in a synchronized set.
1635     * @return a synchronized view of the specified set.
1636     */
1637     public static <T> Set<T> synchronizedSet(Set<T> s) {
1638     return new SynchronizedSet<T>(s);
1639     }
1640    
1641     static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1642     return new SynchronizedSet<T>(s, mutex);
1643     }
1644    
1645     /**
1646     * @serial include
1647     */
1648     static class SynchronizedSet<E>
1649     extends SynchronizedCollection<E>
1650     implements Set<E> {
1651     private static final long serialVersionUID = 487447009682186044L;
1652    
1653     SynchronizedSet(Set<E> s) {
1654     super(s);
1655     }
1656     SynchronizedSet(Set<E> s, Object mutex) {
1657     super(s, mutex);
1658     }
1659    
1660     public boolean equals(Object o) {
1661     synchronized(mutex) {return c.equals(o);}
1662     }
1663     public int hashCode() {
1664     synchronized(mutex) {return c.hashCode();}
1665     }
1666     }
1667    
1668     /**
1669     * Returns a synchronized (thread-safe) sorted set backed by the specified
1670     * sorted set. In order to guarantee serial access, it is critical that
1671     * <strong>all</strong> access to the backing sorted set is accomplished
1672     * through the returned sorted set (or its views).<p>
1673     *
1674     * It is imperative that the user manually synchronize on the returned
1675     * sorted set when iterating over it or any of its <tt>subSet</tt>,
1676     * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1677     * <pre>
1678 jsr166 1.4 * SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1679 dl 1.1 * ...
1680     * synchronized(s) {
1681     * Iterator i = s.iterator(); // Must be in the synchronized block
1682     * while (i.hasNext())
1683     * foo(i.next());
1684     * }
1685     * </pre>
1686     * or:
1687     * <pre>
1688 jsr166 1.4 * SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1689 dl 1.1 * SortedSet s2 = s.headSet(foo);
1690     * ...
1691     * synchronized(s) { // Note: s, not s2!!!
1692     * Iterator i = s2.iterator(); // Must be in the synchronized block
1693     * while (i.hasNext())
1694     * foo(i.next());
1695     * }
1696     * </pre>
1697     * Failure to follow this advice may result in non-deterministic behavior.
1698     *
1699     * <p>The returned sorted set will be serializable if the specified
1700     * sorted set is serializable.
1701     *
1702     * @param s the sorted set to be "wrapped" in a synchronized sorted set.
1703     * @return a synchronized view of the specified sorted set.
1704     */
1705     public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1706     return new SynchronizedSortedSet<T>(s);
1707     }
1708    
1709     /**
1710     * @serial include
1711     */
1712     static class SynchronizedSortedSet<E>
1713     extends SynchronizedSet<E>
1714     implements SortedSet<E>
1715     {
1716     private static final long serialVersionUID = 8695801310862127406L;
1717    
1718     final private SortedSet<E> ss;
1719    
1720     SynchronizedSortedSet(SortedSet<E> s) {
1721     super(s);
1722     ss = s;
1723     }
1724     SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1725     super(s, mutex);
1726     ss = s;
1727     }
1728    
1729     public Comparator<? super E> comparator() {
1730     synchronized(mutex) {return ss.comparator();}
1731     }
1732    
1733     public SortedSet<E> subSet(E fromElement, E toElement) {
1734     synchronized(mutex) {
1735     return new SynchronizedSortedSet<E>(
1736     ss.subSet(fromElement, toElement), mutex);
1737     }
1738     }
1739     public SortedSet<E> headSet(E toElement) {
1740     synchronized(mutex) {
1741     return new SynchronizedSortedSet<E>(ss.headSet(toElement), mutex);
1742     }
1743     }
1744     public SortedSet<E> tailSet(E fromElement) {
1745     synchronized(mutex) {
1746     return new SynchronizedSortedSet<E>(ss.tailSet(fromElement),mutex);
1747     }
1748     }
1749    
1750     public E first() {
1751     synchronized(mutex) {return ss.first();}
1752     }
1753     public E last() {
1754     synchronized(mutex) {return ss.last();}
1755     }
1756     }
1757    
1758     /**
1759     * Returns a synchronized (thread-safe) list backed by the specified
1760     * list. In order to guarantee serial access, it is critical that
1761     * <strong>all</strong> access to the backing list is accomplished
1762     * through the returned list.<p>
1763     *
1764     * It is imperative that the user manually synchronize on the returned
1765     * list when iterating over it:
1766     * <pre>
1767     * List list = Collections.synchronizedList(new ArrayList());
1768     * ...
1769     * synchronized(list) {
1770     * Iterator i = list.iterator(); // Must be in synchronized block
1771     * while (i.hasNext())
1772     * foo(i.next());
1773     * }
1774     * </pre>
1775     * Failure to follow this advice may result in non-deterministic behavior.
1776     *
1777     * <p>The returned list will be serializable if the specified list is
1778     * serializable.
1779     *
1780     * @param list the list to be "wrapped" in a synchronized list.
1781     * @return a synchronized view of the specified list.
1782     */
1783     public static <T> List<T> synchronizedList(List<T> list) {
1784     return (list instanceof RandomAccess ?
1785     new SynchronizedRandomAccessList<T>(list) :
1786     new SynchronizedList<T>(list));
1787     }
1788    
1789     static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1790     return (list instanceof RandomAccess ?
1791     new SynchronizedRandomAccessList<T>(list, mutex) :
1792     new SynchronizedList<T>(list, mutex));
1793     }
1794    
1795     /**
1796     * @serial include
1797     */
1798     static class SynchronizedList<E>
1799     extends SynchronizedCollection<E>
1800     implements List<E> {
1801     static final long serialVersionUID = -7754090372962971524L;
1802    
1803     final List<E> list;
1804    
1805     SynchronizedList(List<E> list) {
1806     super(list);
1807     this.list = list;
1808     }
1809     SynchronizedList(List<E> list, Object mutex) {
1810     super(list, mutex);
1811     this.list = list;
1812     }
1813    
1814     public boolean equals(Object o) {
1815     synchronized(mutex) {return list.equals(o);}
1816     }
1817     public int hashCode() {
1818     synchronized(mutex) {return list.hashCode();}
1819     }
1820    
1821     public E get(int index) {
1822     synchronized(mutex) {return list.get(index);}
1823     }
1824     public E set(int index, E element) {
1825     synchronized(mutex) {return list.set(index, element);}
1826     }
1827     public void add(int index, E element) {
1828     synchronized(mutex) {list.add(index, element);}
1829     }
1830     public E remove(int index) {
1831     synchronized(mutex) {return list.remove(index);}
1832     }
1833    
1834     public int indexOf(Object o) {
1835     synchronized(mutex) {return list.indexOf(o);}
1836     }
1837     public int lastIndexOf(Object o) {
1838     synchronized(mutex) {return list.lastIndexOf(o);}
1839     }
1840    
1841     public boolean addAll(int index, Collection<? extends E> c) {
1842     synchronized(mutex) {return list.addAll(index, c);}
1843     }
1844    
1845     public ListIterator<E> listIterator() {
1846     return list.listIterator(); // Must be manually synched by user
1847     }
1848    
1849     public ListIterator<E> listIterator(int index) {
1850     return list.listIterator(index); // Must be manually synched by user
1851     }
1852    
1853     public List<E> subList(int fromIndex, int toIndex) {
1854     synchronized(mutex) {
1855     return new SynchronizedList<E>(list.subList(fromIndex, toIndex),
1856     mutex);
1857     }
1858     }
1859    
1860     /**
1861     * SynchronizedRandomAccessList instances are serialized as
1862     * SynchronizedList instances to allow them to be deserialized
1863     * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1864     * This method inverts the transformation. As a beneficial
1865     * side-effect, it also grafts the RandomAccess marker onto
1866     * SynchronizedList instances that were serialized in pre-1.4 JREs.
1867     *
1868     * Note: Unfortunately, SynchronizedRandomAccessList instances
1869     * serialized in 1.4.1 and deserialized in 1.4 will become
1870     * SynchronizedList instances, as this method was missing in 1.4.
1871     */
1872     private Object readResolve() {
1873     return (list instanceof RandomAccess
1874     ? new SynchronizedRandomAccessList<E>(list)
1875     : this);
1876     }
1877     }
1878    
1879     /**
1880     * @serial include
1881     */
1882     static class SynchronizedRandomAccessList<E>
1883     extends SynchronizedList<E>
1884     implements RandomAccess {
1885    
1886     SynchronizedRandomAccessList(List<E> list) {
1887     super(list);
1888     }
1889    
1890     SynchronizedRandomAccessList(List<E> list, Object mutex) {
1891     super(list, mutex);
1892     }
1893    
1894     public List<E> subList(int fromIndex, int toIndex) {
1895     synchronized(mutex) {
1896     return new SynchronizedRandomAccessList<E>(
1897     list.subList(fromIndex, toIndex), mutex);
1898     }
1899     }
1900    
1901     static final long serialVersionUID = 1530674583602358482L;
1902    
1903     /**
1904     * Allows instances to be deserialized in pre-1.4 JREs (which do
1905     * not have SynchronizedRandomAccessList). SynchronizedList has
1906     * a readResolve method that inverts this transformation upon
1907     * deserialization.
1908     */
1909     private Object writeReplace() {
1910     return new SynchronizedList<E>(list);
1911     }
1912     }
1913    
1914     /**
1915     * Returns a synchronized (thread-safe) map backed by the specified
1916     * map. In order to guarantee serial access, it is critical that
1917     * <strong>all</strong> access to the backing map is accomplished
1918     * through the returned map.<p>
1919     *
1920     * It is imperative that the user manually synchronize on the returned
1921     * map when iterating over any of its collection views:
1922     * <pre>
1923     * Map m = Collections.synchronizedMap(new HashMap());
1924     * ...
1925     * Set s = m.keySet(); // Needn't be in synchronized block
1926     * ...
1927     * synchronized(m) { // Synchronizing on m, not s!
1928     * Iterator i = s.iterator(); // Must be in synchronized block
1929     * while (i.hasNext())
1930     * foo(i.next());
1931     * }
1932     * </pre>
1933     * Failure to follow this advice may result in non-deterministic behavior.
1934     *
1935     * <p>The returned map will be serializable if the specified map is
1936     * serializable.
1937     *
1938     * @param m the map to be "wrapped" in a synchronized map.
1939     * @return a synchronized view of the specified map.
1940     */
1941     public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
1942     return new SynchronizedMap<K,V>(m);
1943     }
1944    
1945     /**
1946     * @serial include
1947     */
1948     private static class SynchronizedMap<K,V>
1949     implements Map<K,V>, Serializable {
1950     // use serialVersionUID from JDK 1.2.2 for interoperability
1951     private static final long serialVersionUID = 1978198479659022715L;
1952    
1953     private final Map<K,V> m; // Backing Map
1954     final Object mutex; // Object on which to synchronize
1955    
1956     SynchronizedMap(Map<K,V> m) {
1957     if (m==null)
1958     throw new NullPointerException();
1959     this.m = m;
1960     mutex = this;
1961     }
1962    
1963     SynchronizedMap(Map<K,V> m, Object mutex) {
1964     this.m = m;
1965     this.mutex = mutex;
1966     }
1967    
1968     public int size() {
1969     synchronized(mutex) {return m.size();}
1970     }
1971     public boolean isEmpty(){
1972     synchronized(mutex) {return m.isEmpty();}
1973     }
1974     public boolean containsKey(Object key) {
1975     synchronized(mutex) {return m.containsKey(key);}
1976     }
1977     public boolean containsValue(Object value){
1978     synchronized(mutex) {return m.containsValue(value);}
1979     }
1980     public V get(Object key) {
1981     synchronized(mutex) {return m.get(key);}
1982     }
1983    
1984     public V put(K key, V value) {
1985     synchronized(mutex) {return m.put(key, value);}
1986     }
1987     public V remove(Object key) {
1988     synchronized(mutex) {return m.remove(key);}
1989     }
1990     public void putAll(Map<? extends K, ? extends V> map) {
1991     synchronized(mutex) {m.putAll(map);}
1992     }
1993     public void clear() {
1994     synchronized(mutex) {m.clear();}
1995     }
1996    
1997     private transient Set<K> keySet = null;
1998     private transient Set<Map.Entry<K,V>> entrySet = null;
1999     private transient Collection<V> values = null;
2000    
2001     public Set<K> keySet() {
2002     synchronized(mutex) {
2003     if (keySet==null)
2004     keySet = new SynchronizedSet<K>(m.keySet(), mutex);
2005     return keySet;
2006     }
2007     }
2008    
2009     public Set<Map.Entry<K,V>> entrySet() {
2010     synchronized(mutex) {
2011     if (entrySet==null)
2012 jsr166 1.4 entrySet = new SynchronizedSet<Map.Entry<K,V>>(m.entrySet(), mutex);
2013 dl 1.1 return entrySet;
2014     }
2015     }
2016    
2017     public Collection<V> values() {
2018     synchronized(mutex) {
2019     if (values==null)
2020     values = new SynchronizedCollection<V>(m.values(), mutex);
2021     return values;
2022     }
2023     }
2024    
2025     public boolean equals(Object o) {
2026     synchronized(mutex) {return m.equals(o);}
2027     }
2028     public int hashCode() {
2029     synchronized(mutex) {return m.hashCode();}
2030     }
2031     public String toString() {
2032     synchronized(mutex) {return m.toString();}
2033     }
2034     private void writeObject(ObjectOutputStream s) throws IOException {
2035     synchronized(mutex) {s.defaultWriteObject();}
2036     }
2037     }
2038    
2039     /**
2040     * Returns a synchronized (thread-safe) sorted map backed by the specified
2041     * sorted map. In order to guarantee serial access, it is critical that
2042     * <strong>all</strong> access to the backing sorted map is accomplished
2043     * through the returned sorted map (or its views).<p>
2044     *
2045     * It is imperative that the user manually synchronize on the returned
2046     * sorted map when iterating over any of its collection views, or the
2047     * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2048     * <tt>tailMap</tt> views.
2049     * <pre>
2050 jsr166 1.4 * SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2051 dl 1.1 * ...
2052     * Set s = m.keySet(); // Needn't be in synchronized block
2053     * ...
2054     * synchronized(m) { // Synchronizing on m, not s!
2055     * Iterator i = s.iterator(); // Must be in synchronized block
2056     * while (i.hasNext())
2057     * foo(i.next());
2058     * }
2059     * </pre>
2060     * or:
2061     * <pre>
2062 jsr166 1.4 * SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2063 dl 1.1 * SortedMap m2 = m.subMap(foo, bar);
2064     * ...
2065     * Set s2 = m2.keySet(); // Needn't be in synchronized block
2066     * ...
2067     * synchronized(m) { // Synchronizing on m, not m2 or s2!
2068     * Iterator i = s.iterator(); // Must be in synchronized block
2069     * while (i.hasNext())
2070     * foo(i.next());
2071     * }
2072     * </pre>
2073     * Failure to follow this advice may result in non-deterministic behavior.
2074     *
2075     * <p>The returned sorted map will be serializable if the specified
2076     * sorted map is serializable.
2077     *
2078     * @param m the sorted map to be "wrapped" in a synchronized sorted map.
2079     * @return a synchronized view of the specified sorted map.
2080     */
2081     public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2082     return new SynchronizedSortedMap<K,V>(m);
2083     }
2084    
2085    
2086     /**
2087     * @serial include
2088     */
2089     static class SynchronizedSortedMap<K,V>
2090     extends SynchronizedMap<K,V>
2091     implements SortedMap<K,V>
2092     {
2093     private static final long serialVersionUID = -8798146769416483793L;
2094    
2095     private final SortedMap<K,V> sm;
2096    
2097     SynchronizedSortedMap(SortedMap<K,V> m) {
2098     super(m);
2099     sm = m;
2100     }
2101     SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2102     super(m, mutex);
2103     sm = m;
2104     }
2105    
2106     public Comparator<? super K> comparator() {
2107     synchronized(mutex) {return sm.comparator();}
2108     }
2109    
2110     public SortedMap<K,V> subMap(K fromKey, K toKey) {
2111     synchronized(mutex) {
2112     return new SynchronizedSortedMap<K,V>(
2113     sm.subMap(fromKey, toKey), mutex);
2114     }
2115     }
2116     public SortedMap<K,V> headMap(K toKey) {
2117     synchronized(mutex) {
2118     return new SynchronizedSortedMap<K,V>(sm.headMap(toKey), mutex);
2119     }
2120     }
2121     public SortedMap<K,V> tailMap(K fromKey) {
2122     synchronized(mutex) {
2123     return new SynchronizedSortedMap<K,V>(sm.tailMap(fromKey),mutex);
2124     }
2125     }
2126    
2127     public K firstKey() {
2128     synchronized(mutex) {return sm.firstKey();}
2129     }
2130     public K lastKey() {
2131     synchronized(mutex) {return sm.lastKey();}
2132     }
2133     }
2134    
2135     // Dynamically typesafe collection wrappers
2136    
2137     /**
2138     * Returns a dynamically typesafe view of the specified collection. Any
2139     * attempt to insert an element of the wrong type will result in an
2140     * immediate <tt>ClassCastException</tt>. Assuming a collection contains
2141     * no incorrectly typed elements prior to the time a dynamically typesafe
2142     * view is generated, and that all subsequent access to the collection
2143     * takes place through the view, it is <i>guaranteed</i> that the
2144     * collection cannot contain an incorrectly typed element.
2145     *
2146     * <p>The generics mechanism in the language provides compile-time
2147     * (static) type checking, but it is possible to defeat this mechanism
2148     * with unchecked casts. Usually this is not a problem, as the compiler
2149     * issues warnings on all such unchecked operations. There are, however,
2150     * times when static type checking alone is not sufficient. For example,
2151     * suppose a collection is passed to a third-party library and it is
2152     * imperative that the library code not corrupt the collection by
2153     * inserting an element of the wrong type.
2154     *
2155     * <p>Another use of dynamically typesafe views is debugging. Suppose a
2156     * program fails with a <tt>ClassCastException</tt>, indicating that an
2157     * incorrectly typed element was put into a parameterized collection.
2158     * Unfortunately, the exception can occur at any time after the erroneous
2159     * element is inserted, so it typically provides little or no information
2160     * as to the real source of the problem. If the problem is reproducible,
2161     * one can quickly determine its source by temporarily modifying the
2162     * program to wrap the collection with a dynamically typesafe view.
2163     * For example, this declaration:
2164     * <pre>
2165     * Collection&lt;String&gt; c = new HashSet&lt;String&gt;();
2166     * </pre>
2167     * may be replaced temporarily by this one:
2168     * <pre>
2169     * Collection&lt;String&gt; c = Collections.checkedCollection(
2170     * new HashSet&lt;String&gt;(), String.class);
2171     * </pre>
2172     * Running the program again will cause it to fail at the point where
2173     * an incorrectly typed element is inserted into the collection, clearly
2174     * identifying the source of the problem. Once the problem is fixed, the
2175     * modified declaration may be reverted back to the original.
2176     *
2177     * <p>The returned collection does <i>not</i> pass the hashCode and equals
2178     * operations through to the backing collection, but relies on
2179     * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
2180     * is necessary to preserve the contracts of these operations in the case
2181     * that the backing collection is a set or a list.
2182     *
2183     * <p>The returned collection will be serializable if the specified
2184     * collection is serializable.
2185     *
2186     * @param c the collection for which a dynamically typesafe view is to be
2187     * returned
2188     * @param type the type of element that <tt>c</tt> is permitted to hold
2189     * @return a dynamically typesafe view of the specified collection
2190     * @since 1.5
2191     */
2192     public static <E> Collection<E> checkedCollection(Collection<E> c,
2193     Class<E> type) {
2194     return new CheckedCollection<E>(c, type);
2195     }
2196 jsr166 1.4
2197 dl 1.1 /**
2198     * @serial include
2199     */
2200     static class CheckedCollection<E> implements Collection<E>, Serializable {
2201     private static final long serialVersionUID = 1578914078182001775L;
2202    
2203     final Collection<E> c;
2204     final Class<E> type;
2205    
2206     void typeCheck(Object o) {
2207     if (!type.isInstance(o))
2208     throw new ClassCastException("Attempt to insert " +
2209     o.getClass() + " element into collection with element type "
2210     + type);
2211     }
2212    
2213     CheckedCollection(Collection<E> c, Class<E> type) {
2214     if (c==null || type == null)
2215     throw new NullPointerException();
2216     this.c = c;
2217     this.type = type;
2218     }
2219    
2220     public int size() { return c.size(); }
2221     public boolean isEmpty() { return c.isEmpty(); }
2222     public boolean contains(Object o) { return c.contains(o); }
2223     public Object[] toArray() { return c.toArray(); }
2224     public <T> T[] toArray(T[] a) { return c.toArray(a); }
2225     public String toString() { return c.toString(); }
2226     public Iterator<E> iterator() { return c.iterator(); }
2227     public boolean remove(Object o) { return c.remove(o); }
2228     public boolean containsAll(Collection<?> coll) {
2229     return c.containsAll(coll);
2230     }
2231     public boolean removeAll(Collection<?> coll) {
2232     return c.removeAll(coll);
2233     }
2234     public boolean retainAll(Collection<?> coll) {
2235     return c.retainAll(coll);
2236     }
2237     public void clear() {
2238     c.clear();
2239     }
2240    
2241 jsr166 1.5 public boolean add(E e){
2242     typeCheck(e);
2243     return c.add(e);
2244 dl 1.1 }
2245    
2246     public boolean addAll(Collection<? extends E> coll) {
2247     /*
2248     * Dump coll into an array of the required type. This serves
2249     * three purposes: it insulates us from concurrent changes in
2250     * the contents of coll, it type-checks all of the elements in
2251 jsr166 1.6 * coll, and it provides all-or-nothing semantics (which we
2252 dl 1.1 * wouldn't get if we type-checked each element as we added it).
2253     */
2254     E[] a = null;
2255     try {
2256     a = coll.toArray(zeroLengthElementArray());
2257 jsr166 1.6 } catch (ArrayStoreException e) {
2258 dl 1.1 throw new ClassCastException();
2259     }
2260    
2261     boolean result = false;
2262     for (E e : a)
2263     result |= c.add(e);
2264     return result;
2265     }
2266    
2267     private E[] zeroLengthElementArray = null; // Lazily initialized
2268    
2269     /*
2270 jsr166 1.4 * We don't need locking or volatile, because it's OK if we create
2271 dl 1.1 * several zeroLengthElementArrays, and they're immutable.
2272     */
2273     E[] zeroLengthElementArray() {
2274     if (zeroLengthElementArray == null)
2275     zeroLengthElementArray = (E[]) Array.newInstance(type, 0);
2276     return zeroLengthElementArray;
2277     }
2278     }
2279    
2280     /**
2281     * Returns a dynamically typesafe view of the specified set.
2282     * Any attempt to insert an element of the wrong type will result in
2283     * an immediate <tt>ClassCastException</tt>. Assuming a set contains
2284     * no incorrectly typed elements prior to the time a dynamically typesafe
2285     * view is generated, and that all subsequent access to the set
2286     * takes place through the view, it is <i>guaranteed</i> that the
2287     * set cannot contain an incorrectly typed element.
2288     *
2289     * <p>A discussion of the use of dynamically typesafe views may be
2290     * found in the documentation for the {@link #checkedCollection checkedCollection}
2291     * method.
2292     *
2293     * <p>The returned set will be serializable if the specified set is
2294     * serializable.
2295     *
2296     * @param s the set for which a dynamically typesafe view is to be
2297     * returned
2298     * @param type the type of element that <tt>s</tt> is permitted to hold
2299     * @return a dynamically typesafe view of the specified set
2300     * @since 1.5
2301     */
2302     public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2303     return new CheckedSet<E>(s, type);
2304     }
2305 jsr166 1.4
2306 dl 1.1 /**
2307     * @serial include
2308     */
2309     static class CheckedSet<E> extends CheckedCollection<E>
2310     implements Set<E>, Serializable
2311     {
2312     private static final long serialVersionUID = 4694047833775013803L;
2313    
2314     CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2315    
2316     public boolean equals(Object o) { return c.equals(o); }
2317     public int hashCode() { return c.hashCode(); }
2318     }
2319    
2320     /**
2321     * Returns a dynamically typesafe view of the specified sorted set. Any
2322     * attempt to insert an element of the wrong type will result in an
2323     * immediate <tt>ClassCastException</tt>. Assuming a sorted set contains
2324     * no incorrectly typed elements prior to the time a dynamically typesafe
2325     * view is generated, and that all subsequent access to the sorted set
2326     * takes place through the view, it is <i>guaranteed</i> that the sorted
2327     * set cannot contain an incorrectly typed element.
2328     *
2329     * <p>A discussion of the use of dynamically typesafe views may be
2330     * found in the documentation for the {@link #checkedCollection checkedCollection}
2331     * method.
2332     *
2333     * <p>The returned sorted set will be serializable if the specified sorted
2334     * set is serializable.
2335     *
2336     * @param s the sorted set for which a dynamically typesafe view is to be
2337     * returned
2338     * @param type the type of element that <tt>s</tt> is permitted to hold
2339     * @return a dynamically typesafe view of the specified sorted set
2340     * @since 1.5
2341     */
2342     public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2343     Class<E> type) {
2344     return new CheckedSortedSet<E>(s, type);
2345     }
2346    
2347     /**
2348     * @serial include
2349     */
2350     static class CheckedSortedSet<E> extends CheckedSet<E>
2351     implements SortedSet<E>, Serializable
2352     {
2353     private static final long serialVersionUID = 1599911165492914959L;
2354     private final SortedSet<E> ss;
2355    
2356     CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2357     super(s, type);
2358     ss = s;
2359     }
2360    
2361     public Comparator<? super E> comparator() { return ss.comparator(); }
2362     public E first() { return ss.first(); }
2363     public E last() { return ss.last(); }
2364    
2365     public SortedSet<E> subSet(E fromElement, E toElement) {
2366     return new CheckedSortedSet<E>(ss.subSet(fromElement,toElement),
2367     type);
2368     }
2369     public SortedSet<E> headSet(E toElement) {
2370     return new CheckedSortedSet<E>(ss.headSet(toElement), type);
2371     }
2372     public SortedSet<E> tailSet(E fromElement) {
2373     return new CheckedSortedSet<E>(ss.tailSet(fromElement), type);
2374     }
2375     }
2376    
2377     /**
2378     * Returns a dynamically typesafe view of the specified list.
2379     * Any attempt to insert an element of the wrong type will result in
2380     * an immediate <tt>ClassCastException</tt>. Assuming a list contains
2381     * no incorrectly typed elements prior to the time a dynamically typesafe
2382     * view is generated, and that all subsequent access to the list
2383     * takes place through the view, it is <i>guaranteed</i> that the
2384     * list cannot contain an incorrectly typed element.
2385     *
2386     * <p>A discussion of the use of dynamically typesafe views may be
2387     * found in the documentation for the {@link #checkedCollection checkedCollection}
2388     * method.
2389     *
2390     * <p>The returned list will be serializable if the specified list is
2391     * serializable.
2392     *
2393     * @param list the list for which a dynamically typesafe view is to be
2394     * returned
2395     * @param type the type of element that <tt>list</tt> is permitted to hold
2396     * @return a dynamically typesafe view of the specified list
2397     * @since 1.5
2398     */
2399     public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2400     return (list instanceof RandomAccess ?
2401     new CheckedRandomAccessList<E>(list, type) :
2402     new CheckedList<E>(list, type));
2403     }
2404    
2405     /**
2406     * @serial include
2407     */
2408     static class CheckedList<E> extends CheckedCollection<E>
2409     implements List<E>
2410     {
2411     static final long serialVersionUID = 65247728283967356L;
2412     final List<E> list;
2413    
2414     CheckedList(List<E> list, Class<E> type) {
2415     super(list, type);
2416     this.list = list;
2417     }
2418    
2419     public boolean equals(Object o) { return list.equals(o); }
2420     public int hashCode() { return list.hashCode(); }
2421     public E get(int index) { return list.get(index); }
2422     public E remove(int index) { return list.remove(index); }
2423     public int indexOf(Object o) { return list.indexOf(o); }
2424     public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2425    
2426     public E set(int index, E element) {
2427     typeCheck(element);
2428     return list.set(index, element);
2429     }
2430    
2431     public void add(int index, E element) {
2432     typeCheck(element);
2433     list.add(index, element);
2434     }
2435    
2436     public boolean addAll(int index, Collection<? extends E> c) {
2437     // See CheckCollection.addAll, above, for an explanation
2438     E[] a = null;
2439     try {
2440     a = c.toArray(zeroLengthElementArray());
2441 jsr166 1.6 } catch (ArrayStoreException e) {
2442 dl 1.1 throw new ClassCastException();
2443     }
2444    
2445     return list.addAll(index, Arrays.asList(a));
2446     }
2447     public ListIterator<E> listIterator() { return listIterator(0); }
2448    
2449     public ListIterator<E> listIterator(final int index) {
2450     return new ListIterator<E>() {
2451     ListIterator<E> i = list.listIterator(index);
2452    
2453     public boolean hasNext() { return i.hasNext(); }
2454     public E next() { return i.next(); }
2455     public boolean hasPrevious() { return i.hasPrevious(); }
2456     public E previous() { return i.previous(); }
2457     public int nextIndex() { return i.nextIndex(); }
2458     public int previousIndex() { return i.previousIndex(); }
2459     public void remove() { i.remove(); }
2460    
2461 jsr166 1.5 public void set(E e) {
2462     typeCheck(e);
2463     i.set(e);
2464 dl 1.1 }
2465    
2466 jsr166 1.5 public void add(E e) {
2467     typeCheck(e);
2468     i.add(e);
2469 dl 1.1 }
2470     };
2471     }
2472    
2473     public List<E> subList(int fromIndex, int toIndex) {
2474     return new CheckedList<E>(list.subList(fromIndex, toIndex), type);
2475     }
2476     }
2477    
2478     /**
2479     * @serial include
2480     */
2481     static class CheckedRandomAccessList<E> extends CheckedList<E>
2482     implements RandomAccess
2483     {
2484     private static final long serialVersionUID = 1638200125423088369L;
2485    
2486     CheckedRandomAccessList(List<E> list, Class<E> type) {
2487     super(list, type);
2488     }
2489    
2490     public List<E> subList(int fromIndex, int toIndex) {
2491     return new CheckedRandomAccessList<E>(
2492     list.subList(fromIndex, toIndex), type);
2493     }
2494     }
2495    
2496     /**
2497     * Returns a dynamically typesafe view of the specified map. Any attempt
2498     * to insert a mapping whose key or value have the wrong type will result
2499     * in an immediate <tt>ClassCastException</tt>. Similarly, any attempt to
2500     * modify the value currently associated with a key will result in an
2501     * immediate <tt>ClassCastException</tt>, whether the modification is
2502     * attempted directly through the map itself, or through a {@link
2503     * Map.Entry} instance obtained from the map's {@link Map#entrySet()
2504     * entry set} view.
2505     *
2506     * <p>Assuming a map contains no incorrectly typed keys or values
2507     * prior to the time a dynamically typesafe view is generated, and
2508     * that all subsequent access to the map takes place through the view
2509     * (or one of its collection views), it is <i>guaranteed</i> that the
2510     * map cannot contain an incorrectly typed key or value.
2511     *
2512     * <p>A discussion of the use of dynamically typesafe views may be
2513     * found in the documentation for the {@link #checkedCollection checkedCollection}
2514     * method.
2515     *
2516     * <p>The returned map will be serializable if the specified map is
2517     * serializable.
2518     *
2519     * @param m the map for which a dynamically typesafe view is to be
2520     * returned
2521     * @param keyType the type of key that <tt>m</tt> is permitted to hold
2522     * @param valueType the type of value that <tt>m</tt> is permitted to hold
2523     * @return a dynamically typesafe view of the specified map
2524     * @since 1.5
2525     */
2526     public static <K, V> Map<K, V> checkedMap(Map<K, V> m, Class<K> keyType,
2527     Class<V> valueType) {
2528     return new CheckedMap<K,V>(m, keyType, valueType);
2529     }
2530    
2531    
2532     /**
2533     * @serial include
2534     */
2535     private static class CheckedMap<K,V> implements Map<K,V>,
2536     Serializable
2537     {
2538     private static final long serialVersionUID = 5742860141034234728L;
2539    
2540     private final Map<K, V> m;
2541     final Class<K> keyType;
2542     final Class<V> valueType;
2543    
2544     private void typeCheck(Object key, Object value) {
2545     if (!keyType.isInstance(key))
2546     throw new ClassCastException("Attempt to insert " +
2547     key.getClass() + " key into collection with key type "
2548     + keyType);
2549    
2550     if (!valueType.isInstance(value))
2551     throw new ClassCastException("Attempt to insert " +
2552     value.getClass() +" value into collection with value type "
2553     + valueType);
2554     }
2555    
2556     CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2557     if (m == null || keyType == null || valueType == null)
2558     throw new NullPointerException();
2559     this.m = m;
2560     this.keyType = keyType;
2561     this.valueType = valueType;
2562     }
2563    
2564     public int size() { return m.size(); }
2565     public boolean isEmpty() { return m.isEmpty(); }
2566     public boolean containsKey(Object key) { return m.containsKey(key); }
2567     public boolean containsValue(Object v) { return m.containsValue(v); }
2568     public V get(Object key) { return m.get(key); }
2569     public V remove(Object key) { return m.remove(key); }
2570     public void clear() { m.clear(); }
2571     public Set<K> keySet() { return m.keySet(); }
2572     public Collection<V> values() { return m.values(); }
2573     public boolean equals(Object o) { return m.equals(o); }
2574     public int hashCode() { return m.hashCode(); }
2575     public String toString() { return m.toString(); }
2576    
2577     public V put(K key, V value) {
2578     typeCheck(key, value);
2579     return m.put(key, value);
2580     }
2581    
2582     public void putAll(Map<? extends K, ? extends V> t) {
2583     // See CheckCollection.addAll, above, for an explanation
2584     K[] keys = null;
2585     try {
2586     keys = t.keySet().toArray(zeroLengthKeyArray());
2587 jsr166 1.6 } catch (ArrayStoreException e) {
2588 dl 1.1 throw new ClassCastException();
2589     }
2590     V[] values = null;
2591     try {
2592     values = t.values().toArray(zeroLengthValueArray());
2593 jsr166 1.6 } catch (ArrayStoreException e) {
2594 dl 1.1 throw new ClassCastException();
2595     }
2596    
2597     if (keys.length != values.length)
2598     throw new ConcurrentModificationException();
2599    
2600     for (int i = 0; i < keys.length; i++)
2601     m.put(keys[i], values[i]);
2602     }
2603    
2604     // Lazily initialized
2605     private K[] zeroLengthKeyArray = null;
2606     private V[] zeroLengthValueArray = null;
2607    
2608     /*
2609 jsr166 1.4 * We don't need locking or volatile, because it's OK if we create
2610 dl 1.1 * several zeroLengthValueArrays, and they're immutable.
2611     */
2612     private K[] zeroLengthKeyArray() {
2613     if (zeroLengthKeyArray == null)
2614     zeroLengthKeyArray = (K[]) Array.newInstance(keyType, 0);
2615     return zeroLengthKeyArray;
2616     }
2617     private V[] zeroLengthValueArray() {
2618     if (zeroLengthValueArray == null)
2619     zeroLengthValueArray = (V[]) Array.newInstance(valueType, 0);
2620     return zeroLengthValueArray;
2621     }
2622    
2623     private transient Set<Map.Entry<K,V>> entrySet = null;
2624    
2625     public Set<Map.Entry<K,V>> entrySet() {
2626     if (entrySet==null)
2627     entrySet = new CheckedEntrySet<K,V>(m.entrySet(), valueType);
2628     return entrySet;
2629     }
2630    
2631     /**
2632     * We need this class in addition to CheckedSet as Map.Entry permits
2633     * modification of the backing Map via the setValue operation. This
2634     * class is subtle: there are many possible attacks that must be
2635     * thwarted.
2636     *
2637     * @serial exclude
2638     */
2639     static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2640     Set<Map.Entry<K,V>> s;
2641     Class<V> valueType;
2642    
2643     CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2644     this.s = s;
2645     this.valueType = valueType;
2646     }
2647    
2648     public int size() { return s.size(); }
2649     public boolean isEmpty() { return s.isEmpty(); }
2650     public String toString() { return s.toString(); }
2651     public int hashCode() { return s.hashCode(); }
2652     public boolean remove(Object o) { return s.remove(o); }
2653     public boolean removeAll(Collection<?> coll) {
2654     return s.removeAll(coll);
2655     }
2656     public boolean retainAll(Collection<?> coll) {
2657     return s.retainAll(coll);
2658     }
2659     public void clear() {
2660     s.clear();
2661     }
2662    
2663 jsr166 1.5 public boolean add(Map.Entry<K, V> e){
2664 dl 1.1 throw new UnsupportedOperationException();
2665     }
2666     public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2667     throw new UnsupportedOperationException();
2668     }
2669    
2670    
2671     public Iterator<Map.Entry<K,V>> iterator() {
2672     return new Iterator<Map.Entry<K,V>>() {
2673     Iterator<Map.Entry<K, V>> i = s.iterator();
2674    
2675     public boolean hasNext() { return i.hasNext(); }
2676     public void remove() { i.remove(); }
2677    
2678     public Map.Entry<K,V> next() {
2679     return new CheckedEntry<K,V>(i.next(), valueType);
2680     }
2681     };
2682     }
2683    
2684     public Object[] toArray() {
2685     Object[] source = s.toArray();
2686    
2687     /*
2688     * Ensure that we don't get an ArrayStoreException even if
2689     * s.toArray returns an array of something other than Object
2690     */
2691     Object[] dest = (CheckedEntry.class.isInstance(
2692     source.getClass().getComponentType()) ? source :
2693     new Object[source.length]);
2694    
2695     for (int i = 0; i < source.length; i++)
2696     dest[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)source[i],
2697     valueType);
2698     return dest;
2699     }
2700    
2701     public <T> T[] toArray(T[] a) {
2702     // We don't pass a to s.toArray, to avoid window of
2703     // vulnerability wherein an unscrupulous multithreaded client
2704     // could get his hands on raw (unwrapped) Entries from s.
2705     Object[] arr = s.toArray(a.length==0 ? a :
2706     (T[])Array.newInstance(a.getClass().getComponentType(), 0));
2707    
2708     for (int i=0; i<arr.length; i++)
2709     arr[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)arr[i],
2710     valueType);
2711     if (arr.length > a.length)
2712     return (T[])arr;
2713    
2714     System.arraycopy(arr, 0, a, 0, arr.length);
2715     if (a.length > arr.length)
2716     a[arr.length] = null;
2717     return a;
2718     }
2719    
2720     /**
2721     * This method is overridden to protect the backing set against
2722     * an object with a nefarious equals function that senses
2723     * that the equality-candidate is Map.Entry and calls its
2724     * setValue method.
2725     */
2726     public boolean contains(Object o) {
2727     if (!(o instanceof Map.Entry))
2728     return false;
2729     return s.contains(
2730     new CheckedEntry<K,V>((Map.Entry<K,V>) o, valueType));
2731     }
2732    
2733     /**
2734     * The next two methods are overridden to protect against
2735     * an unscrupulous collection whose contains(Object o) method
2736     * senses when o is a Map.Entry, and calls o.setValue.
2737     */
2738     public boolean containsAll(Collection<?> coll) {
2739     Iterator<?> e = coll.iterator();
2740     while (e.hasNext())
2741     if (!contains(e.next())) // Invokes safe contains() above
2742     return false;
2743     return true;
2744     }
2745    
2746     public boolean equals(Object o) {
2747     if (o == this)
2748     return true;
2749     if (!(o instanceof Set))
2750     return false;
2751     Set<?> that = (Set<?>) o;
2752     if (that.size() != s.size())
2753     return false;
2754     return containsAll(that); // Invokes safe containsAll() above
2755     }
2756    
2757     /**
2758     * This "wrapper class" serves two purposes: it prevents
2759     * the client from modifying the backing Map, by short-circuiting
2760     * the setValue method, and it protects the backing Map against
2761     * an ill-behaved Map.Entry that attempts to modify another
2762     * Map Entry when asked to perform an equality check.
2763     */
2764     private static class CheckedEntry<K,V> implements Map.Entry<K,V> {
2765     private Map.Entry<K, V> e;
2766     private Class<V> valueType;
2767    
2768     CheckedEntry(Map.Entry<K, V> e, Class<V> valueType) {
2769     this.e = e;
2770     this.valueType = valueType;
2771     }
2772    
2773     public K getKey() { return e.getKey(); }
2774     public V getValue() { return e.getValue(); }
2775     public int hashCode() { return e.hashCode(); }
2776     public String toString() { return e.toString(); }
2777    
2778    
2779     public V setValue(V value) {
2780     if (!valueType.isInstance(value))
2781     throw new ClassCastException("Attempt to insert " +
2782     value.getClass() +
2783     " value into collection with value type " + valueType);
2784     return e.setValue(value);
2785     }
2786    
2787     public boolean equals(Object o) {
2788     if (!(o instanceof Map.Entry))
2789     return false;
2790     Map.Entry t = (Map.Entry)o;
2791     return eq(e.getKey(), t.getKey()) &&
2792     eq(e.getValue(), t.getValue());
2793     }
2794     }
2795     }
2796     }
2797    
2798     /**
2799     * Returns a dynamically typesafe view of the specified sorted map. Any
2800     * attempt to insert a mapping whose key or value have the wrong type will
2801     * result in an immediate <tt>ClassCastException</tt>. Similarly, any
2802     * attempt to modify the value currently associated with a key will result
2803     * in an immediate <tt>ClassCastException</tt>, whether the modification
2804     * is attempted directly through the map itself, or through a {@link
2805     * Map.Entry} instance obtained from the map's {@link Map#entrySet() entry
2806     * set} view.
2807     *
2808     * <p>Assuming a map contains no incorrectly typed keys or values
2809     * prior to the time a dynamically typesafe view is generated, and
2810     * that all subsequent access to the map takes place through the view
2811     * (or one of its collection views), it is <i>guaranteed</i> that the
2812     * map cannot contain an incorrectly typed key or value.
2813     *
2814     * <p>A discussion of the use of dynamically typesafe views may be
2815     * found in the documentation for the {@link #checkedCollection checkedCollection}
2816     * method.
2817     *
2818     * <p>The returned map will be serializable if the specified map is
2819     * serializable.
2820     *
2821     * @param m the map for which a dynamically typesafe view is to be
2822     * returned
2823     * @param keyType the type of key that <tt>m</tt> is permitted to hold
2824     * @param valueType the type of value that <tt>m</tt> is permitted to hold
2825     * @return a dynamically typesafe view of the specified map
2826     * @since 1.5
2827     */
2828     public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
2829     Class<K> keyType,
2830     Class<V> valueType) {
2831     return new CheckedSortedMap<K,V>(m, keyType, valueType);
2832     }
2833    
2834     /**
2835     * @serial include
2836     */
2837     static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
2838     implements SortedMap<K,V>, Serializable
2839     {
2840     private static final long serialVersionUID = 1599671320688067438L;
2841    
2842     private final SortedMap<K, V> sm;
2843    
2844     CheckedSortedMap(SortedMap<K, V> m,
2845     Class<K> keyType, Class<V> valueType) {
2846     super(m, keyType, valueType);
2847     sm = m;
2848     }
2849    
2850     public Comparator<? super K> comparator() { return sm.comparator(); }
2851     public K firstKey() { return sm.firstKey(); }
2852     public K lastKey() { return sm.lastKey(); }
2853    
2854     public SortedMap<K,V> subMap(K fromKey, K toKey) {
2855     return new CheckedSortedMap<K,V>(sm.subMap(fromKey, toKey),
2856     keyType, valueType);
2857     }
2858    
2859     public SortedMap<K,V> headMap(K toKey) {
2860     return new CheckedSortedMap<K,V>(sm.headMap(toKey),
2861     keyType, valueType);
2862     }
2863    
2864     public SortedMap<K,V> tailMap(K fromKey) {
2865     return new CheckedSortedMap<K,V>(sm.tailMap(fromKey),
2866     keyType, valueType);
2867     }
2868     }
2869    
2870     // Miscellaneous
2871    
2872     /**
2873     * The empty set (immutable). This set is serializable.
2874     *
2875     * @see #emptySet()
2876     */
2877     public static final Set EMPTY_SET = new EmptySet();
2878    
2879     /**
2880     * Returns the empty set (immutable). This set is serializable.
2881     * Unlike the like-named field, this method is parameterized.
2882     *
2883     * <p>This example illustrates the type-safe way to obtain an empty set:
2884     * <pre>
2885     * Set&lt;String&gt; s = Collections.emptySet();
2886     * </pre>
2887     * Implementation note: Implementations of this method need not
2888     * create a separate <tt>Set</tt> object for each call. Using this
2889     * method is likely to have comparable cost to using the like-named
2890     * field. (Unlike this method, the field does not provide type safety.)
2891     *
2892     * @see #EMPTY_SET
2893     * @since 1.5
2894     */
2895     public static final <T> Set<T> emptySet() {
2896     return (Set<T>) EMPTY_SET;
2897     }
2898    
2899     /**
2900     * @serial include
2901     */
2902     private static class EmptySet extends AbstractSet<Object> implements Serializable {
2903     // use serialVersionUID from JDK 1.2.2 for interoperability
2904     private static final long serialVersionUID = 1582296315990362920L;
2905    
2906     public Iterator<Object> iterator() {
2907     return new Iterator<Object>() {
2908     public boolean hasNext() {
2909     return false;
2910     }
2911     public Object next() {
2912     throw new NoSuchElementException();
2913     }
2914     public void remove() {
2915     throw new UnsupportedOperationException();
2916     }
2917     };
2918     }
2919    
2920     public int size() {return 0;}
2921    
2922     public boolean contains(Object obj) {return false;}
2923    
2924     // Preserves singleton property
2925     private Object readResolve() {
2926     return EMPTY_SET;
2927     }
2928     }
2929    
2930     /**
2931     * The empty list (immutable). This list is serializable.
2932     *
2933     * @see #emptyList()
2934     */
2935     public static final List EMPTY_LIST = new EmptyList();
2936    
2937     /**
2938     * Returns the empty list (immutable). This list is serializable.
2939     *
2940     * <p>This example illustrates the type-safe way to obtain an empty list:
2941     * <pre>
2942     * List&lt;String&gt; s = Collections.emptyList();
2943     * </pre>
2944     * Implementation note: Implementations of this method need not
2945     * create a separate <tt>List</tt> object for each call. Using this
2946     * method is likely to have comparable cost to using the like-named
2947     * field. (Unlike this method, the field does not provide type safety.)
2948     *
2949     * @see #EMPTY_LIST
2950     * @since 1.5
2951     */
2952     public static final <T> List<T> emptyList() {
2953     return (List<T>) EMPTY_LIST;
2954     }
2955    
2956     /**
2957     * @serial include
2958     */
2959     private static class EmptyList
2960     extends AbstractList<Object>
2961     implements RandomAccess, Serializable {
2962     // use serialVersionUID from JDK 1.2.2 for interoperability
2963     private static final long serialVersionUID = 8842843931221139166L;
2964    
2965     public int size() {return 0;}
2966    
2967     public boolean contains(Object obj) {return false;}
2968    
2969     public Object get(int index) {
2970     throw new IndexOutOfBoundsException("Index: "+index);
2971     }
2972    
2973     // Preserves singleton property
2974     private Object readResolve() {
2975     return EMPTY_LIST;
2976     }
2977     }
2978    
2979     /**
2980     * The empty map (immutable). This map is serializable.
2981     *
2982     * @see #emptyMap()
2983     * @since 1.3
2984     */
2985     public static final Map EMPTY_MAP = new EmptyMap();
2986    
2987     /**
2988     * Returns the empty map (immutable). This map is serializable.
2989     *
2990     * <p>This example illustrates the type-safe way to obtain an empty set:
2991     * <pre>
2992     * Map&lt;String, Date&gt; s = Collections.emptyMap();
2993     * </pre>
2994     * Implementation note: Implementations of this method need not
2995     * create a separate <tt>Map</tt> object for each call. Using this
2996     * method is likely to have comparable cost to using the like-named
2997     * field. (Unlike this method, the field does not provide type safety.)
2998     *
2999     * @see #EMPTY_MAP
3000     * @since 1.5
3001     */
3002     public static final <K,V> Map<K,V> emptyMap() {
3003     return (Map<K,V>) EMPTY_MAP;
3004     }
3005    
3006     private static class EmptyMap
3007     extends AbstractMap<Object,Object>
3008     implements Serializable {
3009    
3010     private static final long serialVersionUID = 6428348081105594320L;
3011    
3012     public int size() {return 0;}
3013    
3014     public boolean isEmpty() {return true;}
3015    
3016     public boolean containsKey(Object key) {return false;}
3017    
3018     public boolean containsValue(Object value) {return false;}
3019    
3020     public Object get(Object key) {return null;}
3021    
3022     public Set<Object> keySet() {return Collections.<Object>emptySet();}
3023    
3024     public Collection<Object> values() {return Collections.<Object>emptySet();}
3025    
3026     public Set<Map.Entry<Object,Object>> entrySet() {
3027     return Collections.emptySet();
3028     }
3029    
3030     public boolean equals(Object o) {
3031     return (o instanceof Map) && ((Map)o).size()==0;
3032     }
3033    
3034     public int hashCode() {return 0;}
3035    
3036     // Preserves singleton property
3037     private Object readResolve() {
3038     return EMPTY_MAP;
3039     }
3040     }
3041    
3042     /**
3043     * Returns an immutable set containing only the specified object.
3044     * The returned set is serializable.
3045     *
3046     * @param o the sole object to be stored in the returned set.
3047     * @return an immutable set containing only the specified object.
3048     */
3049     public static <T> Set<T> singleton(T o) {
3050     return new SingletonSet<T>(o);
3051     }
3052    
3053     /**
3054     * @serial include
3055     */
3056     private static class SingletonSet<E>
3057     extends AbstractSet<E>
3058     implements Serializable
3059     {
3060     // use serialVersionUID from JDK 1.2.2 for interoperability
3061     private static final long serialVersionUID = 3193687207550431679L;
3062    
3063     final private E element;
3064    
3065 jsr166 1.5 SingletonSet(E e) {element = e;}
3066 dl 1.1
3067     public Iterator<E> iterator() {
3068     return new Iterator<E>() {
3069     private boolean hasNext = true;
3070     public boolean hasNext() {
3071     return hasNext;
3072     }
3073     public E next() {
3074     if (hasNext) {
3075     hasNext = false;
3076     return element;
3077     }
3078     throw new NoSuchElementException();
3079     }
3080     public void remove() {
3081     throw new UnsupportedOperationException();
3082     }
3083     };
3084     }
3085    
3086     public int size() {return 1;}
3087    
3088     public boolean contains(Object o) {return eq(o, element);}
3089     }
3090    
3091     /**
3092     * Returns an immutable list containing only the specified object.
3093     * The returned list is serializable.
3094     *
3095     * @param o the sole object to be stored in the returned list.
3096     * @return an immutable list containing only the specified object.
3097     * @since 1.3
3098     */
3099     public static <T> List<T> singletonList(T o) {
3100     return new SingletonList<T>(o);
3101     }
3102    
3103     private static class SingletonList<E>
3104     extends AbstractList<E>
3105     implements RandomAccess, Serializable {
3106    
3107     static final long serialVersionUID = 3093736618740652951L;
3108    
3109     private final E element;
3110    
3111     SingletonList(E obj) {element = obj;}
3112    
3113     public int size() {return 1;}
3114    
3115     public boolean contains(Object obj) {return eq(obj, element);}
3116    
3117     public E get(int index) {
3118     if (index != 0)
3119     throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3120     return element;
3121     }
3122     }
3123    
3124     /**
3125     * Returns an immutable map, mapping only the specified key to the
3126     * specified value. The returned map is serializable.
3127     *
3128     * @param key the sole key to be stored in the returned map.
3129     * @param value the value to which the returned map maps <tt>key</tt>.
3130     * @return an immutable map containing only the specified key-value
3131     * mapping.
3132     * @since 1.3
3133     */
3134     public static <K,V> Map<K,V> singletonMap(K key, V value) {
3135     return new SingletonMap<K,V>(key, value);
3136     }
3137    
3138     private static class SingletonMap<K,V>
3139     extends AbstractMap<K,V>
3140     implements Serializable {
3141     private static final long serialVersionUID = -6979724477215052911L;
3142    
3143     private final K k;
3144     private final V v;
3145    
3146     SingletonMap(K key, V value) {
3147     k = key;
3148     v = value;
3149     }
3150    
3151     public int size() {return 1;}
3152    
3153     public boolean isEmpty() {return false;}
3154    
3155     public boolean containsKey(Object key) {return eq(key, k);}
3156    
3157     public boolean containsValue(Object value) {return eq(value, v);}
3158    
3159     public V get(Object key) {return (eq(key, k) ? v : null);}
3160    
3161     private transient Set<K> keySet = null;
3162     private transient Set<Map.Entry<K,V>> entrySet = null;
3163     private transient Collection<V> values = null;
3164    
3165     public Set<K> keySet() {
3166     if (keySet==null)
3167     keySet = singleton(k);
3168     return keySet;
3169     }
3170    
3171     public Set<Map.Entry<K,V>> entrySet() {
3172     if (entrySet==null)
3173 jsr166 1.4 entrySet = Collections.<Map.Entry<K,V>>singleton(
3174     new SimpleImmutableEntry<K,V>(k, v));
3175 dl 1.1 return entrySet;
3176     }
3177    
3178     public Collection<V> values() {
3179     if (values==null)
3180     values = singleton(v);
3181     return values;
3182     }
3183    
3184     }
3185    
3186     /**
3187     * Returns an immutable list consisting of <tt>n</tt> copies of the
3188     * specified object. The newly allocated data object is tiny (it contains
3189     * a single reference to the data object). This method is useful in
3190     * combination with the <tt>List.addAll</tt> method to grow lists.
3191     * The returned list is serializable.
3192     *
3193     * @param n the number of elements in the returned list.
3194     * @param o the element to appear repeatedly in the returned list.
3195     * @return an immutable list consisting of <tt>n</tt> copies of the
3196     * specified object.
3197     * @throws IllegalArgumentException if n &lt; 0.
3198     * @see List#addAll(Collection)
3199     * @see List#addAll(int, Collection)
3200     */
3201     public static <T> List<T> nCopies(int n, T o) {
3202     return new CopiesList<T>(n, o);
3203     }
3204    
3205     /**
3206     * @serial include
3207     */
3208     private static class CopiesList<E>
3209     extends AbstractList<E>
3210     implements RandomAccess, Serializable
3211     {
3212     static final long serialVersionUID = 2739099268398711800L;
3213    
3214     int n;
3215     E element;
3216    
3217 jsr166 1.5 CopiesList(int n, E e) {
3218 dl 1.1 if (n < 0)
3219     throw new IllegalArgumentException("List length = " + n);
3220     this.n = n;
3221 jsr166 1.5 element = e;
3222 dl 1.1 }
3223    
3224     public int size() {
3225     return n;
3226     }
3227    
3228     public boolean contains(Object obj) {
3229     return n != 0 && eq(obj, element);
3230     }
3231    
3232     public E get(int index) {
3233     if (index<0 || index>=n)
3234     throw new IndexOutOfBoundsException("Index: "+index+
3235     ", Size: "+n);
3236     return element;
3237     }
3238     }
3239    
3240     /**
3241     * Returns a comparator that imposes the reverse of the <i>natural
3242     * ordering</i> on a collection of objects that implement the
3243     * <tt>Comparable</tt> interface. (The natural ordering is the ordering
3244     * imposed by the objects' own <tt>compareTo</tt> method.) This enables a
3245     * simple idiom for sorting (or maintaining) collections (or arrays) of
3246     * objects that implement the <tt>Comparable</tt> interface in
3247     * reverse-natural-order. For example, suppose a is an array of
3248     * strings. Then: <pre>
3249     * Arrays.sort(a, Collections.reverseOrder());
3250     * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
3251     *
3252     * The returned comparator is serializable.
3253     *
3254     * @return a comparator that imposes the reverse of the <i>natural
3255     * ordering</i> on a collection of objects that implement
3256     * the <tt>Comparable</tt> interface.
3257     * @see Comparable
3258     */
3259     public static <T> Comparator<T> reverseOrder() {
3260     return (Comparator<T>) REVERSE_ORDER;
3261     }
3262    
3263     private static final Comparator REVERSE_ORDER = new ReverseComparator();
3264    
3265     /**
3266     * @serial include
3267     */
3268     private static class ReverseComparator<T>
3269     implements Comparator<Comparable<Object>>, Serializable {
3270    
3271     // use serialVersionUID from JDK 1.2.2 for interoperability
3272     private static final long serialVersionUID = 7207038068494060240L;
3273    
3274     public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3275     return c2.compareTo(c1);
3276     }
3277     }
3278    
3279     /**
3280     * Returns a comparator that imposes the reverse ordering of the specified
3281     * comparator. If the specified comparator is null, this method is
3282     * equivalent to {@link #reverseOrder()} (in other words, it returns a
3283     * comparator that imposes the reverse of the <i>natural ordering</i> on a
3284     * collection of objects that implement the Comparable interface).
3285     *
3286     * <p>The returned comparator is serializable (assuming the specified
3287     * comparator is also serializable or null).
3288     *
3289     * @return a comparator that imposes the reverse ordering of the
3290     * specified comparator.
3291     * @since 1.5
3292     */
3293     public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3294     if (cmp == null)
3295     return new ReverseComparator(); // Unchecked warning!!
3296 jsr166 1.4
3297 dl 1.1 return new ReverseComparator2<T>(cmp);
3298     }
3299 jsr166 1.4
3300 dl 1.1 /**
3301     * @serial include
3302     */
3303     private static class ReverseComparator2<T> implements Comparator<T>,
3304     Serializable
3305     {
3306     private static final long serialVersionUID = 4374092139857L;
3307 jsr166 1.4
3308 dl 1.1 /**
3309     * The comparator specified in the static factory. This will never
3310     * be null, as the static factory returns a ReverseComparator
3311     * instance if its argument is null.
3312     *
3313     * @serial
3314     */
3315     private Comparator<T> cmp;
3316 jsr166 1.4
3317 dl 1.1 ReverseComparator2(Comparator<T> cmp) {
3318     assert cmp != null;
3319     this.cmp = cmp;
3320     }
3321 jsr166 1.4
3322 dl 1.1 public int compare(T t1, T t2) {
3323     return cmp.compare(t2, t1);
3324     }
3325     }
3326    
3327     /**
3328     * Returns an enumeration over the specified collection. This provides
3329     * interoperability with legacy APIs that require an enumeration
3330     * as input.
3331     *
3332     * @param c the collection for which an enumeration is to be returned.
3333     * @return an enumeration over the specified collection.
3334     * @see Enumeration
3335     */
3336     public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3337     return new Enumeration<T>() {
3338     Iterator<T> i = c.iterator();
3339    
3340     public boolean hasMoreElements() {
3341     return i.hasNext();
3342     }
3343    
3344     public T nextElement() {
3345     return i.next();
3346     }
3347     };
3348     }
3349    
3350     /**
3351     * Returns an array list containing the elements returned by the
3352     * specified enumeration in the order they are returned by the
3353     * enumeration. This method provides interoperability between
3354     * legacy APIs that return enumerations and new APIs that require
3355     * collections.
3356     *
3357     * @param e enumeration providing elements for the returned
3358     * array list
3359     * @return an array list containing the elements returned
3360     * by the specified enumeration.
3361     * @since 1.4
3362     * @see Enumeration
3363     * @see ArrayList
3364     */
3365     public static <T> ArrayList<T> list(Enumeration<T> e) {
3366     ArrayList<T> l = new ArrayList<T>();
3367     while (e.hasMoreElements())
3368     l.add(e.nextElement());
3369     return l;
3370     }
3371    
3372     /**
3373     * Returns true if the specified arguments are equal, or both null.
3374     */
3375     private static boolean eq(Object o1, Object o2) {
3376     return (o1==null ? o2==null : o1.equals(o2));
3377     }
3378    
3379     /**
3380     * Returns the number of elements in the specified collection equal to the
3381     * specified object. More formally, returns the number of elements
3382     * <tt>e</tt> in the collection such that
3383     * <tt>(o == null ? e == null : o.equals(e))</tt>.
3384     *
3385     * @param c the collection in which to determine the frequency
3386     * of <tt>o</tt>
3387     * @param o the object whose frequency is to be determined
3388     * @throws NullPointerException if <tt>c</tt> is null
3389     * @since 1.5
3390     */
3391     public static int frequency(Collection<?> c, Object o) {
3392     int result = 0;
3393     if (o == null) {
3394     for (Object e : c)
3395     if (e == null)
3396     result++;
3397     } else {
3398     for (Object e : c)
3399     if (o.equals(e))
3400     result++;
3401     }
3402     return result;
3403     }
3404    
3405     /**
3406     * Returns <tt>true</tt> if the two specified collections have no
3407     * elements in common.
3408     *
3409     * <p>Care must be exercised if this method is used on collections that
3410     * do not comply with the general contract for <tt>Collection</tt>.
3411     * Implementations may elect to iterate over either collection and test
3412     * for containment in the other collection (or to perform any equivalent
3413     * computation). If either collection uses a nonstandard equality test
3414     * (as does a {@link SortedSet} whose ordering is not <i>compatible with
3415     * equals</i>, or the key set of an {@link IdentityHashMap}), both
3416     * collections must use the same nonstandard equality test, or the
3417     * result of this method is undefined.
3418     *
3419     * <p>Note that it is permissible to pass the same collection in both
3420     * parameters, in which case the method will return true if and only if
3421     * the collection is empty.
3422     *
3423     * @param c1 a collection
3424     * @param c2 a collection
3425     * @throws NullPointerException if either collection is null
3426     * @since 1.5
3427     */
3428     public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
3429     /*
3430     * We're going to iterate through c1 and test for inclusion in c2.
3431     * If c1 is a Set and c2 isn't, swap the collections. Otherwise,
3432     * place the shorter collection in c1. Hopefully this heuristic
3433     * will minimize the cost of the operation.
3434     */
3435     if ((c1 instanceof Set) && !(c2 instanceof Set) ||
3436     (c1.size() > c2.size())) {
3437     Collection<?> tmp = c1;
3438     c1 = c2;
3439     c2 = tmp;
3440     }
3441 jsr166 1.4
3442 dl 1.1 for (Object e : c1)
3443     if (c2.contains(e))
3444     return false;
3445     return true;
3446     }
3447    
3448     /**
3449     * Adds all of the specified elements to the specified collection.
3450     * Elements to be added may be specified individually or as an array.
3451     * The behavior of this convenience method is identical to that of
3452     * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
3453     * to run significantly faster under most implementations.
3454     *
3455     * <p>When elements are specified individually, this method provides a
3456     * convenient way to add a few elements to an existing collection:
3457     * <pre>
3458     * Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
3459     * </pre>
3460     *
3461     * @param c the collection into which <tt>elements</tt> are to be inserted
3462     * @param a the elements to insert into <tt>c</tt>
3463     * @return <tt>true</tt> if the collection changed as a result of the call
3464     * @throws UnsupportedOperationException if <tt>c</tt> does not support
3465 jsr166 1.4 * the <tt>add</tt> operation.
3466 dl 1.1 * @throws NullPointerException if <tt>elements</tt> contains one or more
3467 jsr166 1.6 * null values and <tt>c</tt> does not permit null elements, or
3468 dl 1.1 * if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
3469 jsr166 1.6 * @throws IllegalArgumentException if some property of a value in
3470 dl 1.1 * <tt>elements</tt> prevents it from being added to <tt>c</tt>
3471     * @see Collection#addAll(Collection)
3472     * @since 1.5
3473     */
3474     public static <T> boolean addAll(Collection<? super T> c, T... a) {
3475     boolean result = false;
3476     for (T e : a)
3477     result |= c.add(e);
3478     return result;
3479     }
3480    
3481     /**
3482     * Returns a set backed by the specified map. The resulting set displays
3483     * the same ordering, concurrency, and performance characteristics as the
3484     * backing map. In essence, this factory method provides a {@link Set}
3485     * implementation corresponding to any {@link Map} implementation. There
3486     * is no need to use this method on a {@link Map} implementation that
3487     * already has a corresponding {@link Set} implementation (such as {@link
3488     * HashMap} or {@link TreeMap}).
3489     *
3490     * <p>Each method invocation on the set returned by this method results in
3491     * exactly one method invocation on the backing map or its <tt>keySet</tt>
3492     * view, with one exception. The <tt>addAll</tt> method is implemented
3493     * as a sequence of <tt>put</tt> invocations on the backing map.
3494     *
3495     * <p>The specified map must be empty at the time this method is invoked,
3496     * and should not be accessed directly after this method returns. These
3497     * conditions are ensured if the map is created empty, passed directly
3498     * to this method, and no reference to the map is retained, as illustrated
3499     * in the following code fragment:
3500     * <pre>
3501     * Set&lt;Object&gt; weakHashSet = Collections.asSet(
3502     * new WeakHashMap&lt;Object, Boolean&gt;());
3503     * </pre>
3504     *
3505     * @param map the backing map
3506     * @return the set backed by the map
3507     * @throws IllegalArgumentException if <tt>map</tt> is not empty
3508     */
3509     public static <E> Set<E> asSet(Map<E, Boolean> map) {
3510     return new MapAsSet<E>(map);
3511     }
3512    
3513     private static class MapAsSet<E> extends AbstractSet<E>
3514     implements Set<E>, Serializable
3515     {
3516     private final Map<E, Boolean> m; // The backing map
3517     private transient Set<E> keySet; // Its keySet
3518    
3519     MapAsSet(Map<E, Boolean> map) {
3520     if (!map.isEmpty())
3521     throw new IllegalArgumentException("Map is non-empty");
3522     m = map;
3523     keySet = map.keySet();
3524     }
3525    
3526     public int size() { return m.size(); }
3527     public boolean isEmpty() { return m.isEmpty(); }
3528     public boolean contains(Object o) { return m.containsKey(o); }
3529     public Iterator<E> iterator() { return keySet.iterator(); }
3530     public Object[] toArray() { return keySet.toArray(); }
3531     public <T> T[] toArray(T[] a) { return keySet.toArray(a); }
3532     public boolean add(E e) {
3533     return m.put(e, Boolean.TRUE) == null;
3534     }
3535     public boolean remove(Object o) { return m.remove(o) != null; }
3536    
3537     public boolean removeAll(Collection<?> c) {
3538     return keySet.removeAll(c);
3539     }
3540     public boolean retainAll(Collection<?> c) {
3541     return keySet.retainAll(c);
3542     }
3543     public void clear() { m.clear(); }
3544     public boolean equals(Object o) { return keySet.equals(o); }
3545     public int hashCode() { return keySet.hashCode(); }
3546    
3547     private static final long serialVersionUID = 2454657854757543876L;
3548    
3549     private void readObject(java.io.ObjectInputStream s)
3550     throws IOException, ClassNotFoundException
3551     {
3552     s.defaultReadObject();
3553     keySet = m.keySet();
3554     }
3555     }
3556    
3557     /**
3558     * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
3559     * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
3560     * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
3561     * view can be useful when you would like to use a method
3562     * requiring a <tt>Queue</tt> but you need Lifo ordering.
3563     * @param deque the Deque
3564     * @return the queue
3565     * @since 1.6
3566     */
3567     public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
3568     return new AsLIFOQueue<T>(deque);
3569     }
3570    
3571 jsr166 1.4 static class AsLIFOQueue<E> extends AbstractQueue<E>
3572 dl 1.1 implements Queue<E>, Serializable {
3573 dl 1.8 private static final long serialVersionUID = 1802017725587941708L;
3574 dl 1.1 private final Deque<E> q;
3575     AsLIFOQueue(Deque<E> q) { this.q = q; }
3576 jsr166 1.5 public boolean offer(E e) { return q.offerFirst(e); }
3577 dl 1.1 public E poll() { return q.pollFirst(); }
3578     public E remove() { return q.removeFirst(); }
3579     public E peek() { return q.peekFirst(); }
3580     public E element() { return q.getFirst(); }
3581     public int size() { return q.size(); }
3582     public boolean isEmpty() { return q.isEmpty(); }
3583     public boolean contains(Object o) { return q.contains(o); }
3584     public Iterator<E> iterator() { return q.iterator(); }
3585     public Object[] toArray() { return q.toArray(); }
3586     public <T> T[] toArray(T[] a) { return q.toArray(a); }
3587 jsr166 1.5 public boolean add(E e) { return q.offerFirst(e); }
3588 dl 1.1 public boolean remove(Object o) { return q.remove(o); }
3589     public void clear() { q.clear(); }
3590     }
3591     }