ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/Collections.java
Revision: 1.17
Committed: Sat Sep 10 19:49:05 2005 UTC (18 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.16: +1 -0 lines
Log Message:
whitespace

File Contents

# Content
1 /*
2 * %W% %E%
3 *
4 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 */
7
8 package java.util;
9 import java.util.*; // for javadoc (till 6280605 is fixed)
10 import java.io.Serializable;
11 import java.io.ObjectOutputStream;
12 import java.io.IOException;
13 import java.lang.reflect.Array;
14
15 /**
16 * This class consists exclusively of static methods that operate on or return
17 * collections. It contains polymorphic algorithms that operate on
18 * collections, "wrappers", which return a new collection backed by a
19 * specified collection, and a few other odds and ends.
20 *
21 * <p>The methods of this class all throw a <tt>NullPointerException</tt>
22 * if the collections or class objects provided to them are null.
23 *
24 * <p>The documentation for the polymorphic algorithms contained in this class
25 * generally includes a brief description of the <i>implementation</i>. Such
26 * descriptions should be regarded as <i>implementation notes</i>, rather than
27 * parts of the <i>specification</i>. Implementors should feel free to
28 * substitute other algorithms, so long as the specification itself is adhered
29 * to. (For example, the algorithm used by <tt>sort</tt> does not have to be
30 * a mergesort, but it does have to be <i>stable</i>.)
31 *
32 * <p>The "destructive" algorithms contained in this class, that is, the
33 * algorithms that modify the collection on which they operate, are specified
34 * to throw <tt>UnsupportedOperationException</tt> if the collection does not
35 * support the appropriate mutation primitive(s), such as the <tt>set</tt>
36 * method. These algorithms may, but are not required to, throw this
37 * exception if an invocation would have no effect on the collection. For
38 * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
39 * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
40 *
41 * <p>This class is a member of the
42 * <a href="{@docRoot}/../guide/collections/index.html">
43 * Java Collections Framework</a>.
44 *
45 * @author Josh Bloch
46 * @author Neal Gafter
47 * @version %I%, %G%
48 * @see Collection
49 * @see Set
50 * @see List
51 * @see Map
52 * @since 1.2
53 */
54
55 public class Collections {
56 // Suppresses default constructor, ensuring non-instantiability.
57 private Collections() {
58 }
59
60 // Algorithms
61
62 /*
63 * Tuning parameters for algorithms - Many of the List algorithms have
64 * two implementations, one of which is appropriate for RandomAccess
65 * lists, the other for "sequential." Often, the random access variant
66 * yields better performance on small sequential access lists. The
67 * tuning parameters below determine the cutoff point for what constitutes
68 * a "small" sequential access list for each algorithm. The values below
69 * were empirically determined to work well for LinkedList. Hopefully
70 * they should be reasonable for other sequential access List
71 * implementations. Those doing performance work on this code would
72 * do well to validate the values of these parameters from time to time.
73 * (The first word of each tuning parameter name is the algorithm to which
74 * it applies.)
75 */
76 private static final int BINARYSEARCH_THRESHOLD = 5000;
77 private static final int REVERSE_THRESHOLD = 18;
78 private static final int SHUFFLE_THRESHOLD = 5;
79 private static final int FILL_THRESHOLD = 25;
80 private static final int ROTATE_THRESHOLD = 100;
81 private static final int COPY_THRESHOLD = 10;
82 private static final int REPLACEALL_THRESHOLD = 11;
83 private static final int INDEXOFSUBLIST_THRESHOLD = 35;
84
85 /**
86 * Sorts the specified list into ascending order, according to the
87 * <i>natural ordering</i> of its elements. All elements in the list must
88 * implement the <tt>Comparable</tt> interface. Furthermore, all elements
89 * in the list must be <i>mutually comparable</i> (that is,
90 * <tt>e1.compareTo(e2)</tt> must not throw a <tt>ClassCastException</tt>
91 * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
92 *
93 * This sort is guaranteed to be <i>stable</i>: equal elements will
94 * not be reordered as a result of the sort.<p>
95 *
96 * The specified list must be modifiable, but need not be resizable.<p>
97 *
98 * The sorting algorithm is a modified mergesort (in which the merge is
99 * omitted if the highest element in the low sublist is less than the
100 * lowest element in the high sublist). This algorithm offers guaranteed
101 * n log(n) performance.
102 *
103 * This implementation dumps the specified list into an array, sorts
104 * the array, and iterates over the list resetting each element
105 * from the corresponding position in the array. This avoids the
106 * n<sup>2</sup> log(n) performance that would result from attempting
107 * to sort a linked list in place.
108 *
109 * @param list the list to be sorted.
110 * @throws ClassCastException if the list contains elements that are not
111 * <i>mutually comparable</i> (for example, strings and integers).
112 * @throws UnsupportedOperationException if the specified list's
113 * list-iterator does not support the <tt>set</tt> operation.
114 * @see Comparable
115 */
116 public static <T extends Comparable<? super T>> void sort(List<T> list) {
117 Object[] a = list.toArray();
118 Arrays.sort(a);
119 ListIterator<T> i = list.listIterator();
120 for (int j=0; j<a.length; j++) {
121 i.next();
122 i.set((T)a[j]);
123 }
124 }
125
126 /**
127 * Sorts the specified list according to the order induced by the
128 * specified comparator. All elements in the list must be <i>mutually
129 * comparable</i> using the specified comparator (that is,
130 * <tt>c.compare(e1, e2)</tt> must not throw a <tt>ClassCastException</tt>
131 * for any elements <tt>e1</tt> and <tt>e2</tt> in the list).<p>
132 *
133 * This sort is guaranteed to be <i>stable</i>: equal elements will
134 * not be reordered as a result of the sort.<p>
135 *
136 * The sorting algorithm is a modified mergesort (in which the merge is
137 * omitted if the highest element in the low sublist is less than the
138 * lowest element in the high sublist). This algorithm offers guaranteed
139 * n log(n) performance.
140 *
141 * The specified list must be modifiable, but need not be resizable.
142 * This implementation dumps the specified list into an array, sorts
143 * the array, and iterates over the list resetting each element
144 * from the corresponding position in the array. This avoids the
145 * n<sup>2</sup> log(n) performance that would result from attempting
146 * to sort a linked list in place.
147 *
148 * @param list the list to be sorted.
149 * @param c the comparator to determine the order of the list. A
150 * <tt>null</tt> value indicates that the elements' <i>natural
151 * ordering</i> should be used.
152 * @throws ClassCastException if the list contains elements that are not
153 * <i>mutually comparable</i> using the specified comparator.
154 * @throws UnsupportedOperationException if the specified list's
155 * list-iterator does not support the <tt>set</tt> operation.
156 * @see Comparator
157 */
158 public static <T> void sort(List<T> list, Comparator<? super T> c) {
159 Object[] a = list.toArray();
160 Arrays.sort(a, (Comparator)c);
161 ListIterator i = list.listIterator();
162 for (int j=0; j<a.length; j++) {
163 i.next();
164 i.set(a[j]);
165 }
166 }
167
168
169 /**
170 * Searches the specified list for the specified object using the binary
171 * search algorithm. The list must be sorted into ascending order
172 * according to the <i>natural ordering</i> of its elements (as by the
173 * <tt>sort(List)</tt> method, above) prior to making this call. If it is
174 * not sorted, the results are undefined. If the list contains multiple
175 * elements equal to the specified object, there is no guarantee which one
176 * will be found.<p>
177 *
178 * This method runs in log(n) time for a "random access" list (which
179 * provides near-constant-time positional access). If the specified list
180 * does not implement the {@link RandomAccess} interface and is large,
181 * this method will do an iterator-based binary search that performs
182 * O(n) link traversals and O(log n) element comparisons.
183 *
184 * @param list the list to be searched.
185 * @param key the key to be searched for.
186 * @return the index of the search key, if it is contained in the list;
187 * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
188 * <i>insertion point</i> is defined as the point at which the
189 * key would be inserted into the list: the index of the first
190 * element greater than the key, or <tt>list.size()</tt>, if all
191 * elements in the list are less than the specified key. Note
192 * that this guarantees that the return value will be &gt;= 0 if
193 * and only if the key is found.
194 * @throws ClassCastException if the list contains elements that are not
195 * <i>mutually comparable</i> (for example, strings and
196 * integers), or the search key in not mutually comparable
197 * with the elements of the list.
198 * @see Comparable
199 * @see #sort(List)
200 */
201 public static <T>
202 int binarySearch(List<? extends Comparable<? super T>> list, T key) {
203 if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
204 return Collections.indexedBinarySearch(list, key);
205 else
206 return Collections.iteratorBinarySearch(list, key);
207 }
208
209 private static <T>
210 int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
211 {
212 int low = 0;
213 int high = list.size()-1;
214
215 while (low <= high) {
216 int mid = (low + high) >> 1;
217 Comparable<? super T> midVal = list.get(mid);
218 int cmp = midVal.compareTo(key);
219
220 if (cmp < 0)
221 low = mid + 1;
222 else if (cmp > 0)
223 high = mid - 1;
224 else
225 return mid; // key found
226 }
227 return -(low + 1); // key not found
228 }
229
230 private static <T>
231 int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
232 {
233 int low = 0;
234 int high = list.size()-1;
235 ListIterator<? extends Comparable<? super T>> i = list.listIterator();
236
237 while (low <= high) {
238 int mid = (low + high) >> 1;
239 Comparable<? super T> midVal = get(i, mid);
240 int cmp = midVal.compareTo(key);
241
242 if (cmp < 0)
243 low = mid + 1;
244 else if (cmp > 0)
245 high = mid - 1;
246 else
247 return mid; // key found
248 }
249 return -(low + 1); // key not found
250 }
251
252 /**
253 * Gets the ith element from the given list by repositioning the specified
254 * list listIterator.
255 */
256 private static <T> T get(ListIterator<? extends T> i, int index) {
257 T obj = null;
258 int pos = i.nextIndex();
259 if (pos <= index) {
260 do {
261 obj = i.next();
262 } while (pos++ < index);
263 } else {
264 do {
265 obj = i.previous();
266 } while (--pos > index);
267 }
268 return obj;
269 }
270
271 /**
272 * Searches the specified list for the specified object using the binary
273 * search algorithm. The list must be sorted into ascending order
274 * according to the specified comparator (as by the <tt>Sort(List,
275 * Comparator)</tt> method, above), prior to making this call. If it is
276 * not sorted, the results are undefined. If the list contains multiple
277 * elements equal to the specified object, there is no guarantee which one
278 * will be found.<p>
279 *
280 * This method runs in log(n) time for a "random access" list (which
281 * provides near-constant-time positional access). If the specified list
282 * does not implement the {@link RandomAccess} interface and is large,
283 * this method will do an iterator-based binary search that performs
284 * O(n) link traversals and O(log n) element comparisons.
285 *
286 * @param list the list to be searched.
287 * @param key the key to be searched for.
288 * @param c the comparator by which the list is ordered. A
289 * <tt>null</tt> value indicates that the elements' <i>natural
290 * ordering</i> should be used.
291 * @return the index of the search key, if it is contained in the list;
292 * otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
293 * <i>insertion point</i> is defined as the point at which the
294 * key would be inserted into the list: the index of the first
295 * element greater than the key, or <tt>list.size()</tt>, if all
296 * elements in the list are less than the specified key. Note
297 * that this guarantees that the return value will be &gt;= 0 if
298 * and only if the key is found.
299 * @throws ClassCastException if the list contains elements that are not
300 * <i>mutually comparable</i> using the specified comparator,
301 * or the search key in not mutually comparable with the
302 * elements of the list using this comparator.
303 * @see Comparable
304 * @see #sort(List, Comparator)
305 */
306 public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
307 if (c==null)
308 return binarySearch((List) list, key);
309
310 if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
311 return Collections.indexedBinarySearch(list, key, c);
312 else
313 return Collections.iteratorBinarySearch(list, key, c);
314 }
315
316 private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
317 int low = 0;
318 int high = l.size()-1;
319
320 while (low <= high) {
321 int mid = (low + high) >> 1;
322 T midVal = l.get(mid);
323 int cmp = c.compare(midVal, key);
324
325 if (cmp < 0)
326 low = mid + 1;
327 else if (cmp > 0)
328 high = mid - 1;
329 else
330 return mid; // key found
331 }
332 return -(low + 1); // key not found
333 }
334
335 private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
336 int low = 0;
337 int high = l.size()-1;
338 ListIterator<? extends T> i = l.listIterator();
339
340 while (low <= high) {
341 int mid = (low + high) >> 1;
342 T midVal = get(i, mid);
343 int cmp = c.compare(midVal, key);
344
345 if (cmp < 0)
346 low = mid + 1;
347 else if (cmp > 0)
348 high = mid - 1;
349 else
350 return mid; // key found
351 }
352 return -(low + 1); // key not found
353 }
354
355 private interface SelfComparable extends Comparable<SelfComparable> {}
356
357
358 /**
359 * Reverses the order of the elements in the specified list.<p>
360 *
361 * This method runs in linear time.
362 *
363 * @param list the list whose elements are to be reversed.
364 * @throws UnsupportedOperationException if the specified list or
365 * its list-iterator does not support the <tt>set</tt> operation.
366 */
367 public static void reverse(List<?> list) {
368 int size = list.size();
369 if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
370 for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
371 swap(list, i, j);
372 } else {
373 ListIterator fwd = list.listIterator();
374 ListIterator rev = list.listIterator(size);
375 for (int i=0, mid=list.size()>>1; i<mid; i++) {
376 Object tmp = fwd.next();
377 fwd.set(rev.previous());
378 rev.set(tmp);
379 }
380 }
381 }
382
383 /**
384 * Randomly permutes the specified list using a default source of
385 * randomness. All permutations occur with approximately equal
386 * likelihood.<p>
387 *
388 * The hedge "approximately" is used in the foregoing description because
389 * default source of randomness is only approximately an unbiased source
390 * of independently chosen bits. If it were a perfect source of randomly
391 * chosen bits, then the algorithm would choose permutations with perfect
392 * uniformity.<p>
393 *
394 * This implementation traverses the list backwards, from the last element
395 * up to the second, repeatedly swapping a randomly selected element into
396 * the "current position". Elements are randomly selected from the
397 * portion of the list that runs from the first element to the current
398 * position, inclusive.<p>
399 *
400 * This method runs in linear time. If the specified list does not
401 * implement the {@link RandomAccess} interface and is large, this
402 * implementation dumps the specified list into an array before shuffling
403 * it, and dumps the shuffled array back into the list. This avoids the
404 * quadratic behavior that would result from shuffling a "sequential
405 * access" list in place.
406 *
407 * @param list the list to be shuffled.
408 * @throws UnsupportedOperationException if the specified list or
409 * its list-iterator does not support the <tt>set</tt> operation.
410 */
411 public static void shuffle(List<?> list) {
412 if (r == null) {
413 r = new Random();
414 }
415 shuffle(list, r);
416 }
417 private static Random r;
418
419 /**
420 * Randomly permute the specified list using the specified source of
421 * randomness. All permutations occur with equal likelihood
422 * assuming that the source of randomness is fair.<p>
423 *
424 * This implementation traverses the list backwards, from the last element
425 * up to the second, repeatedly swapping a randomly selected element into
426 * the "current position". Elements are randomly selected from the
427 * portion of the list that runs from the first element to the current
428 * position, inclusive.<p>
429 *
430 * This method runs in linear time. If the specified list does not
431 * implement the {@link RandomAccess} interface and is large, this
432 * implementation dumps the specified list into an array before shuffling
433 * it, and dumps the shuffled array back into the list. This avoids the
434 * quadratic behavior that would result from shuffling a "sequential
435 * access" list in place.
436 *
437 * @param list the list to be shuffled.
438 * @param rnd the source of randomness to use to shuffle the list.
439 * @throws UnsupportedOperationException if the specified list or its
440 * list-iterator does not support the <tt>set</tt> operation.
441 */
442 public static void shuffle(List<?> list, Random rnd) {
443 int size = list.size();
444 if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
445 for (int i=size; i>1; i--)
446 swap(list, i-1, rnd.nextInt(i));
447 } else {
448 Object arr[] = list.toArray();
449
450 // Shuffle array
451 for (int i=size; i>1; i--)
452 swap(arr, i-1, rnd.nextInt(i));
453
454 // Dump array back into list
455 ListIterator it = list.listIterator();
456 for (int i=0; i<arr.length; i++) {
457 it.next();
458 it.set(arr[i]);
459 }
460 }
461 }
462
463 /**
464 * Swaps the elements at the specified positions in the specified list.
465 * (If the specified positions are equal, invoking this method leaves
466 * the list unchanged.)
467 *
468 * @param list The list in which to swap elements.
469 * @param i the index of one element to be swapped.
470 * @param j the index of the other element to be swapped.
471 * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
472 * is out of range (i &lt; 0 || i &gt;= list.size()
473 * || j &lt; 0 || j &gt;= list.size()).
474 * @since 1.4
475 */
476 public static void swap(List<?> list, int i, int j) {
477 final List l = list;
478 l.set(i, l.set(j, l.get(i)));
479 }
480
481 /**
482 * Swaps the two specified elements in the specified array.
483 */
484 private static void swap(Object[] arr, int i, int j) {
485 Object tmp = arr[i];
486 arr[i] = arr[j];
487 arr[j] = tmp;
488 }
489
490 /**
491 * Replaces all of the elements of the specified list with the specified
492 * element. <p>
493 *
494 * This method runs in linear time.
495 *
496 * @param list the list to be filled with the specified element.
497 * @param obj The element with which to fill the specified list.
498 * @throws UnsupportedOperationException if the specified list or its
499 * list-iterator does not support the <tt>set</tt> operation.
500 */
501 public static <T> void fill(List<? super T> list, T obj) {
502 int size = list.size();
503
504 if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
505 for (int i=0; i<size; i++)
506 list.set(i, obj);
507 } else {
508 ListIterator<? super T> itr = list.listIterator();
509 for (int i=0; i<size; i++) {
510 itr.next();
511 itr.set(obj);
512 }
513 }
514 }
515
516 /**
517 * Copies all of the elements from one list into another. After the
518 * operation, the index of each copied element in the destination list
519 * will be identical to its index in the source list. The destination
520 * list must be at least as long as the source list. If it is longer, the
521 * remaining elements in the destination list are unaffected. <p>
522 *
523 * This method runs in linear time.
524 *
525 * @param dest The destination list.
526 * @param src The source list.
527 * @throws IndexOutOfBoundsException if the destination list is too small
528 * to contain the entire source List.
529 * @throws UnsupportedOperationException if the destination list's
530 * list-iterator does not support the <tt>set</tt> operation.
531 */
532 public static <T> void copy(List<? super T> dest, List<? extends T> src) {
533 int srcSize = src.size();
534 if (srcSize > dest.size())
535 throw new IndexOutOfBoundsException("Source does not fit in dest");
536
537 if (srcSize < COPY_THRESHOLD ||
538 (src instanceof RandomAccess && dest instanceof RandomAccess)) {
539 for (int i=0; i<srcSize; i++)
540 dest.set(i, src.get(i));
541 } else {
542 ListIterator<? super T> di=dest.listIterator();
543 ListIterator<? extends T> si=src.listIterator();
544 for (int i=0; i<srcSize; i++) {
545 di.next();
546 di.set(si.next());
547 }
548 }
549 }
550
551 /**
552 * Returns the minimum element of the given collection, according to the
553 * <i>natural ordering</i> of its elements. All elements in the
554 * collection must implement the <tt>Comparable</tt> interface.
555 * Furthermore, all elements in the collection must be <i>mutually
556 * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
557 * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
558 * <tt>e2</tt> in the collection).<p>
559 *
560 * This method iterates over the entire collection, hence it requires
561 * time proportional to the size of the collection.
562 *
563 * @param coll the collection whose minimum element is to be determined.
564 * @return the minimum element of the given collection, according
565 * to the <i>natural ordering</i> of its elements.
566 * @throws ClassCastException if the collection contains elements that are
567 * not <i>mutually comparable</i> (for example, strings and
568 * integers).
569 * @throws NoSuchElementException if the collection is empty.
570 * @see Comparable
571 */
572 public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
573 Iterator<? extends T> i = coll.iterator();
574 T candidate = i.next();
575
576 while (i.hasNext()) {
577 T next = i.next();
578 if (next.compareTo(candidate) < 0)
579 candidate = next;
580 }
581 return candidate;
582 }
583
584 /**
585 * Returns the minimum element of the given collection, according to the
586 * order induced by the specified comparator. All elements in the
587 * collection must be <i>mutually comparable</i> by the specified
588 * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
589 * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
590 * <tt>e2</tt> in the collection).<p>
591 *
592 * This method iterates over the entire collection, hence it requires
593 * time proportional to the size of the collection.
594 *
595 * @param coll the collection whose minimum element is to be determined.
596 * @param comp the comparator with which to determine the minimum element.
597 * A <tt>null</tt> value indicates that the elements' <i>natural
598 * ordering</i> should be used.
599 * @return the minimum element of the given collection, according
600 * to the specified comparator.
601 * @throws ClassCastException if the collection contains elements that are
602 * not <i>mutually comparable</i> using the specified comparator.
603 * @throws NoSuchElementException if the collection is empty.
604 * @see Comparable
605 */
606 public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
607 if (comp==null)
608 return (T)min((Collection<SelfComparable>) (Collection) coll);
609
610 Iterator<? extends T> i = coll.iterator();
611 T candidate = i.next();
612
613 while (i.hasNext()) {
614 T next = i.next();
615 if (comp.compare(next, candidate) < 0)
616 candidate = next;
617 }
618 return candidate;
619 }
620
621 /**
622 * Returns the maximum element of the given collection, according to the
623 * <i>natural ordering</i> of its elements. All elements in the
624 * collection must implement the <tt>Comparable</tt> interface.
625 * Furthermore, all elements in the collection must be <i>mutually
626 * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
627 * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
628 * <tt>e2</tt> in the collection).<p>
629 *
630 * This method iterates over the entire collection, hence it requires
631 * time proportional to the size of the collection.
632 *
633 * @param coll the collection whose maximum element is to be determined.
634 * @return the maximum element of the given collection, according
635 * to the <i>natural ordering</i> of its elements.
636 * @throws ClassCastException if the collection contains elements that are
637 * not <i>mutually comparable</i> (for example, strings and
638 * integers).
639 * @throws NoSuchElementException if the collection is empty.
640 * @see Comparable
641 */
642 public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
643 Iterator<? extends T> i = coll.iterator();
644 T candidate = i.next();
645
646 while (i.hasNext()) {
647 T next = i.next();
648 if (next.compareTo(candidate) > 0)
649 candidate = next;
650 }
651 return candidate;
652 }
653
654 /**
655 * Returns the maximum element of the given collection, according to the
656 * order induced by the specified comparator. All elements in the
657 * collection must be <i>mutually comparable</i> by the specified
658 * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
659 * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
660 * <tt>e2</tt> in the collection).<p>
661 *
662 * This method iterates over the entire collection, hence it requires
663 * time proportional to the size of the collection.
664 *
665 * @param coll the collection whose maximum element is to be determined.
666 * @param comp the comparator with which to determine the maximum element.
667 * A <tt>null</tt> value indicates that the elements' <i>natural
668 * ordering</i> should be used.
669 * @return the maximum element of the given collection, according
670 * to the specified comparator.
671 * @throws ClassCastException if the collection contains elements that are
672 * not <i>mutually comparable</i> using the specified comparator.
673 * @throws NoSuchElementException if the collection is empty.
674 * @see Comparable
675 */
676 public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
677 if (comp==null)
678 return (T)max((Collection<SelfComparable>) (Collection) coll);
679
680 Iterator<? extends T> i = coll.iterator();
681 T candidate = i.next();
682
683 while (i.hasNext()) {
684 T next = i.next();
685 if (comp.compare(next, candidate) > 0)
686 candidate = next;
687 }
688 return candidate;
689 }
690
691 /**
692 * Rotates the elements in the specified list by the specified distance.
693 * After calling this method, the element at index <tt>i</tt> will be
694 * the element previously at index <tt>(i - distance)</tt> mod
695 * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
696 * and <tt>list.size()-1</tt>, inclusive. (This method has no effect on
697 * the size of the list.)
698 *
699 * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
700 * After invoking <tt>Collections.rotate(list, 1)</tt> (or
701 * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
702 * <tt>[s, t, a, n, k]</tt>.
703 *
704 * <p>Note that this method can usefully be applied to sublists to
705 * move one or more elements within a list while preserving the
706 * order of the remaining elements. For example, the following idiom
707 * moves the element at index <tt>j</tt> forward to position
708 * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
709 * <pre>
710 * Collections.rotate(list.subList(j, k+1), -1);
711 * </pre>
712 * To make this concrete, suppose <tt>list</tt> comprises
713 * <tt>[a, b, c, d, e]</tt>. To move the element at index <tt>1</tt>
714 * (<tt>b</tt>) forward two positions, perform the following invocation:
715 * <pre>
716 * Collections.rotate(l.subList(1, 4), -1);
717 * </pre>
718 * The resulting list is <tt>[a, c, d, b, e]</tt>.
719 *
720 * <p>To move more than one element forward, increase the absolute value
721 * of the rotation distance. To move elements backward, use a positive
722 * shift distance.
723 *
724 * <p>If the specified list is small or implements the {@link
725 * RandomAccess} interface, this implementation exchanges the first
726 * element into the location it should go, and then repeatedly exchanges
727 * the displaced element into the location it should go until a displaced
728 * element is swapped into the first element. If necessary, the process
729 * is repeated on the second and successive elements, until the rotation
730 * is complete. If the specified list is large and doesn't implement the
731 * <tt>RandomAccess</tt> interface, this implementation breaks the
732 * list into two sublist views around index <tt>-distance mod size</tt>.
733 * Then the {@link #reverse(List)} method is invoked on each sublist view,
734 * and finally it is invoked on the entire list. For a more complete
735 * description of both algorithms, see Section 2.3 of Jon Bentley's
736 * <i>Programming Pearls</i> (Addison-Wesley, 1986).
737 *
738 * @param list the list to be rotated.
739 * @param distance the distance to rotate the list. There are no
740 * constraints on this value; it may be zero, negative, or
741 * greater than <tt>list.size()</tt>.
742 * @throws UnsupportedOperationException if the specified list or
743 * its list-iterator does not support the <tt>set</tt> operation.
744 * @since 1.4
745 */
746 public static void rotate(List<?> list, int distance) {
747 if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
748 rotate1((List)list, distance);
749 else
750 rotate2((List)list, distance);
751 }
752
753 private static <T> void rotate1(List<T> list, int distance) {
754 int size = list.size();
755 if (size == 0)
756 return;
757 distance = distance % size;
758 if (distance < 0)
759 distance += size;
760 if (distance == 0)
761 return;
762
763 for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
764 T displaced = list.get(cycleStart);
765 int i = cycleStart;
766 do {
767 i += distance;
768 if (i >= size)
769 i -= size;
770 displaced = list.set(i, displaced);
771 nMoved ++;
772 } while(i != cycleStart);
773 }
774 }
775
776 private static void rotate2(List<?> list, int distance) {
777 int size = list.size();
778 if (size == 0)
779 return;
780 int mid = -distance % size;
781 if (mid < 0)
782 mid += size;
783 if (mid == 0)
784 return;
785
786 reverse(list.subList(0, mid));
787 reverse(list.subList(mid, size));
788 reverse(list);
789 }
790
791 /**
792 * Replaces all occurrences of one specified value in a list with another.
793 * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
794 * in <tt>list</tt> such that
795 * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
796 * (This method has no effect on the size of the list.)
797 *
798 * @param list the list in which replacement is to occur.
799 * @param oldVal the old value to be replaced.
800 * @param newVal the new value with which <tt>oldVal</tt> is to be
801 * replaced.
802 * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
803 * <tt>e</tt> such that
804 * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
805 * @throws UnsupportedOperationException if the specified list or
806 * its list-iterator does not support the <tt>set</tt> operation.
807 * @since 1.4
808 */
809 public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
810 boolean result = false;
811 int size = list.size();
812 if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
813 if (oldVal==null) {
814 for (int i=0; i<size; i++) {
815 if (list.get(i)==null) {
816 list.set(i, newVal);
817 result = true;
818 }
819 }
820 } else {
821 for (int i=0; i<size; i++) {
822 if (oldVal.equals(list.get(i))) {
823 list.set(i, newVal);
824 result = true;
825 }
826 }
827 }
828 } else {
829 ListIterator<T> itr=list.listIterator();
830 if (oldVal==null) {
831 for (int i=0; i<size; i++) {
832 if (itr.next()==null) {
833 itr.set(newVal);
834 result = true;
835 }
836 }
837 } else {
838 for (int i=0; i<size; i++) {
839 if (oldVal.equals(itr.next())) {
840 itr.set(newVal);
841 result = true;
842 }
843 }
844 }
845 }
846 return result;
847 }
848
849 /**
850 * Returns the starting position of the first occurrence of the specified
851 * target list within the specified source list, or -1 if there is no
852 * such occurrence. More formally, returns the lowest index <tt>i</tt>
853 * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
854 * or -1 if there is no such index. (Returns -1 if
855 * <tt>target.size() > source.size()</tt>.)
856 *
857 * <p>This implementation uses the "brute force" technique of scanning
858 * over the source list, looking for a match with the target at each
859 * location in turn.
860 *
861 * @param source the list in which to search for the first occurrence
862 * of <tt>target</tt>.
863 * @param target the list to search for as a subList of <tt>source</tt>.
864 * @return the starting position of the first occurrence of the specified
865 * target list within the specified source list, or -1 if there
866 * is no such occurrence.
867 * @since 1.4
868 */
869 public static int indexOfSubList(List<?> source, List<?> target) {
870 int sourceSize = source.size();
871 int targetSize = target.size();
872 int maxCandidate = sourceSize - targetSize;
873
874 if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
875 (source instanceof RandomAccess&&target instanceof RandomAccess)) {
876 nextCand:
877 for (int candidate = 0; candidate <= maxCandidate; candidate++) {
878 for (int i=0, j=candidate; i<targetSize; i++, j++)
879 if (!eq(target.get(i), source.get(j)))
880 continue nextCand; // Element mismatch, try next cand
881 return candidate; // All elements of candidate matched target
882 }
883 } else { // Iterator version of above algorithm
884 ListIterator<?> si = source.listIterator();
885 nextCand:
886 for (int candidate = 0; candidate <= maxCandidate; candidate++) {
887 ListIterator<?> ti = target.listIterator();
888 for (int i=0; i<targetSize; i++) {
889 if (!eq(ti.next(), si.next())) {
890 // Back up source iterator to next candidate
891 for (int j=0; j<i; j++)
892 si.previous();
893 continue nextCand;
894 }
895 }
896 return candidate;
897 }
898 }
899 return -1; // No candidate matched the target
900 }
901
902 /**
903 * Returns the starting position of the last occurrence of the specified
904 * target list within the specified source list, or -1 if there is no such
905 * occurrence. More formally, returns the highest index <tt>i</tt>
906 * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
907 * or -1 if there is no such index. (Returns -1 if
908 * <tt>target.size() > source.size()</tt>.)
909 *
910 * <p>This implementation uses the "brute force" technique of iterating
911 * over the source list, looking for a match with the target at each
912 * location in turn.
913 *
914 * @param source the list in which to search for the last occurrence
915 * of <tt>target</tt>.
916 * @param target the list to search for as a subList of <tt>source</tt>.
917 * @return the starting position of the last occurrence of the specified
918 * target list within the specified source list, or -1 if there
919 * is no such occurrence.
920 * @since 1.4
921 */
922 public static int lastIndexOfSubList(List<?> source, List<?> target) {
923 int sourceSize = source.size();
924 int targetSize = target.size();
925 int maxCandidate = sourceSize - targetSize;
926
927 if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
928 source instanceof RandomAccess) { // Index access version
929 nextCand:
930 for (int candidate = maxCandidate; candidate >= 0; candidate--) {
931 for (int i=0, j=candidate; i<targetSize; i++, j++)
932 if (!eq(target.get(i), source.get(j)))
933 continue nextCand; // Element mismatch, try next cand
934 return candidate; // All elements of candidate matched target
935 }
936 } else { // Iterator version of above algorithm
937 if (maxCandidate < 0)
938 return -1;
939 ListIterator<?> si = source.listIterator(maxCandidate);
940 nextCand:
941 for (int candidate = maxCandidate; candidate >= 0; candidate--) {
942 ListIterator<?> ti = target.listIterator();
943 for (int i=0; i<targetSize; i++) {
944 if (!eq(ti.next(), si.next())) {
945 if (candidate != 0) {
946 // Back up source iterator to next candidate
947 for (int j=0; j<=i+1; j++)
948 si.previous();
949 }
950 continue nextCand;
951 }
952 }
953 return candidate;
954 }
955 }
956 return -1; // No candidate matched the target
957 }
958
959
960 // Unmodifiable Wrappers
961
962 /**
963 * Returns an unmodifiable view of the specified collection. This method
964 * allows modules to provide users with "read-only" access to internal
965 * collections. Query operations on the returned collection "read through"
966 * to the specified collection, and attempts to modify the returned
967 * collection, whether direct or via its iterator, result in an
968 * <tt>UnsupportedOperationException</tt>.<p>
969 *
970 * The returned collection does <i>not</i> pass the hashCode and equals
971 * operations through to the backing collection, but relies on
972 * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
973 * is necessary to preserve the contracts of these operations in the case
974 * that the backing collection is a set or a list.<p>
975 *
976 * The returned collection will be serializable if the specified collection
977 * is serializable.
978 *
979 * @param c the collection for which an unmodifiable view is to be
980 * returned.
981 * @return an unmodifiable view of the specified collection.
982 */
983 public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
984 return new UnmodifiableCollection<T>(c);
985 }
986
987 /**
988 * @serial include
989 */
990 static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
991 // use serialVersionUID from JDK 1.2.2 for interoperability
992 private static final long serialVersionUID = 1820017752578914078L;
993
994 final Collection<? extends E> c;
995
996 UnmodifiableCollection(Collection<? extends E> c) {
997 if (c==null)
998 throw new NullPointerException();
999 this.c = c;
1000 }
1001
1002 public int size() {return c.size();}
1003 public boolean isEmpty() {return c.isEmpty();}
1004 public boolean contains(Object o) {return c.contains(o);}
1005 public Object[] toArray() {return c.toArray();}
1006 public <T> T[] toArray(T[] a) {return c.toArray(a);}
1007 public String toString() {return c.toString();}
1008
1009 public Iterator<E> iterator() {
1010 return new Iterator<E>() {
1011 Iterator<? extends E> i = c.iterator();
1012
1013 public boolean hasNext() {return i.hasNext();}
1014 public E next() {return i.next();}
1015 public void remove() {
1016 throw new UnsupportedOperationException();
1017 }
1018 };
1019 }
1020
1021 public boolean add(E e){
1022 throw new UnsupportedOperationException();
1023 }
1024 public boolean remove(Object o) {
1025 throw new UnsupportedOperationException();
1026 }
1027
1028 public boolean containsAll(Collection<?> coll) {
1029 return c.containsAll(coll);
1030 }
1031 public boolean addAll(Collection<? extends E> coll) {
1032 throw new UnsupportedOperationException();
1033 }
1034 public boolean removeAll(Collection<?> coll) {
1035 throw new UnsupportedOperationException();
1036 }
1037 public boolean retainAll(Collection<?> coll) {
1038 throw new UnsupportedOperationException();
1039 }
1040 public void clear() {
1041 throw new UnsupportedOperationException();
1042 }
1043 }
1044
1045 /**
1046 * Returns an unmodifiable view of the specified set. This method allows
1047 * modules to provide users with "read-only" access to internal sets.
1048 * Query operations on the returned set "read through" to the specified
1049 * set, and attempts to modify the returned set, whether direct or via its
1050 * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1051 *
1052 * The returned set will be serializable if the specified set
1053 * is serializable.
1054 *
1055 * @param s the set for which an unmodifiable view is to be returned.
1056 * @return an unmodifiable view of the specified set.
1057 */
1058 public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1059 return new UnmodifiableSet<T>(s);
1060 }
1061
1062 /**
1063 * @serial include
1064 */
1065 static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1066 implements Set<E>, Serializable {
1067 private static final long serialVersionUID = -9215047833775013803L;
1068
1069 UnmodifiableSet(Set<? extends E> s) {super(s);}
1070 public boolean equals(Object o) {return c.equals(o);}
1071 public int hashCode() {return c.hashCode();}
1072 }
1073
1074 /**
1075 * Returns an unmodifiable view of the specified sorted set. This method
1076 * allows modules to provide users with "read-only" access to internal
1077 * sorted sets. Query operations on the returned sorted set "read
1078 * through" to the specified sorted set. Attempts to modify the returned
1079 * sorted set, whether direct, via its iterator, or via its
1080 * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1081 * an <tt>UnsupportedOperationException</tt>.<p>
1082 *
1083 * The returned sorted set will be serializable if the specified sorted set
1084 * is serializable.
1085 *
1086 * @param s the sorted set for which an unmodifiable view is to be
1087 * returned.
1088 * @return an unmodifiable view of the specified sorted set.
1089 */
1090 public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1091 return new UnmodifiableSortedSet<T>(s);
1092 }
1093
1094 /**
1095 * @serial include
1096 */
1097 static class UnmodifiableSortedSet<E>
1098 extends UnmodifiableSet<E>
1099 implements SortedSet<E>, Serializable {
1100 private static final long serialVersionUID = -4929149591599911165L;
1101 private final SortedSet<E> ss;
1102
1103 UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1104
1105 public Comparator<? super E> comparator() {return ss.comparator();}
1106
1107 public SortedSet<E> subSet(E fromElement, E toElement) {
1108 return new UnmodifiableSortedSet<E>(ss.subSet(fromElement,toElement));
1109 }
1110 public SortedSet<E> headSet(E toElement) {
1111 return new UnmodifiableSortedSet<E>(ss.headSet(toElement));
1112 }
1113 public SortedSet<E> tailSet(E fromElement) {
1114 return new UnmodifiableSortedSet<E>(ss.tailSet(fromElement));
1115 }
1116
1117 public E first() {return ss.first();}
1118 public E last() {return ss.last();}
1119 }
1120
1121 /**
1122 * Returns an unmodifiable view of the specified list. This method allows
1123 * modules to provide users with "read-only" access to internal
1124 * lists. Query operations on the returned list "read through" to the
1125 * specified list, and attempts to modify the returned list, whether
1126 * direct or via its iterator, result in an
1127 * <tt>UnsupportedOperationException</tt>.<p>
1128 *
1129 * The returned list will be serializable if the specified list
1130 * is serializable. Similarly, the returned list will implement
1131 * {@link RandomAccess} if the specified list does.
1132 *
1133 * @param list the list for which an unmodifiable view is to be returned.
1134 * @return an unmodifiable view of the specified list.
1135 */
1136 public static <T> List<T> unmodifiableList(List<? extends T> list) {
1137 return (list instanceof RandomAccess ?
1138 new UnmodifiableRandomAccessList<T>(list) :
1139 new UnmodifiableList<T>(list));
1140 }
1141
1142 /**
1143 * @serial include
1144 */
1145 static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1146 implements List<E> {
1147 static final long serialVersionUID = -283967356065247728L;
1148 final List<? extends E> list;
1149
1150 UnmodifiableList(List<? extends E> list) {
1151 super(list);
1152 this.list = list;
1153 }
1154
1155 public boolean equals(Object o) {return list.equals(o);}
1156 public int hashCode() {return list.hashCode();}
1157
1158 public E get(int index) {return list.get(index);}
1159 public E set(int index, E element) {
1160 throw new UnsupportedOperationException();
1161 }
1162 public void add(int index, E element) {
1163 throw new UnsupportedOperationException();
1164 }
1165 public E remove(int index) {
1166 throw new UnsupportedOperationException();
1167 }
1168 public int indexOf(Object o) {return list.indexOf(o);}
1169 public int lastIndexOf(Object o) {return list.lastIndexOf(o);}
1170 public boolean addAll(int index, Collection<? extends E> c) {
1171 throw new UnsupportedOperationException();
1172 }
1173 public ListIterator<E> listIterator() {return listIterator(0);}
1174
1175 public ListIterator<E> listIterator(final int index) {
1176 return new ListIterator<E>() {
1177 ListIterator<? extends E> i = list.listIterator(index);
1178
1179 public boolean hasNext() {return i.hasNext();}
1180 public E next() {return i.next();}
1181 public boolean hasPrevious() {return i.hasPrevious();}
1182 public E previous() {return i.previous();}
1183 public int nextIndex() {return i.nextIndex();}
1184 public int previousIndex() {return i.previousIndex();}
1185
1186 public void remove() {
1187 throw new UnsupportedOperationException();
1188 }
1189 public void set(E e) {
1190 throw new UnsupportedOperationException();
1191 }
1192 public void add(E e) {
1193 throw new UnsupportedOperationException();
1194 }
1195 };
1196 }
1197
1198 public List<E> subList(int fromIndex, int toIndex) {
1199 return new UnmodifiableList<E>(list.subList(fromIndex, toIndex));
1200 }
1201
1202 /**
1203 * UnmodifiableRandomAccessList instances are serialized as
1204 * UnmodifiableList instances to allow them to be deserialized
1205 * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1206 * This method inverts the transformation. As a beneficial
1207 * side-effect, it also grafts the RandomAccess marker onto
1208 * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1209 *
1210 * Note: Unfortunately, UnmodifiableRandomAccessList instances
1211 * serialized in 1.4.1 and deserialized in 1.4 will become
1212 * UnmodifiableList instances, as this method was missing in 1.4.
1213 */
1214 private Object readResolve() {
1215 return (list instanceof RandomAccess
1216 ? new UnmodifiableRandomAccessList<E>(list)
1217 : this);
1218 }
1219 }
1220
1221 /**
1222 * @serial include
1223 */
1224 static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1225 implements RandomAccess
1226 {
1227 UnmodifiableRandomAccessList(List<? extends E> list) {
1228 super(list);
1229 }
1230
1231 public List<E> subList(int fromIndex, int toIndex) {
1232 return new UnmodifiableRandomAccessList<E>(
1233 list.subList(fromIndex, toIndex));
1234 }
1235
1236 private static final long serialVersionUID = -2542308836966382001L;
1237
1238 /**
1239 * Allows instances to be deserialized in pre-1.4 JREs (which do
1240 * not have UnmodifiableRandomAccessList). UnmodifiableList has
1241 * a readResolve method that inverts this transformation upon
1242 * deserialization.
1243 */
1244 private Object writeReplace() {
1245 return new UnmodifiableList<E>(list);
1246 }
1247 }
1248
1249 /**
1250 * Returns an unmodifiable view of the specified map. This method
1251 * allows modules to provide users with "read-only" access to internal
1252 * maps. Query operations on the returned map "read through"
1253 * to the specified map, and attempts to modify the returned
1254 * map, whether direct or via its collection views, result in an
1255 * <tt>UnsupportedOperationException</tt>.<p>
1256 *
1257 * The returned map will be serializable if the specified map
1258 * is serializable.
1259 *
1260 * @param m the map for which an unmodifiable view is to be returned.
1261 * @return an unmodifiable view of the specified map.
1262 */
1263 public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1264 return new UnmodifiableMap<K,V>(m);
1265 }
1266
1267 /**
1268 * @serial include
1269 */
1270 private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1271 // use serialVersionUID from JDK 1.2.2 for interoperability
1272 private static final long serialVersionUID = -1034234728574286014L;
1273
1274 private final Map<? extends K, ? extends V> m;
1275
1276 UnmodifiableMap(Map<? extends K, ? extends V> m) {
1277 if (m==null)
1278 throw new NullPointerException();
1279 this.m = m;
1280 }
1281
1282 public int size() {return m.size();}
1283 public boolean isEmpty() {return m.isEmpty();}
1284 public boolean containsKey(Object key) {return m.containsKey(key);}
1285 public boolean containsValue(Object val) {return m.containsValue(val);}
1286 public V get(Object key) {return m.get(key);}
1287
1288 public V put(K key, V value) {
1289 throw new UnsupportedOperationException();
1290 }
1291 public V remove(Object key) {
1292 throw new UnsupportedOperationException();
1293 }
1294 public void putAll(Map<? extends K, ? extends V> m) {
1295 throw new UnsupportedOperationException();
1296 }
1297 public void clear() {
1298 throw new UnsupportedOperationException();
1299 }
1300
1301 private transient Set<K> keySet = null;
1302 private transient Set<Map.Entry<K,V>> entrySet = null;
1303 private transient Collection<V> values = null;
1304
1305 public Set<K> keySet() {
1306 if (keySet==null)
1307 keySet = unmodifiableSet(m.keySet());
1308 return keySet;
1309 }
1310
1311 public Set<Map.Entry<K,V>> entrySet() {
1312 if (entrySet==null)
1313 entrySet = new UnmodifiableEntrySet<K,V>(m.entrySet());
1314 return entrySet;
1315 }
1316
1317 public Collection<V> values() {
1318 if (values==null)
1319 values = unmodifiableCollection(m.values());
1320 return values;
1321 }
1322
1323 public boolean equals(Object o) {return m.equals(o);}
1324 public int hashCode() {return m.hashCode();}
1325 public String toString() {return m.toString();}
1326
1327 /**
1328 * We need this class in addition to UnmodifiableSet as
1329 * Map.Entries themselves permit modification of the backing Map
1330 * via their setValue operation. This class is subtle: there are
1331 * many possible attacks that must be thwarted.
1332 *
1333 * @serial include
1334 */
1335 static class UnmodifiableEntrySet<K,V>
1336 extends UnmodifiableSet<Map.Entry<K,V>> {
1337 private static final long serialVersionUID = 7854390611657943733L;
1338
1339 UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1340 super((Set)s);
1341 }
1342 public Iterator<Map.Entry<K,V>> iterator() {
1343 return new Iterator<Map.Entry<K,V>>() {
1344 Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1345
1346 public boolean hasNext() {
1347 return i.hasNext();
1348 }
1349 public Map.Entry<K,V> next() {
1350 return new UnmodifiableEntry<K,V>(i.next());
1351 }
1352 public void remove() {
1353 throw new UnsupportedOperationException();
1354 }
1355 };
1356 }
1357
1358 public Object[] toArray() {
1359 Object[] a = c.toArray();
1360 for (int i=0; i<a.length; i++)
1361 a[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)a[i]);
1362 return a;
1363 }
1364
1365 public <T> T[] toArray(T[] a) {
1366 // We don't pass a to c.toArray, to avoid window of
1367 // vulnerability wherein an unscrupulous multithreaded client
1368 // could get his hands on raw (unwrapped) Entries from c.
1369 Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1370
1371 for (int i=0; i<arr.length; i++)
1372 arr[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)arr[i]);
1373
1374 if (arr.length > a.length)
1375 return (T[])arr;
1376
1377 System.arraycopy(arr, 0, a, 0, arr.length);
1378 if (a.length > arr.length)
1379 a[arr.length] = null;
1380 return a;
1381 }
1382
1383 /**
1384 * This method is overridden to protect the backing set against
1385 * an object with a nefarious equals function that senses
1386 * that the equality-candidate is Map.Entry and calls its
1387 * setValue method.
1388 */
1389 public boolean contains(Object o) {
1390 if (!(o instanceof Map.Entry))
1391 return false;
1392 return c.contains(new UnmodifiableEntry<K,V>((Map.Entry<K,V>) o));
1393 }
1394
1395 /**
1396 * The next two methods are overridden to protect against
1397 * an unscrupulous List whose contains(Object o) method senses
1398 * when o is a Map.Entry, and calls o.setValue.
1399 */
1400 public boolean containsAll(Collection<?> coll) {
1401 Iterator<?> e = coll.iterator();
1402 while (e.hasNext())
1403 if (!contains(e.next())) // Invokes safe contains() above
1404 return false;
1405 return true;
1406 }
1407 public boolean equals(Object o) {
1408 if (o == this)
1409 return true;
1410
1411 if (!(o instanceof Set))
1412 return false;
1413 Set s = (Set) o;
1414 if (s.size() != c.size())
1415 return false;
1416 return containsAll(s); // Invokes safe containsAll() above
1417 }
1418
1419 /**
1420 * This "wrapper class" serves two purposes: it prevents
1421 * the client from modifying the backing Map, by short-circuiting
1422 * the setValue method, and it protects the backing Map against
1423 * an ill-behaved Map.Entry that attempts to modify another
1424 * Map Entry when asked to perform an equality check.
1425 */
1426 private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1427 private Map.Entry<? extends K, ? extends V> e;
1428
1429 UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1430
1431 public K getKey() {return e.getKey();}
1432 public V getValue() {return e.getValue();}
1433 public V setValue(V value) {
1434 throw new UnsupportedOperationException();
1435 }
1436 public int hashCode() {return e.hashCode();}
1437 public boolean equals(Object o) {
1438 if (!(o instanceof Map.Entry))
1439 return false;
1440 Map.Entry t = (Map.Entry)o;
1441 return eq(e.getKey(), t.getKey()) &&
1442 eq(e.getValue(), t.getValue());
1443 }
1444 public String toString() {return e.toString();}
1445 }
1446 }
1447 }
1448
1449 /**
1450 * Returns an unmodifiable view of the specified sorted map. This method
1451 * allows modules to provide users with "read-only" access to internal
1452 * sorted maps. Query operations on the returned sorted map "read through"
1453 * to the specified sorted map. Attempts to modify the returned
1454 * sorted map, whether direct, via its collection views, or via its
1455 * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1456 * an <tt>UnsupportedOperationException</tt>.<p>
1457 *
1458 * The returned sorted map will be serializable if the specified sorted map
1459 * is serializable.
1460 *
1461 * @param m the sorted map for which an unmodifiable view is to be
1462 * returned.
1463 * @return an unmodifiable view of the specified sorted map.
1464 */
1465 public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1466 return new UnmodifiableSortedMap<K,V>(m);
1467 }
1468
1469 /**
1470 * @serial include
1471 */
1472 static class UnmodifiableSortedMap<K,V>
1473 extends UnmodifiableMap<K,V>
1474 implements SortedMap<K,V>, Serializable {
1475 private static final long serialVersionUID = -8806743815996713206L;
1476
1477 private final SortedMap<K, ? extends V> sm;
1478
1479 UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1480
1481 public Comparator<? super K> comparator() {return sm.comparator();}
1482
1483 public SortedMap<K,V> subMap(K fromKey, K toKey) {
1484 return new UnmodifiableSortedMap<K,V>(sm.subMap(fromKey, toKey));
1485 }
1486 public SortedMap<K,V> headMap(K toKey) {
1487 return new UnmodifiableSortedMap<K,V>(sm.headMap(toKey));
1488 }
1489 public SortedMap<K,V> tailMap(K fromKey) {
1490 return new UnmodifiableSortedMap<K,V>(sm.tailMap(fromKey));
1491 }
1492
1493 public K firstKey() {return sm.firstKey();}
1494 public K lastKey() {return sm.lastKey();}
1495 }
1496
1497
1498 // Synch Wrappers
1499
1500 /**
1501 * Returns a synchronized (thread-safe) collection backed by the specified
1502 * collection. In order to guarantee serial access, it is critical that
1503 * <strong>all</strong> access to the backing collection is accomplished
1504 * through the returned collection.<p>
1505 *
1506 * It is imperative that the user manually synchronize on the returned
1507 * collection when iterating over it:
1508 * <pre>
1509 * Collection c = Collections.synchronizedCollection(myCollection);
1510 * ...
1511 * synchronized(c) {
1512 * Iterator i = c.iterator(); // Must be in the synchronized block
1513 * while (i.hasNext())
1514 * foo(i.next());
1515 * }
1516 * </pre>
1517 * Failure to follow this advice may result in non-deterministic behavior.
1518 *
1519 * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1520 * and <tt>equals</tt> operations through to the backing collection, but
1521 * relies on <tt>Object</tt>'s equals and hashCode methods. This is
1522 * necessary to preserve the contracts of these operations in the case
1523 * that the backing collection is a set or a list.<p>
1524 *
1525 * The returned collection will be serializable if the specified collection
1526 * is serializable.
1527 *
1528 * @param c the collection to be "wrapped" in a synchronized collection.
1529 * @return a synchronized view of the specified collection.
1530 */
1531 public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1532 return new SynchronizedCollection<T>(c);
1533 }
1534
1535 static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1536 return new SynchronizedCollection<T>(c, mutex);
1537 }
1538
1539 /**
1540 * @serial include
1541 */
1542 static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1543 // use serialVersionUID from JDK 1.2.2 for interoperability
1544 private static final long serialVersionUID = 3053995032091335093L;
1545
1546 final Collection<E> c; // Backing Collection
1547 final Object mutex; // Object on which to synchronize
1548
1549 SynchronizedCollection(Collection<E> c) {
1550 if (c==null)
1551 throw new NullPointerException();
1552 this.c = c;
1553 mutex = this;
1554 }
1555 SynchronizedCollection(Collection<E> c, Object mutex) {
1556 this.c = c;
1557 this.mutex = mutex;
1558 }
1559
1560 public int size() {
1561 synchronized(mutex) {return c.size();}
1562 }
1563 public boolean isEmpty() {
1564 synchronized(mutex) {return c.isEmpty();}
1565 }
1566 public boolean contains(Object o) {
1567 synchronized(mutex) {return c.contains(o);}
1568 }
1569 public Object[] toArray() {
1570 synchronized(mutex) {return c.toArray();}
1571 }
1572 public <T> T[] toArray(T[] a) {
1573 synchronized(mutex) {return c.toArray(a);}
1574 }
1575
1576 public Iterator<E> iterator() {
1577 return c.iterator(); // Must be manually synched by user!
1578 }
1579
1580 public boolean add(E e) {
1581 synchronized(mutex) {return c.add(e);}
1582 }
1583 public boolean remove(Object o) {
1584 synchronized(mutex) {return c.remove(o);}
1585 }
1586
1587 public boolean containsAll(Collection<?> coll) {
1588 synchronized(mutex) {return c.containsAll(coll);}
1589 }
1590 public boolean addAll(Collection<? extends E> coll) {
1591 synchronized(mutex) {return c.addAll(coll);}
1592 }
1593 public boolean removeAll(Collection<?> coll) {
1594 synchronized(mutex) {return c.removeAll(coll);}
1595 }
1596 public boolean retainAll(Collection<?> coll) {
1597 synchronized(mutex) {return c.retainAll(coll);}
1598 }
1599 public void clear() {
1600 synchronized(mutex) {c.clear();}
1601 }
1602 public String toString() {
1603 synchronized(mutex) {return c.toString();}
1604 }
1605 private void writeObject(ObjectOutputStream s) throws IOException {
1606 synchronized(mutex) {s.defaultWriteObject();}
1607 }
1608 }
1609
1610 /**
1611 * Returns a synchronized (thread-safe) set backed by the specified
1612 * set. In order to guarantee serial access, it is critical that
1613 * <strong>all</strong> access to the backing set is accomplished
1614 * through the returned set.<p>
1615 *
1616 * It is imperative that the user manually synchronize on the returned
1617 * set when iterating over it:
1618 * <pre>
1619 * Set s = Collections.synchronizedSet(new HashSet());
1620 * ...
1621 * synchronized(s) {
1622 * Iterator i = s.iterator(); // Must be in the synchronized block
1623 * while (i.hasNext())
1624 * foo(i.next());
1625 * }
1626 * </pre>
1627 * Failure to follow this advice may result in non-deterministic behavior.
1628 *
1629 * <p>The returned set will be serializable if the specified set is
1630 * serializable.
1631 *
1632 * @param s the set to be "wrapped" in a synchronized set.
1633 * @return a synchronized view of the specified set.
1634 */
1635 public static <T> Set<T> synchronizedSet(Set<T> s) {
1636 return new SynchronizedSet<T>(s);
1637 }
1638
1639 static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1640 return new SynchronizedSet<T>(s, mutex);
1641 }
1642
1643 /**
1644 * @serial include
1645 */
1646 static class SynchronizedSet<E>
1647 extends SynchronizedCollection<E>
1648 implements Set<E> {
1649 private static final long serialVersionUID = 487447009682186044L;
1650
1651 SynchronizedSet(Set<E> s) {
1652 super(s);
1653 }
1654 SynchronizedSet(Set<E> s, Object mutex) {
1655 super(s, mutex);
1656 }
1657
1658 public boolean equals(Object o) {
1659 synchronized(mutex) {return c.equals(o);}
1660 }
1661 public int hashCode() {
1662 synchronized(mutex) {return c.hashCode();}
1663 }
1664 }
1665
1666 /**
1667 * Returns a synchronized (thread-safe) sorted set backed by the specified
1668 * sorted set. In order to guarantee serial access, it is critical that
1669 * <strong>all</strong> access to the backing sorted set is accomplished
1670 * through the returned sorted set (or its views).<p>
1671 *
1672 * It is imperative that the user manually synchronize on the returned
1673 * sorted set when iterating over it or any of its <tt>subSet</tt>,
1674 * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1675 * <pre>
1676 * SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1677 * ...
1678 * synchronized(s) {
1679 * Iterator i = s.iterator(); // Must be in the synchronized block
1680 * while (i.hasNext())
1681 * foo(i.next());
1682 * }
1683 * </pre>
1684 * or:
1685 * <pre>
1686 * SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1687 * SortedSet s2 = s.headSet(foo);
1688 * ...
1689 * synchronized(s) { // Note: s, not s2!!!
1690 * Iterator i = s2.iterator(); // Must be in the synchronized block
1691 * while (i.hasNext())
1692 * foo(i.next());
1693 * }
1694 * </pre>
1695 * Failure to follow this advice may result in non-deterministic behavior.
1696 *
1697 * <p>The returned sorted set will be serializable if the specified
1698 * sorted set is serializable.
1699 *
1700 * @param s the sorted set to be "wrapped" in a synchronized sorted set.
1701 * @return a synchronized view of the specified sorted set.
1702 */
1703 public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1704 return new SynchronizedSortedSet<T>(s);
1705 }
1706
1707 /**
1708 * @serial include
1709 */
1710 static class SynchronizedSortedSet<E>
1711 extends SynchronizedSet<E>
1712 implements SortedSet<E>
1713 {
1714 private static final long serialVersionUID = 8695801310862127406L;
1715
1716 final private SortedSet<E> ss;
1717
1718 SynchronizedSortedSet(SortedSet<E> s) {
1719 super(s);
1720 ss = s;
1721 }
1722 SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1723 super(s, mutex);
1724 ss = s;
1725 }
1726
1727 public Comparator<? super E> comparator() {
1728 synchronized(mutex) {return ss.comparator();}
1729 }
1730
1731 public SortedSet<E> subSet(E fromElement, E toElement) {
1732 synchronized(mutex) {
1733 return new SynchronizedSortedSet<E>(
1734 ss.subSet(fromElement, toElement), mutex);
1735 }
1736 }
1737 public SortedSet<E> headSet(E toElement) {
1738 synchronized(mutex) {
1739 return new SynchronizedSortedSet<E>(ss.headSet(toElement), mutex);
1740 }
1741 }
1742 public SortedSet<E> tailSet(E fromElement) {
1743 synchronized(mutex) {
1744 return new SynchronizedSortedSet<E>(ss.tailSet(fromElement),mutex);
1745 }
1746 }
1747
1748 public E first() {
1749 synchronized(mutex) {return ss.first();}
1750 }
1751 public E last() {
1752 synchronized(mutex) {return ss.last();}
1753 }
1754 }
1755
1756 /**
1757 * Returns a synchronized (thread-safe) list backed by the specified
1758 * list. In order to guarantee serial access, it is critical that
1759 * <strong>all</strong> access to the backing list is accomplished
1760 * through the returned list.<p>
1761 *
1762 * It is imperative that the user manually synchronize on the returned
1763 * list when iterating over it:
1764 * <pre>
1765 * List list = Collections.synchronizedList(new ArrayList());
1766 * ...
1767 * synchronized(list) {
1768 * Iterator i = list.iterator(); // Must be in synchronized block
1769 * while (i.hasNext())
1770 * foo(i.next());
1771 * }
1772 * </pre>
1773 * Failure to follow this advice may result in non-deterministic behavior.
1774 *
1775 * <p>The returned list will be serializable if the specified list is
1776 * serializable.
1777 *
1778 * @param list the list to be "wrapped" in a synchronized list.
1779 * @return a synchronized view of the specified list.
1780 */
1781 public static <T> List<T> synchronizedList(List<T> list) {
1782 return (list instanceof RandomAccess ?
1783 new SynchronizedRandomAccessList<T>(list) :
1784 new SynchronizedList<T>(list));
1785 }
1786
1787 static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1788 return (list instanceof RandomAccess ?
1789 new SynchronizedRandomAccessList<T>(list, mutex) :
1790 new SynchronizedList<T>(list, mutex));
1791 }
1792
1793 /**
1794 * @serial include
1795 */
1796 static class SynchronizedList<E>
1797 extends SynchronizedCollection<E>
1798 implements List<E> {
1799 static final long serialVersionUID = -7754090372962971524L;
1800
1801 final List<E> list;
1802
1803 SynchronizedList(List<E> list) {
1804 super(list);
1805 this.list = list;
1806 }
1807 SynchronizedList(List<E> list, Object mutex) {
1808 super(list, mutex);
1809 this.list = list;
1810 }
1811
1812 public boolean equals(Object o) {
1813 synchronized(mutex) {return list.equals(o);}
1814 }
1815 public int hashCode() {
1816 synchronized(mutex) {return list.hashCode();}
1817 }
1818
1819 public E get(int index) {
1820 synchronized(mutex) {return list.get(index);}
1821 }
1822 public E set(int index, E element) {
1823 synchronized(mutex) {return list.set(index, element);}
1824 }
1825 public void add(int index, E element) {
1826 synchronized(mutex) {list.add(index, element);}
1827 }
1828 public E remove(int index) {
1829 synchronized(mutex) {return list.remove(index);}
1830 }
1831
1832 public int indexOf(Object o) {
1833 synchronized(mutex) {return list.indexOf(o);}
1834 }
1835 public int lastIndexOf(Object o) {
1836 synchronized(mutex) {return list.lastIndexOf(o);}
1837 }
1838
1839 public boolean addAll(int index, Collection<? extends E> c) {
1840 synchronized(mutex) {return list.addAll(index, c);}
1841 }
1842
1843 public ListIterator<E> listIterator() {
1844 return list.listIterator(); // Must be manually synched by user
1845 }
1846
1847 public ListIterator<E> listIterator(int index) {
1848 return list.listIterator(index); // Must be manually synched by user
1849 }
1850
1851 public List<E> subList(int fromIndex, int toIndex) {
1852 synchronized(mutex) {
1853 return new SynchronizedList<E>(list.subList(fromIndex, toIndex),
1854 mutex);
1855 }
1856 }
1857
1858 /**
1859 * SynchronizedRandomAccessList instances are serialized as
1860 * SynchronizedList instances to allow them to be deserialized
1861 * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1862 * This method inverts the transformation. As a beneficial
1863 * side-effect, it also grafts the RandomAccess marker onto
1864 * SynchronizedList instances that were serialized in pre-1.4 JREs.
1865 *
1866 * Note: Unfortunately, SynchronizedRandomAccessList instances
1867 * serialized in 1.4.1 and deserialized in 1.4 will become
1868 * SynchronizedList instances, as this method was missing in 1.4.
1869 */
1870 private Object readResolve() {
1871 return (list instanceof RandomAccess
1872 ? new SynchronizedRandomAccessList<E>(list)
1873 : this);
1874 }
1875 }
1876
1877 /**
1878 * @serial include
1879 */
1880 static class SynchronizedRandomAccessList<E>
1881 extends SynchronizedList<E>
1882 implements RandomAccess {
1883
1884 SynchronizedRandomAccessList(List<E> list) {
1885 super(list);
1886 }
1887
1888 SynchronizedRandomAccessList(List<E> list, Object mutex) {
1889 super(list, mutex);
1890 }
1891
1892 public List<E> subList(int fromIndex, int toIndex) {
1893 synchronized(mutex) {
1894 return new SynchronizedRandomAccessList<E>(
1895 list.subList(fromIndex, toIndex), mutex);
1896 }
1897 }
1898
1899 static final long serialVersionUID = 1530674583602358482L;
1900
1901 /**
1902 * Allows instances to be deserialized in pre-1.4 JREs (which do
1903 * not have SynchronizedRandomAccessList). SynchronizedList has
1904 * a readResolve method that inverts this transformation upon
1905 * deserialization.
1906 */
1907 private Object writeReplace() {
1908 return new SynchronizedList<E>(list);
1909 }
1910 }
1911
1912 /**
1913 * Returns a synchronized (thread-safe) map backed by the specified
1914 * map. In order to guarantee serial access, it is critical that
1915 * <strong>all</strong> access to the backing map is accomplished
1916 * through the returned map.<p>
1917 *
1918 * It is imperative that the user manually synchronize on the returned
1919 * map when iterating over any of its collection views:
1920 * <pre>
1921 * Map m = Collections.synchronizedMap(new HashMap());
1922 * ...
1923 * Set s = m.keySet(); // Needn't be in synchronized block
1924 * ...
1925 * synchronized(m) { // Synchronizing on m, not s!
1926 * Iterator i = s.iterator(); // Must be in synchronized block
1927 * while (i.hasNext())
1928 * foo(i.next());
1929 * }
1930 * </pre>
1931 * Failure to follow this advice may result in non-deterministic behavior.
1932 *
1933 * <p>The returned map will be serializable if the specified map is
1934 * serializable.
1935 *
1936 * @param m the map to be "wrapped" in a synchronized map.
1937 * @return a synchronized view of the specified map.
1938 */
1939 public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
1940 return new SynchronizedMap<K,V>(m);
1941 }
1942
1943 /**
1944 * @serial include
1945 */
1946 private static class SynchronizedMap<K,V>
1947 implements Map<K,V>, Serializable {
1948 // use serialVersionUID from JDK 1.2.2 for interoperability
1949 private static final long serialVersionUID = 1978198479659022715L;
1950
1951 private final Map<K,V> m; // Backing Map
1952 final Object mutex; // Object on which to synchronize
1953
1954 SynchronizedMap(Map<K,V> m) {
1955 if (m==null)
1956 throw new NullPointerException();
1957 this.m = m;
1958 mutex = this;
1959 }
1960
1961 SynchronizedMap(Map<K,V> m, Object mutex) {
1962 this.m = m;
1963 this.mutex = mutex;
1964 }
1965
1966 public int size() {
1967 synchronized(mutex) {return m.size();}
1968 }
1969 public boolean isEmpty(){
1970 synchronized(mutex) {return m.isEmpty();}
1971 }
1972 public boolean containsKey(Object key) {
1973 synchronized(mutex) {return m.containsKey(key);}
1974 }
1975 public boolean containsValue(Object value){
1976 synchronized(mutex) {return m.containsValue(value);}
1977 }
1978 public V get(Object key) {
1979 synchronized(mutex) {return m.get(key);}
1980 }
1981
1982 public V put(K key, V value) {
1983 synchronized(mutex) {return m.put(key, value);}
1984 }
1985 public V remove(Object key) {
1986 synchronized(mutex) {return m.remove(key);}
1987 }
1988 public void putAll(Map<? extends K, ? extends V> map) {
1989 synchronized(mutex) {m.putAll(map);}
1990 }
1991 public void clear() {
1992 synchronized(mutex) {m.clear();}
1993 }
1994
1995 private transient Set<K> keySet = null;
1996 private transient Set<Map.Entry<K,V>> entrySet = null;
1997 private transient Collection<V> values = null;
1998
1999 public Set<K> keySet() {
2000 synchronized(mutex) {
2001 if (keySet==null)
2002 keySet = new SynchronizedSet<K>(m.keySet(), mutex);
2003 return keySet;
2004 }
2005 }
2006
2007 public Set<Map.Entry<K,V>> entrySet() {
2008 synchronized(mutex) {
2009 if (entrySet==null)
2010 entrySet = new SynchronizedSet<Map.Entry<K,V>>(m.entrySet(), mutex);
2011 return entrySet;
2012 }
2013 }
2014
2015 public Collection<V> values() {
2016 synchronized(mutex) {
2017 if (values==null)
2018 values = new SynchronizedCollection<V>(m.values(), mutex);
2019 return values;
2020 }
2021 }
2022
2023 public boolean equals(Object o) {
2024 synchronized(mutex) {return m.equals(o);}
2025 }
2026 public int hashCode() {
2027 synchronized(mutex) {return m.hashCode();}
2028 }
2029 public String toString() {
2030 synchronized(mutex) {return m.toString();}
2031 }
2032 private void writeObject(ObjectOutputStream s) throws IOException {
2033 synchronized(mutex) {s.defaultWriteObject();}
2034 }
2035 }
2036
2037 /**
2038 * Returns a synchronized (thread-safe) sorted map backed by the specified
2039 * sorted map. In order to guarantee serial access, it is critical that
2040 * <strong>all</strong> access to the backing sorted map is accomplished
2041 * through the returned sorted map (or its views).<p>
2042 *
2043 * It is imperative that the user manually synchronize on the returned
2044 * sorted map when iterating over any of its collection views, or the
2045 * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2046 * <tt>tailMap</tt> views.
2047 * <pre>
2048 * SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2049 * ...
2050 * Set s = m.keySet(); // Needn't be in synchronized block
2051 * ...
2052 * synchronized(m) { // Synchronizing on m, not s!
2053 * Iterator i = s.iterator(); // Must be in synchronized block
2054 * while (i.hasNext())
2055 * foo(i.next());
2056 * }
2057 * </pre>
2058 * or:
2059 * <pre>
2060 * SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2061 * SortedMap m2 = m.subMap(foo, bar);
2062 * ...
2063 * Set s2 = m2.keySet(); // Needn't be in synchronized block
2064 * ...
2065 * synchronized(m) { // Synchronizing on m, not m2 or s2!
2066 * Iterator i = s.iterator(); // Must be in synchronized block
2067 * while (i.hasNext())
2068 * foo(i.next());
2069 * }
2070 * </pre>
2071 * Failure to follow this advice may result in non-deterministic behavior.
2072 *
2073 * <p>The returned sorted map will be serializable if the specified
2074 * sorted map is serializable.
2075 *
2076 * @param m the sorted map to be "wrapped" in a synchronized sorted map.
2077 * @return a synchronized view of the specified sorted map.
2078 */
2079 public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2080 return new SynchronizedSortedMap<K,V>(m);
2081 }
2082
2083
2084 /**
2085 * @serial include
2086 */
2087 static class SynchronizedSortedMap<K,V>
2088 extends SynchronizedMap<K,V>
2089 implements SortedMap<K,V>
2090 {
2091 private static final long serialVersionUID = -8798146769416483793L;
2092
2093 private final SortedMap<K,V> sm;
2094
2095 SynchronizedSortedMap(SortedMap<K,V> m) {
2096 super(m);
2097 sm = m;
2098 }
2099 SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2100 super(m, mutex);
2101 sm = m;
2102 }
2103
2104 public Comparator<? super K> comparator() {
2105 synchronized(mutex) {return sm.comparator();}
2106 }
2107
2108 public SortedMap<K,V> subMap(K fromKey, K toKey) {
2109 synchronized(mutex) {
2110 return new SynchronizedSortedMap<K,V>(
2111 sm.subMap(fromKey, toKey), mutex);
2112 }
2113 }
2114 public SortedMap<K,V> headMap(K toKey) {
2115 synchronized(mutex) {
2116 return new SynchronizedSortedMap<K,V>(sm.headMap(toKey), mutex);
2117 }
2118 }
2119 public SortedMap<K,V> tailMap(K fromKey) {
2120 synchronized(mutex) {
2121 return new SynchronizedSortedMap<K,V>(sm.tailMap(fromKey),mutex);
2122 }
2123 }
2124
2125 public K firstKey() {
2126 synchronized(mutex) {return sm.firstKey();}
2127 }
2128 public K lastKey() {
2129 synchronized(mutex) {return sm.lastKey();}
2130 }
2131 }
2132
2133 // Dynamically typesafe collection wrappers
2134
2135 /**
2136 * Returns a dynamically typesafe view of the specified collection. Any
2137 * attempt to insert an element of the wrong type will result in an
2138 * immediate <tt>ClassCastException</tt>. Assuming a collection contains
2139 * no incorrectly typed elements prior to the time a dynamically typesafe
2140 * view is generated, and that all subsequent access to the collection
2141 * takes place through the view, it is <i>guaranteed</i> that the
2142 * collection cannot contain an incorrectly typed element.
2143 *
2144 * <p>The generics mechanism in the language provides compile-time
2145 * (static) type checking, but it is possible to defeat this mechanism
2146 * with unchecked casts. Usually this is not a problem, as the compiler
2147 * issues warnings on all such unchecked operations. There are, however,
2148 * times when static type checking alone is not sufficient. For example,
2149 * suppose a collection is passed to a third-party library and it is
2150 * imperative that the library code not corrupt the collection by
2151 * inserting an element of the wrong type.
2152 *
2153 * <p>Another use of dynamically typesafe views is debugging. Suppose a
2154 * program fails with a <tt>ClassCastException</tt>, indicating that an
2155 * incorrectly typed element was put into a parameterized collection.
2156 * Unfortunately, the exception can occur at any time after the erroneous
2157 * element is inserted, so it typically provides little or no information
2158 * as to the real source of the problem. If the problem is reproducible,
2159 * one can quickly determine its source by temporarily modifying the
2160 * program to wrap the collection with a dynamically typesafe view.
2161 * For example, this declaration:
2162 * <pre>
2163 * Collection&lt;String&gt; c = new HashSet&lt;String&gt;();
2164 * </pre>
2165 * may be replaced temporarily by this one:
2166 * <pre>
2167 * Collection&lt;String&gt; c = Collections.checkedCollection(
2168 * new HashSet&lt;String&gt;(), String.class);
2169 * </pre>
2170 * Running the program again will cause it to fail at the point where
2171 * an incorrectly typed element is inserted into the collection, clearly
2172 * identifying the source of the problem. Once the problem is fixed, the
2173 * modified declaration may be reverted back to the original.
2174 *
2175 * <p>The returned collection does <i>not</i> pass the hashCode and equals
2176 * operations through to the backing collection, but relies on
2177 * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods. This
2178 * is necessary to preserve the contracts of these operations in the case
2179 * that the backing collection is a set or a list.
2180 *
2181 * <p>The returned collection will be serializable if the specified
2182 * collection is serializable.
2183 *
2184 * @param c the collection for which a dynamically typesafe view is to be
2185 * returned
2186 * @param type the type of element that <tt>c</tt> is permitted to hold
2187 * @return a dynamically typesafe view of the specified collection
2188 * @since 1.5
2189 */
2190 public static <E> Collection<E> checkedCollection(Collection<E> c,
2191 Class<E> type) {
2192 return new CheckedCollection<E>(c, type);
2193 }
2194
2195 /**
2196 * @serial include
2197 */
2198 static class CheckedCollection<E> implements Collection<E>, Serializable {
2199 private static final long serialVersionUID = 1578914078182001775L;
2200
2201 final Collection<E> c;
2202 final Class<E> type;
2203
2204 void typeCheck(Object o) {
2205 if (!type.isInstance(o))
2206 throw new ClassCastException("Attempt to insert " +
2207 o.getClass() + " element into collection with element type "
2208 + type);
2209 }
2210
2211 CheckedCollection(Collection<E> c, Class<E> type) {
2212 if (c==null || type == null)
2213 throw new NullPointerException();
2214 this.c = c;
2215 this.type = type;
2216 }
2217
2218 public int size() { return c.size(); }
2219 public boolean isEmpty() { return c.isEmpty(); }
2220 public boolean contains(Object o) { return c.contains(o); }
2221 public Object[] toArray() { return c.toArray(); }
2222 public <T> T[] toArray(T[] a) { return c.toArray(a); }
2223 public String toString() { return c.toString(); }
2224 public Iterator<E> iterator() { return c.iterator(); }
2225 public boolean remove(Object o) { return c.remove(o); }
2226 public boolean containsAll(Collection<?> coll) {
2227 return c.containsAll(coll);
2228 }
2229 public boolean removeAll(Collection<?> coll) {
2230 return c.removeAll(coll);
2231 }
2232 public boolean retainAll(Collection<?> coll) {
2233 return c.retainAll(coll);
2234 }
2235 public void clear() {
2236 c.clear();
2237 }
2238
2239 public boolean add(E e){
2240 typeCheck(e);
2241 return c.add(e);
2242 }
2243
2244 public boolean addAll(Collection<? extends E> coll) {
2245 /*
2246 * Dump coll into an array of the required type. This serves
2247 * three purposes: it insulates us from concurrent changes in
2248 * the contents of coll, it type-checks all of the elements in
2249 * coll, and it provides all-or-nothing semantics (which we
2250 * wouldn't get if we type-checked each element as we added it).
2251 */
2252 E[] a = null;
2253 try {
2254 a = coll.toArray(zeroLengthElementArray());
2255 } catch (ArrayStoreException e) {
2256 throw new ClassCastException();
2257 }
2258
2259 boolean result = false;
2260 for (E e : a)
2261 result |= c.add(e);
2262 return result;
2263 }
2264
2265 private E[] zeroLengthElementArray = null; // Lazily initialized
2266
2267 /*
2268 * We don't need locking or volatile, because it's OK if we create
2269 * several zeroLengthElementArrays, and they're immutable.
2270 */
2271 E[] zeroLengthElementArray() {
2272 if (zeroLengthElementArray == null)
2273 zeroLengthElementArray = (E[]) Array.newInstance(type, 0);
2274 return zeroLengthElementArray;
2275 }
2276 }
2277
2278 /**
2279 * Returns a dynamically typesafe view of the specified set.
2280 * Any attempt to insert an element of the wrong type will result in
2281 * an immediate <tt>ClassCastException</tt>. Assuming a set contains
2282 * no incorrectly typed elements prior to the time a dynamically typesafe
2283 * view is generated, and that all subsequent access to the set
2284 * takes place through the view, it is <i>guaranteed</i> that the
2285 * set cannot contain an incorrectly typed element.
2286 *
2287 * <p>A discussion of the use of dynamically typesafe views may be
2288 * found in the documentation for the {@link #checkedCollection checkedCollection}
2289 * method.
2290 *
2291 * <p>The returned set will be serializable if the specified set is
2292 * serializable.
2293 *
2294 * @param s the set for which a dynamically typesafe view is to be
2295 * returned
2296 * @param type the type of element that <tt>s</tt> is permitted to hold
2297 * @return a dynamically typesafe view of the specified set
2298 * @since 1.5
2299 */
2300 public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2301 return new CheckedSet<E>(s, type);
2302 }
2303
2304 /**
2305 * @serial include
2306 */
2307 static class CheckedSet<E> extends CheckedCollection<E>
2308 implements Set<E>, Serializable
2309 {
2310 private static final long serialVersionUID = 4694047833775013803L;
2311
2312 CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2313
2314 public boolean equals(Object o) { return c.equals(o); }
2315 public int hashCode() { return c.hashCode(); }
2316 }
2317
2318 /**
2319 * Returns a dynamically typesafe view of the specified sorted set. Any
2320 * attempt to insert an element of the wrong type will result in an
2321 * immediate <tt>ClassCastException</tt>. Assuming a sorted set contains
2322 * no incorrectly typed elements prior to the time a dynamically typesafe
2323 * view is generated, and that all subsequent access to the sorted set
2324 * takes place through the view, it is <i>guaranteed</i> that the sorted
2325 * set cannot contain an incorrectly typed element.
2326 *
2327 * <p>A discussion of the use of dynamically typesafe views may be
2328 * found in the documentation for the {@link #checkedCollection checkedCollection}
2329 * method.
2330 *
2331 * <p>The returned sorted set will be serializable if the specified sorted
2332 * set is serializable.
2333 *
2334 * @param s the sorted set for which a dynamically typesafe view is to be
2335 * returned
2336 * @param type the type of element that <tt>s</tt> is permitted to hold
2337 * @return a dynamically typesafe view of the specified sorted set
2338 * @since 1.5
2339 */
2340 public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2341 Class<E> type) {
2342 return new CheckedSortedSet<E>(s, type);
2343 }
2344
2345 /**
2346 * @serial include
2347 */
2348 static class CheckedSortedSet<E> extends CheckedSet<E>
2349 implements SortedSet<E>, Serializable
2350 {
2351 private static final long serialVersionUID = 1599911165492914959L;
2352 private final SortedSet<E> ss;
2353
2354 CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2355 super(s, type);
2356 ss = s;
2357 }
2358
2359 public Comparator<? super E> comparator() { return ss.comparator(); }
2360 public E first() { return ss.first(); }
2361 public E last() { return ss.last(); }
2362
2363 public SortedSet<E> subSet(E fromElement, E toElement) {
2364 return new CheckedSortedSet<E>(ss.subSet(fromElement,toElement),
2365 type);
2366 }
2367 public SortedSet<E> headSet(E toElement) {
2368 return new CheckedSortedSet<E>(ss.headSet(toElement), type);
2369 }
2370 public SortedSet<E> tailSet(E fromElement) {
2371 return new CheckedSortedSet<E>(ss.tailSet(fromElement), type);
2372 }
2373 }
2374
2375 /**
2376 * Returns a dynamically typesafe view of the specified list.
2377 * Any attempt to insert an element of the wrong type will result in
2378 * an immediate <tt>ClassCastException</tt>. Assuming a list contains
2379 * no incorrectly typed elements prior to the time a dynamically typesafe
2380 * view is generated, and that all subsequent access to the list
2381 * takes place through the view, it is <i>guaranteed</i> that the
2382 * list cannot contain an incorrectly typed element.
2383 *
2384 * <p>A discussion of the use of dynamically typesafe views may be
2385 * found in the documentation for the {@link #checkedCollection checkedCollection}
2386 * method.
2387 *
2388 * <p>The returned list will be serializable if the specified list is
2389 * serializable.
2390 *
2391 * @param list the list for which a dynamically typesafe view is to be
2392 * returned
2393 * @param type the type of element that <tt>list</tt> is permitted to hold
2394 * @return a dynamically typesafe view of the specified list
2395 * @since 1.5
2396 */
2397 public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2398 return (list instanceof RandomAccess ?
2399 new CheckedRandomAccessList<E>(list, type) :
2400 new CheckedList<E>(list, type));
2401 }
2402
2403 /**
2404 * @serial include
2405 */
2406 static class CheckedList<E> extends CheckedCollection<E>
2407 implements List<E>
2408 {
2409 static final long serialVersionUID = 65247728283967356L;
2410 final List<E> list;
2411
2412 CheckedList(List<E> list, Class<E> type) {
2413 super(list, type);
2414 this.list = list;
2415 }
2416
2417 public boolean equals(Object o) { return list.equals(o); }
2418 public int hashCode() { return list.hashCode(); }
2419 public E get(int index) { return list.get(index); }
2420 public E remove(int index) { return list.remove(index); }
2421 public int indexOf(Object o) { return list.indexOf(o); }
2422 public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2423
2424 public E set(int index, E element) {
2425 typeCheck(element);
2426 return list.set(index, element);
2427 }
2428
2429 public void add(int index, E element) {
2430 typeCheck(element);
2431 list.add(index, element);
2432 }
2433
2434 public boolean addAll(int index, Collection<? extends E> c) {
2435 // See CheckCollection.addAll, above, for an explanation
2436 E[] a = null;
2437 try {
2438 a = c.toArray(zeroLengthElementArray());
2439 } catch (ArrayStoreException e) {
2440 throw new ClassCastException();
2441 }
2442
2443 return list.addAll(index, Arrays.asList(a));
2444 }
2445 public ListIterator<E> listIterator() { return listIterator(0); }
2446
2447 public ListIterator<E> listIterator(final int index) {
2448 return new ListIterator<E>() {
2449 ListIterator<E> i = list.listIterator(index);
2450
2451 public boolean hasNext() { return i.hasNext(); }
2452 public E next() { return i.next(); }
2453 public boolean hasPrevious() { return i.hasPrevious(); }
2454 public E previous() { return i.previous(); }
2455 public int nextIndex() { return i.nextIndex(); }
2456 public int previousIndex() { return i.previousIndex(); }
2457 public void remove() { i.remove(); }
2458
2459 public void set(E e) {
2460 typeCheck(e);
2461 i.set(e);
2462 }
2463
2464 public void add(E e) {
2465 typeCheck(e);
2466 i.add(e);
2467 }
2468 };
2469 }
2470
2471 public List<E> subList(int fromIndex, int toIndex) {
2472 return new CheckedList<E>(list.subList(fromIndex, toIndex), type);
2473 }
2474 }
2475
2476 /**
2477 * @serial include
2478 */
2479 static class CheckedRandomAccessList<E> extends CheckedList<E>
2480 implements RandomAccess
2481 {
2482 private static final long serialVersionUID = 1638200125423088369L;
2483
2484 CheckedRandomAccessList(List<E> list, Class<E> type) {
2485 super(list, type);
2486 }
2487
2488 public List<E> subList(int fromIndex, int toIndex) {
2489 return new CheckedRandomAccessList<E>(
2490 list.subList(fromIndex, toIndex), type);
2491 }
2492 }
2493
2494 /**
2495 * Returns a dynamically typesafe view of the specified map. Any attempt
2496 * to insert a mapping whose key or value have the wrong type will result
2497 * in an immediate <tt>ClassCastException</tt>. Similarly, any attempt to
2498 * modify the value currently associated with a key will result in an
2499 * immediate <tt>ClassCastException</tt>, whether the modification is
2500 * attempted directly through the map itself, or through a {@link
2501 * Map.Entry} instance obtained from the map's {@link Map#entrySet()
2502 * entry set} view.
2503 *
2504 * <p>Assuming a map contains no incorrectly typed keys or values
2505 * prior to the time a dynamically typesafe view is generated, and
2506 * that all subsequent access to the map takes place through the view
2507 * (or one of its collection views), it is <i>guaranteed</i> that the
2508 * map cannot contain an incorrectly typed key or value.
2509 *
2510 * <p>A discussion of the use of dynamically typesafe views may be
2511 * found in the documentation for the {@link #checkedCollection checkedCollection}
2512 * method.
2513 *
2514 * <p>The returned map will be serializable if the specified map is
2515 * serializable.
2516 *
2517 * @param m the map for which a dynamically typesafe view is to be
2518 * returned
2519 * @param keyType the type of key that <tt>m</tt> is permitted to hold
2520 * @param valueType the type of value that <tt>m</tt> is permitted to hold
2521 * @return a dynamically typesafe view of the specified map
2522 * @since 1.5
2523 */
2524 public static <K, V> Map<K, V> checkedMap(Map<K, V> m, Class<K> keyType,
2525 Class<V> valueType) {
2526 return new CheckedMap<K,V>(m, keyType, valueType);
2527 }
2528
2529
2530 /**
2531 * @serial include
2532 */
2533 private static class CheckedMap<K,V> implements Map<K,V>,
2534 Serializable
2535 {
2536 private static final long serialVersionUID = 5742860141034234728L;
2537
2538 private final Map<K, V> m;
2539 final Class<K> keyType;
2540 final Class<V> valueType;
2541
2542 private void typeCheck(Object key, Object value) {
2543 if (!keyType.isInstance(key))
2544 throw new ClassCastException("Attempt to insert " +
2545 key.getClass() + " key into collection with key type "
2546 + keyType);
2547
2548 if (!valueType.isInstance(value))
2549 throw new ClassCastException("Attempt to insert " +
2550 value.getClass() +" value into collection with value type "
2551 + valueType);
2552 }
2553
2554 CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2555 if (m == null || keyType == null || valueType == null)
2556 throw new NullPointerException();
2557 this.m = m;
2558 this.keyType = keyType;
2559 this.valueType = valueType;
2560 }
2561
2562 public int size() { return m.size(); }
2563 public boolean isEmpty() { return m.isEmpty(); }
2564 public boolean containsKey(Object key) { return m.containsKey(key); }
2565 public boolean containsValue(Object v) { return m.containsValue(v); }
2566 public V get(Object key) { return m.get(key); }
2567 public V remove(Object key) { return m.remove(key); }
2568 public void clear() { m.clear(); }
2569 public Set<K> keySet() { return m.keySet(); }
2570 public Collection<V> values() { return m.values(); }
2571 public boolean equals(Object o) { return m.equals(o); }
2572 public int hashCode() { return m.hashCode(); }
2573 public String toString() { return m.toString(); }
2574
2575 public V put(K key, V value) {
2576 typeCheck(key, value);
2577 return m.put(key, value);
2578 }
2579
2580 public void putAll(Map<? extends K, ? extends V> t) {
2581 // See CheckCollection.addAll, above, for an explanation
2582 K[] keys = null;
2583 try {
2584 keys = t.keySet().toArray(zeroLengthKeyArray());
2585 } catch (ArrayStoreException e) {
2586 throw new ClassCastException();
2587 }
2588 V[] values = null;
2589 try {
2590 values = t.values().toArray(zeroLengthValueArray());
2591 } catch (ArrayStoreException e) {
2592 throw new ClassCastException();
2593 }
2594
2595 if (keys.length != values.length)
2596 throw new ConcurrentModificationException();
2597
2598 for (int i = 0; i < keys.length; i++)
2599 m.put(keys[i], values[i]);
2600 }
2601
2602 // Lazily initialized
2603 private K[] zeroLengthKeyArray = null;
2604 private V[] zeroLengthValueArray = null;
2605
2606 /*
2607 * We don't need locking or volatile, because it's OK if we create
2608 * several zeroLengthValueArrays, and they're immutable.
2609 */
2610 private K[] zeroLengthKeyArray() {
2611 if (zeroLengthKeyArray == null)
2612 zeroLengthKeyArray = (K[]) Array.newInstance(keyType, 0);
2613 return zeroLengthKeyArray;
2614 }
2615 private V[] zeroLengthValueArray() {
2616 if (zeroLengthValueArray == null)
2617 zeroLengthValueArray = (V[]) Array.newInstance(valueType, 0);
2618 return zeroLengthValueArray;
2619 }
2620
2621 private transient Set<Map.Entry<K,V>> entrySet = null;
2622
2623 public Set<Map.Entry<K,V>> entrySet() {
2624 if (entrySet==null)
2625 entrySet = new CheckedEntrySet<K,V>(m.entrySet(), valueType);
2626 return entrySet;
2627 }
2628
2629 /**
2630 * We need this class in addition to CheckedSet as Map.Entry permits
2631 * modification of the backing Map via the setValue operation. This
2632 * class is subtle: there are many possible attacks that must be
2633 * thwarted.
2634 *
2635 * @serial exclude
2636 */
2637 static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2638 Set<Map.Entry<K,V>> s;
2639 Class<V> valueType;
2640
2641 CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2642 this.s = s;
2643 this.valueType = valueType;
2644 }
2645
2646 public int size() { return s.size(); }
2647 public boolean isEmpty() { return s.isEmpty(); }
2648 public String toString() { return s.toString(); }
2649 public int hashCode() { return s.hashCode(); }
2650 public boolean remove(Object o) { return s.remove(o); }
2651 public boolean removeAll(Collection<?> coll) {
2652 return s.removeAll(coll);
2653 }
2654 public boolean retainAll(Collection<?> coll) {
2655 return s.retainAll(coll);
2656 }
2657 public void clear() {
2658 s.clear();
2659 }
2660
2661 public boolean add(Map.Entry<K, V> e){
2662 throw new UnsupportedOperationException();
2663 }
2664 public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2665 throw new UnsupportedOperationException();
2666 }
2667
2668
2669 public Iterator<Map.Entry<K,V>> iterator() {
2670 return new Iterator<Map.Entry<K,V>>() {
2671 Iterator<Map.Entry<K, V>> i = s.iterator();
2672
2673 public boolean hasNext() { return i.hasNext(); }
2674 public void remove() { i.remove(); }
2675
2676 public Map.Entry<K,V> next() {
2677 return new CheckedEntry<K,V>(i.next(), valueType);
2678 }
2679 };
2680 }
2681
2682 public Object[] toArray() {
2683 Object[] source = s.toArray();
2684
2685 /*
2686 * Ensure that we don't get an ArrayStoreException even if
2687 * s.toArray returns an array of something other than Object
2688 */
2689 Object[] dest = (CheckedEntry.class.isInstance(
2690 source.getClass().getComponentType()) ? source :
2691 new Object[source.length]);
2692
2693 for (int i = 0; i < source.length; i++)
2694 dest[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)source[i],
2695 valueType);
2696 return dest;
2697 }
2698
2699 public <T> T[] toArray(T[] a) {
2700 // We don't pass a to s.toArray, to avoid window of
2701 // vulnerability wherein an unscrupulous multithreaded client
2702 // could get his hands on raw (unwrapped) Entries from s.
2703 Object[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
2704
2705 for (int i=0; i<arr.length; i++)
2706 arr[i] = new CheckedEntry<K,V>((Map.Entry<K,V>)arr[i],
2707 valueType);
2708 if (arr.length > a.length)
2709 return (T[])arr;
2710
2711 System.arraycopy(arr, 0, a, 0, arr.length);
2712 if (a.length > arr.length)
2713 a[arr.length] = null;
2714 return a;
2715 }
2716
2717 /**
2718 * This method is overridden to protect the backing set against
2719 * an object with a nefarious equals function that senses
2720 * that the equality-candidate is Map.Entry and calls its
2721 * setValue method.
2722 */
2723 public boolean contains(Object o) {
2724 if (!(o instanceof Map.Entry))
2725 return false;
2726 return s.contains(
2727 new CheckedEntry<K,V>((Map.Entry<K,V>) o, valueType));
2728 }
2729
2730 /**
2731 * The next two methods are overridden to protect against
2732 * an unscrupulous collection whose contains(Object o) method
2733 * senses when o is a Map.Entry, and calls o.setValue.
2734 */
2735 public boolean containsAll(Collection<?> coll) {
2736 Iterator<?> e = coll.iterator();
2737 while (e.hasNext())
2738 if (!contains(e.next())) // Invokes safe contains() above
2739 return false;
2740 return true;
2741 }
2742
2743 public boolean equals(Object o) {
2744 if (o == this)
2745 return true;
2746 if (!(o instanceof Set))
2747 return false;
2748 Set<?> that = (Set<?>) o;
2749 if (that.size() != s.size())
2750 return false;
2751 return containsAll(that); // Invokes safe containsAll() above
2752 }
2753
2754 /**
2755 * This "wrapper class" serves two purposes: it prevents
2756 * the client from modifying the backing Map, by short-circuiting
2757 * the setValue method, and it protects the backing Map against
2758 * an ill-behaved Map.Entry that attempts to modify another
2759 * Map Entry when asked to perform an equality check.
2760 */
2761 private static class CheckedEntry<K,V> implements Map.Entry<K,V> {
2762 private Map.Entry<K, V> e;
2763 private Class<V> valueType;
2764
2765 CheckedEntry(Map.Entry<K, V> e, Class<V> valueType) {
2766 this.e = e;
2767 this.valueType = valueType;
2768 }
2769
2770 public K getKey() { return e.getKey(); }
2771 public V getValue() { return e.getValue(); }
2772 public int hashCode() { return e.hashCode(); }
2773 public String toString() { return e.toString(); }
2774
2775
2776 public V setValue(V value) {
2777 if (!valueType.isInstance(value))
2778 throw new ClassCastException("Attempt to insert " +
2779 value.getClass() +
2780 " value into collection with value type " + valueType);
2781 return e.setValue(value);
2782 }
2783
2784 public boolean equals(Object o) {
2785 if (!(o instanceof Map.Entry))
2786 return false;
2787 Map.Entry t = (Map.Entry)o;
2788 return eq(e.getKey(), t.getKey()) &&
2789 eq(e.getValue(), t.getValue());
2790 }
2791 }
2792 }
2793 }
2794
2795 /**
2796 * Returns a dynamically typesafe view of the specified sorted map. Any
2797 * attempt to insert a mapping whose key or value have the wrong type will
2798 * result in an immediate <tt>ClassCastException</tt>. Similarly, any
2799 * attempt to modify the value currently associated with a key will result
2800 * in an immediate <tt>ClassCastException</tt>, whether the modification
2801 * is attempted directly through the map itself, or through a {@link
2802 * Map.Entry} instance obtained from the map's {@link Map#entrySet() entry
2803 * set} view.
2804 *
2805 * <p>Assuming a map contains no incorrectly typed keys or values
2806 * prior to the time a dynamically typesafe view is generated, and
2807 * that all subsequent access to the map takes place through the view
2808 * (or one of its collection views), it is <i>guaranteed</i> that the
2809 * map cannot contain an incorrectly typed key or value.
2810 *
2811 * <p>A discussion of the use of dynamically typesafe views may be
2812 * found in the documentation for the {@link #checkedCollection checkedCollection}
2813 * method.
2814 *
2815 * <p>The returned map will be serializable if the specified map is
2816 * serializable.
2817 *
2818 * @param m the map for which a dynamically typesafe view is to be
2819 * returned
2820 * @param keyType the type of key that <tt>m</tt> is permitted to hold
2821 * @param valueType the type of value that <tt>m</tt> is permitted to hold
2822 * @return a dynamically typesafe view of the specified map
2823 * @since 1.5
2824 */
2825 public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
2826 Class<K> keyType,
2827 Class<V> valueType) {
2828 return new CheckedSortedMap<K,V>(m, keyType, valueType);
2829 }
2830
2831 /**
2832 * @serial include
2833 */
2834 static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
2835 implements SortedMap<K,V>, Serializable
2836 {
2837 private static final long serialVersionUID = 1599671320688067438L;
2838
2839 private final SortedMap<K, V> sm;
2840
2841 CheckedSortedMap(SortedMap<K, V> m,
2842 Class<K> keyType, Class<V> valueType) {
2843 super(m, keyType, valueType);
2844 sm = m;
2845 }
2846
2847 public Comparator<? super K> comparator() { return sm.comparator(); }
2848 public K firstKey() { return sm.firstKey(); }
2849 public K lastKey() { return sm.lastKey(); }
2850
2851 public SortedMap<K,V> subMap(K fromKey, K toKey) {
2852 return new CheckedSortedMap<K,V>(sm.subMap(fromKey, toKey),
2853 keyType, valueType);
2854 }
2855
2856 public SortedMap<K,V> headMap(K toKey) {
2857 return new CheckedSortedMap<K,V>(sm.headMap(toKey),
2858 keyType, valueType);
2859 }
2860
2861 public SortedMap<K,V> tailMap(K fromKey) {
2862 return new CheckedSortedMap<K,V>(sm.tailMap(fromKey),
2863 keyType, valueType);
2864 }
2865 }
2866
2867 // Miscellaneous
2868
2869 /**
2870 * The empty set (immutable). This set is serializable.
2871 *
2872 * @see #emptySet()
2873 */
2874 public static final Set EMPTY_SET = new EmptySet();
2875
2876 /**
2877 * Returns the empty set (immutable). This set is serializable.
2878 * Unlike the like-named field, this method is parameterized.
2879 *
2880 * <p>This example illustrates the type-safe way to obtain an empty set:
2881 * <pre>
2882 * Set&lt;String&gt; s = Collections.emptySet();
2883 * </pre>
2884 * Implementation note: Implementations of this method need not
2885 * create a separate <tt>Set</tt> object for each call. Using this
2886 * method is likely to have comparable cost to using the like-named
2887 * field. (Unlike this method, the field does not provide type safety.)
2888 *
2889 * @see #EMPTY_SET
2890 * @since 1.5
2891 */
2892 public static final <T> Set<T> emptySet() {
2893 return (Set<T>) EMPTY_SET;
2894 }
2895
2896 /**
2897 * @serial include
2898 */
2899 private static class EmptySet extends AbstractSet<Object> implements Serializable {
2900 // use serialVersionUID from JDK 1.2.2 for interoperability
2901 private static final long serialVersionUID = 1582296315990362920L;
2902
2903 public Iterator<Object> iterator() {
2904 return new Iterator<Object>() {
2905 public boolean hasNext() {
2906 return false;
2907 }
2908 public Object next() {
2909 throw new NoSuchElementException();
2910 }
2911 public void remove() {
2912 throw new UnsupportedOperationException();
2913 }
2914 };
2915 }
2916
2917 public int size() {return 0;}
2918
2919 public boolean contains(Object obj) {return false;}
2920
2921 // Preserves singleton property
2922 private Object readResolve() {
2923 return EMPTY_SET;
2924 }
2925 }
2926
2927 /**
2928 * The empty list (immutable). This list is serializable.
2929 *
2930 * @see #emptyList()
2931 */
2932 public static final List EMPTY_LIST = new EmptyList();
2933
2934 /**
2935 * Returns the empty list (immutable). This list is serializable.
2936 *
2937 * <p>This example illustrates the type-safe way to obtain an empty list:
2938 * <pre>
2939 * List&lt;String&gt; s = Collections.emptyList();
2940 * </pre>
2941 * Implementation note: Implementations of this method need not
2942 * create a separate <tt>List</tt> object for each call. Using this
2943 * method is likely to have comparable cost to using the like-named
2944 * field. (Unlike this method, the field does not provide type safety.)
2945 *
2946 * @see #EMPTY_LIST
2947 * @since 1.5
2948 */
2949 public static final <T> List<T> emptyList() {
2950 return (List<T>) EMPTY_LIST;
2951 }
2952
2953 /**
2954 * @serial include
2955 */
2956 private static class EmptyList
2957 extends AbstractList<Object>
2958 implements RandomAccess, Serializable {
2959 // use serialVersionUID from JDK 1.2.2 for interoperability
2960 private static final long serialVersionUID = 8842843931221139166L;
2961
2962 public int size() {return 0;}
2963
2964 public boolean contains(Object obj) {return false;}
2965
2966 public Object get(int index) {
2967 throw new IndexOutOfBoundsException("Index: "+index);
2968 }
2969
2970 // Preserves singleton property
2971 private Object readResolve() {
2972 return EMPTY_LIST;
2973 }
2974 }
2975
2976 /**
2977 * The empty map (immutable). This map is serializable.
2978 *
2979 * @see #emptyMap()
2980 * @since 1.3
2981 */
2982 public static final Map EMPTY_MAP = new EmptyMap();
2983
2984 /**
2985 * Returns the empty map (immutable). This map is serializable.
2986 *
2987 * <p>This example illustrates the type-safe way to obtain an empty set:
2988 * <pre>
2989 * Map&lt;String, Date&gt; s = Collections.emptyMap();
2990 * </pre>
2991 * Implementation note: Implementations of this method need not
2992 * create a separate <tt>Map</tt> object for each call. Using this
2993 * method is likely to have comparable cost to using the like-named
2994 * field. (Unlike this method, the field does not provide type safety.)
2995 *
2996 * @see #EMPTY_MAP
2997 * @since 1.5
2998 */
2999 public static final <K,V> Map<K,V> emptyMap() {
3000 return (Map<K,V>) EMPTY_MAP;
3001 }
3002
3003 private static class EmptyMap
3004 extends AbstractMap<Object,Object>
3005 implements Serializable {
3006
3007 private static final long serialVersionUID = 6428348081105594320L;
3008
3009 public int size() {return 0;}
3010
3011 public boolean isEmpty() {return true;}
3012
3013 public boolean containsKey(Object key) {return false;}
3014
3015 public boolean containsValue(Object value) {return false;}
3016
3017 public Object get(Object key) {return null;}
3018
3019 public Set<Object> keySet() {return Collections.<Object>emptySet();}
3020
3021 public Collection<Object> values() {return Collections.<Object>emptySet();}
3022
3023 public Set<Map.Entry<Object,Object>> entrySet() {
3024 return Collections.emptySet();
3025 }
3026
3027 public boolean equals(Object o) {
3028 return (o instanceof Map) && ((Map)o).size()==0;
3029 }
3030
3031 public int hashCode() {return 0;}
3032
3033 // Preserves singleton property
3034 private Object readResolve() {
3035 return EMPTY_MAP;
3036 }
3037 }
3038
3039 /**
3040 * Returns an immutable set containing only the specified object.
3041 * The returned set is serializable.
3042 *
3043 * @param o the sole object to be stored in the returned set.
3044 * @return an immutable set containing only the specified object.
3045 */
3046 public static <T> Set<T> singleton(T o) {
3047 return new SingletonSet<T>(o);
3048 }
3049
3050 /**
3051 * @serial include
3052 */
3053 private static class SingletonSet<E>
3054 extends AbstractSet<E>
3055 implements Serializable
3056 {
3057 // use serialVersionUID from JDK 1.2.2 for interoperability
3058 private static final long serialVersionUID = 3193687207550431679L;
3059
3060 final private E element;
3061
3062 SingletonSet(E e) {element = e;}
3063
3064 public Iterator<E> iterator() {
3065 return new Iterator<E>() {
3066 private boolean hasNext = true;
3067 public boolean hasNext() {
3068 return hasNext;
3069 }
3070 public E next() {
3071 if (hasNext) {
3072 hasNext = false;
3073 return element;
3074 }
3075 throw new NoSuchElementException();
3076 }
3077 public void remove() {
3078 throw new UnsupportedOperationException();
3079 }
3080 };
3081 }
3082
3083 public int size() {return 1;}
3084
3085 public boolean contains(Object o) {return eq(o, element);}
3086 }
3087
3088 /**
3089 * Returns an immutable list containing only the specified object.
3090 * The returned list is serializable.
3091 *
3092 * @param o the sole object to be stored in the returned list.
3093 * @return an immutable list containing only the specified object.
3094 * @since 1.3
3095 */
3096 public static <T> List<T> singletonList(T o) {
3097 return new SingletonList<T>(o);
3098 }
3099
3100 private static class SingletonList<E>
3101 extends AbstractList<E>
3102 implements RandomAccess, Serializable {
3103
3104 static final long serialVersionUID = 3093736618740652951L;
3105
3106 private final E element;
3107
3108 SingletonList(E obj) {element = obj;}
3109
3110 public int size() {return 1;}
3111
3112 public boolean contains(Object obj) {return eq(obj, element);}
3113
3114 public E get(int index) {
3115 if (index != 0)
3116 throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3117 return element;
3118 }
3119 }
3120
3121 /**
3122 * Returns an immutable map, mapping only the specified key to the
3123 * specified value. The returned map is serializable.
3124 *
3125 * @param key the sole key to be stored in the returned map.
3126 * @param value the value to which the returned map maps <tt>key</tt>.
3127 * @return an immutable map containing only the specified key-value
3128 * mapping.
3129 * @since 1.3
3130 */
3131 public static <K,V> Map<K,V> singletonMap(K key, V value) {
3132 return new SingletonMap<K,V>(key, value);
3133 }
3134
3135 private static class SingletonMap<K,V>
3136 extends AbstractMap<K,V>
3137 implements Serializable {
3138 private static final long serialVersionUID = -6979724477215052911L;
3139
3140 private final K k;
3141 private final V v;
3142
3143 SingletonMap(K key, V value) {
3144 k = key;
3145 v = value;
3146 }
3147
3148 public int size() {return 1;}
3149
3150 public boolean isEmpty() {return false;}
3151
3152 public boolean containsKey(Object key) {return eq(key, k);}
3153
3154 public boolean containsValue(Object value) {return eq(value, v);}
3155
3156 public V get(Object key) {return (eq(key, k) ? v : null);}
3157
3158 private transient Set<K> keySet = null;
3159 private transient Set<Map.Entry<K,V>> entrySet = null;
3160 private transient Collection<V> values = null;
3161
3162 public Set<K> keySet() {
3163 if (keySet==null)
3164 keySet = singleton(k);
3165 return keySet;
3166 }
3167
3168 public Set<Map.Entry<K,V>> entrySet() {
3169 if (entrySet==null)
3170 entrySet = Collections.<Map.Entry<K,V>>singleton(
3171 new SimpleImmutableEntry<K,V>(k, v));
3172 return entrySet;
3173 }
3174
3175 public Collection<V> values() {
3176 if (values==null)
3177 values = singleton(v);
3178 return values;
3179 }
3180
3181 }
3182
3183 /**
3184 * Returns an immutable list consisting of <tt>n</tt> copies of the
3185 * specified object. The newly allocated data object is tiny (it contains
3186 * a single reference to the data object). This method is useful in
3187 * combination with the <tt>List.addAll</tt> method to grow lists.
3188 * The returned list is serializable.
3189 *
3190 * @param n the number of elements in the returned list.
3191 * @param o the element to appear repeatedly in the returned list.
3192 * @return an immutable list consisting of <tt>n</tt> copies of the
3193 * specified object.
3194 * @throws IllegalArgumentException if n &lt; 0.
3195 * @see List#addAll(Collection)
3196 * @see List#addAll(int, Collection)
3197 */
3198 public static <T> List<T> nCopies(int n, T o) {
3199 if (n < 0)
3200 throw new IllegalArgumentException("List length = " + n);
3201 return new CopiesList<T>(n, o);
3202 }
3203
3204 /**
3205 * @serial include
3206 */
3207 private static class CopiesList<E>
3208 extends AbstractList<E>
3209 implements RandomAccess, Serializable
3210 {
3211 static final long serialVersionUID = 2739099268398711800L;
3212
3213 final int n;
3214 final E element;
3215
3216 CopiesList(int n, E e) {
3217 assert n >= 0;
3218 this.n = n;
3219 element = e;
3220 }
3221
3222 public int size() {
3223 return n;
3224 }
3225
3226 public boolean contains(Object obj) {
3227 return n != 0 && eq(obj, element);
3228 }
3229
3230 public int indexOf(Object o) {
3231 return contains(o) ? 0 : -1;
3232 }
3233
3234 public int lastIndexOf(Object o) {
3235 return contains(o) ? n - 1 : -1;
3236 }
3237
3238 public E get(int index) {
3239 if (index < 0 || index >= n)
3240 throw new IndexOutOfBoundsException("Index: "+index+
3241 ", Size: "+n);
3242 return element;
3243 }
3244
3245 public Object[] toArray() {
3246 final Object[] a = new Object[n];
3247 if (element != null)
3248 Arrays.fill(a, 0, n, element);
3249 return a;
3250 }
3251
3252 public <T> T[] toArray(T[] a) {
3253 final int n = this.n;
3254 if (a.length < n) {
3255 a = (T[])java.lang.reflect.Array
3256 .newInstance(a.getClass().getComponentType(), n);
3257 if (element != null)
3258 Arrays.fill(a, 0, n, element);
3259 } else {
3260 Arrays.fill(a, 0, n, element);
3261 if (a.length > n)
3262 a[n] = null;
3263 }
3264 return a;
3265 }
3266
3267 public List<E> subList(int fromIndex, int toIndex) {
3268 if (fromIndex < 0)
3269 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
3270 if (toIndex > n)
3271 throw new IndexOutOfBoundsException("toIndex = " + toIndex);
3272 if (fromIndex > toIndex)
3273 throw new IllegalArgumentException("fromIndex(" + fromIndex +
3274 ") > toIndex(" + toIndex + ")");
3275 return new CopiesList(toIndex - fromIndex, element);
3276 }
3277 }
3278
3279 /**
3280 * Returns a comparator that imposes the reverse of the <i>natural
3281 * ordering</i> on a collection of objects that implement the
3282 * <tt>Comparable</tt> interface. (The natural ordering is the ordering
3283 * imposed by the objects' own <tt>compareTo</tt> method.) This enables a
3284 * simple idiom for sorting (or maintaining) collections (or arrays) of
3285 * objects that implement the <tt>Comparable</tt> interface in
3286 * reverse-natural-order. For example, suppose a is an array of
3287 * strings. Then: <pre>
3288 * Arrays.sort(a, Collections.reverseOrder());
3289 * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
3290 *
3291 * The returned comparator is serializable.
3292 *
3293 * @return a comparator that imposes the reverse of the <i>natural
3294 * ordering</i> on a collection of objects that implement
3295 * the <tt>Comparable</tt> interface.
3296 * @see Comparable
3297 */
3298 public static <T> Comparator<T> reverseOrder() {
3299 return (Comparator<T>) REVERSE_ORDER;
3300 }
3301
3302 private static final Comparator REVERSE_ORDER = new ReverseComparator();
3303
3304 /**
3305 * @serial include
3306 */
3307 private static class ReverseComparator<T>
3308 implements Comparator<Comparable<Object>>, Serializable {
3309
3310 // use serialVersionUID from JDK 1.2.2 for interoperability
3311 private static final long serialVersionUID = 7207038068494060240L;
3312
3313 public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3314 return c2.compareTo(c1);
3315 }
3316 }
3317
3318 /**
3319 * Returns a comparator that imposes the reverse ordering of the specified
3320 * comparator. If the specified comparator is null, this method is
3321 * equivalent to {@link #reverseOrder()} (in other words, it returns a
3322 * comparator that imposes the reverse of the <i>natural ordering</i> on a
3323 * collection of objects that implement the Comparable interface).
3324 *
3325 * <p>The returned comparator is serializable (assuming the specified
3326 * comparator is also serializable or null).
3327 *
3328 * @return a comparator that imposes the reverse ordering of the
3329 * specified comparator.
3330 * @since 1.5
3331 */
3332 public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3333 if (cmp == null)
3334 return new ReverseComparator(); // Unchecked warning!!
3335
3336 return new ReverseComparator2<T>(cmp);
3337 }
3338
3339 /**
3340 * @serial include
3341 */
3342 private static class ReverseComparator2<T> implements Comparator<T>,
3343 Serializable
3344 {
3345 private static final long serialVersionUID = 4374092139857L;
3346
3347 /**
3348 * The comparator specified in the static factory. This will never
3349 * be null, as the static factory returns a ReverseComparator
3350 * instance if its argument is null.
3351 *
3352 * @serial
3353 */
3354 private Comparator<T> cmp;
3355
3356 ReverseComparator2(Comparator<T> cmp) {
3357 assert cmp != null;
3358 this.cmp = cmp;
3359 }
3360
3361 public int compare(T t1, T t2) {
3362 return cmp.compare(t2, t1);
3363 }
3364 }
3365
3366 /**
3367 * Returns an enumeration over the specified collection. This provides
3368 * interoperability with legacy APIs that require an enumeration
3369 * as input.
3370 *
3371 * @param c the collection for which an enumeration is to be returned.
3372 * @return an enumeration over the specified collection.
3373 * @see Enumeration
3374 */
3375 public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3376 return new Enumeration<T>() {
3377 Iterator<T> i = c.iterator();
3378
3379 public boolean hasMoreElements() {
3380 return i.hasNext();
3381 }
3382
3383 public T nextElement() {
3384 return i.next();
3385 }
3386 };
3387 }
3388
3389 /**
3390 * Returns an array list containing the elements returned by the
3391 * specified enumeration in the order they are returned by the
3392 * enumeration. This method provides interoperability between
3393 * legacy APIs that return enumerations and new APIs that require
3394 * collections.
3395 *
3396 * @param e enumeration providing elements for the returned
3397 * array list
3398 * @return an array list containing the elements returned
3399 * by the specified enumeration.
3400 * @since 1.4
3401 * @see Enumeration
3402 * @see ArrayList
3403 */
3404 public static <T> ArrayList<T> list(Enumeration<T> e) {
3405 ArrayList<T> l = new ArrayList<T>();
3406 while (e.hasMoreElements())
3407 l.add(e.nextElement());
3408 return l;
3409 }
3410
3411 /**
3412 * Returns true if the specified arguments are equal, or both null.
3413 */
3414 private static boolean eq(Object o1, Object o2) {
3415 return (o1==null ? o2==null : o1.equals(o2));
3416 }
3417
3418 /**
3419 * Returns the number of elements in the specified collection equal to the
3420 * specified object. More formally, returns the number of elements
3421 * <tt>e</tt> in the collection such that
3422 * <tt>(o == null ? e == null : o.equals(e))</tt>.
3423 *
3424 * @param c the collection in which to determine the frequency
3425 * of <tt>o</tt>
3426 * @param o the object whose frequency is to be determined
3427 * @throws NullPointerException if <tt>c</tt> is null
3428 * @since 1.5
3429 */
3430 public static int frequency(Collection<?> c, Object o) {
3431 int result = 0;
3432 if (o == null) {
3433 for (Object e : c)
3434 if (e == null)
3435 result++;
3436 } else {
3437 for (Object e : c)
3438 if (o.equals(e))
3439 result++;
3440 }
3441 return result;
3442 }
3443
3444 /**
3445 * Returns <tt>true</tt> if the two specified collections have no
3446 * elements in common.
3447 *
3448 * <p>Care must be exercised if this method is used on collections that
3449 * do not comply with the general contract for <tt>Collection</tt>.
3450 * Implementations may elect to iterate over either collection and test
3451 * for containment in the other collection (or to perform any equivalent
3452 * computation). If either collection uses a nonstandard equality test
3453 * (as does a {@link SortedSet} whose ordering is not <i>compatible with
3454 * equals</i>, or the key set of an {@link IdentityHashMap}), both
3455 * collections must use the same nonstandard equality test, or the
3456 * result of this method is undefined.
3457 *
3458 * <p>Note that it is permissible to pass the same collection in both
3459 * parameters, in which case the method will return true if and only if
3460 * the collection is empty.
3461 *
3462 * @param c1 a collection
3463 * @param c2 a collection
3464 * @throws NullPointerException if either collection is null
3465 * @since 1.5
3466 */
3467 public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
3468 /*
3469 * We're going to iterate through c1 and test for inclusion in c2.
3470 * If c1 is a Set and c2 isn't, swap the collections. Otherwise,
3471 * place the shorter collection in c1. Hopefully this heuristic
3472 * will minimize the cost of the operation.
3473 */
3474 if ((c1 instanceof Set) && !(c2 instanceof Set) ||
3475 (c1.size() > c2.size())) {
3476 Collection<?> tmp = c1;
3477 c1 = c2;
3478 c2 = tmp;
3479 }
3480
3481 for (Object e : c1)
3482 if (c2.contains(e))
3483 return false;
3484 return true;
3485 }
3486
3487 /**
3488 * Adds all of the specified elements to the specified collection.
3489 * Elements to be added may be specified individually or as an array.
3490 * The behavior of this convenience method is identical to that of
3491 * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
3492 * to run significantly faster under most implementations.
3493 *
3494 * <p>When elements are specified individually, this method provides a
3495 * convenient way to add a few elements to an existing collection:
3496 * <pre>
3497 * Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
3498 * </pre>
3499 *
3500 * @param c the collection into which <tt>elements</tt> are to be inserted
3501 * @param a the elements to insert into <tt>c</tt>
3502 * @return <tt>true</tt> if the collection changed as a result of the call
3503 * @throws UnsupportedOperationException if <tt>c</tt> does not support
3504 * the <tt>add</tt> operation.
3505 * @throws NullPointerException if <tt>elements</tt> contains one or more
3506 * null values and <tt>c</tt> does not permit null elements, or
3507 * if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
3508 * @throws IllegalArgumentException if some property of a value in
3509 * <tt>elements</tt> prevents it from being added to <tt>c</tt>
3510 * @see Collection#addAll(Collection)
3511 * @since 1.5
3512 */
3513 public static <T> boolean addAll(Collection<? super T> c, T... a) {
3514 boolean result = false;
3515 for (T e : a)
3516 result |= c.add(e);
3517 return result;
3518 }
3519
3520 /**
3521 * Returns a set backed by the specified map. The resulting set displays
3522 * the same ordering, concurrency, and performance characteristics as the
3523 * backing map. In essence, this factory method provides a {@link Set}
3524 * implementation corresponding to any {@link Map} implementation. There
3525 * is no need to use this method on a {@link Map} implementation that
3526 * already has a corresponding {@link Set} implementation (such as {@link
3527 * HashMap} or {@link TreeMap}).
3528 *
3529 * <p>Each method invocation on the set returned by this method results in
3530 * exactly one method invocation on the backing map or its <tt>keySet</tt>
3531 * view, with one exception. The <tt>addAll</tt> method is implemented
3532 * as a sequence of <tt>put</tt> invocations on the backing map.
3533 *
3534 * <p>The specified map must be empty at the time this method is invoked,
3535 * and should not be accessed directly after this method returns. These
3536 * conditions are ensured if the map is created empty, passed directly
3537 * to this method, and no reference to the map is retained, as illustrated
3538 * in the following code fragment:
3539 * <pre>
3540 * Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
3541 * new WeakHashMap&lt;Object, Boolean&gt;());
3542 * </pre>
3543 *
3544 * @param map the backing map
3545 * @return the set backed by the map
3546 * @throws IllegalArgumentException if <tt>map</tt> is not empty
3547 * @since 1.6
3548 */
3549 public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
3550 return new SetFromMap<E>(map);
3551 }
3552
3553 private static class SetFromMap<E> extends AbstractSet<E>
3554 implements Set<E>, Serializable
3555 {
3556 private final Map<E, Boolean> m; // The backing map
3557 private transient Set<E> keySet; // Its keySet
3558
3559 SetFromMap(Map<E, Boolean> map) {
3560 if (!map.isEmpty())
3561 throw new IllegalArgumentException("Map is non-empty");
3562 m = map;
3563 keySet = map.keySet();
3564 }
3565
3566 public int size() { return m.size(); }
3567 public boolean isEmpty() { return m.isEmpty(); }
3568 public boolean contains(Object o) { return m.containsKey(o); }
3569 public Iterator<E> iterator() { return keySet.iterator(); }
3570 public Object[] toArray() { return keySet.toArray(); }
3571 public <T> T[] toArray(T[] a) { return keySet.toArray(a); }
3572 public boolean add(E e) {
3573 return m.put(e, Boolean.TRUE) == null;
3574 }
3575 public boolean remove(Object o) { return m.remove(o) != null; }
3576
3577 public boolean removeAll(Collection<?> c) {
3578 return keySet.removeAll(c);
3579 }
3580 public boolean retainAll(Collection<?> c) {
3581 return keySet.retainAll(c);
3582 }
3583 public void clear() { m.clear(); }
3584 public boolean equals(Object o) { return keySet.equals(o); }
3585 public int hashCode() { return keySet.hashCode(); }
3586
3587 private static final long serialVersionUID = 2454657854757543876L;
3588
3589 private void readObject(java.io.ObjectInputStream s)
3590 throws IOException, ClassNotFoundException
3591 {
3592 s.defaultReadObject();
3593 keySet = m.keySet();
3594 }
3595 }
3596
3597 /**
3598 * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
3599 * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
3600 * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
3601 * view can be useful when you would like to use a method
3602 * requiring a <tt>Queue</tt> but you need Lifo ordering.
3603 *
3604 * @param deque the deque
3605 * @return the queue
3606 * @since 1.6
3607 */
3608 public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
3609 return new AsLIFOQueue<T>(deque);
3610 }
3611
3612 static class AsLIFOQueue<E> extends AbstractQueue<E>
3613 implements Queue<E>, Serializable {
3614 private static final long serialVersionUID = 1802017725587941708L;
3615 private final Deque<E> q;
3616 AsLIFOQueue(Deque<E> q) { this.q = q; }
3617 public boolean offer(E e) { return q.offerFirst(e); }
3618 public E poll() { return q.pollFirst(); }
3619 public E remove() { return q.removeFirst(); }
3620 public E peek() { return q.peekFirst(); }
3621 public E element() { return q.getFirst(); }
3622 public int size() { return q.size(); }
3623 public boolean isEmpty() { return q.isEmpty(); }
3624 public boolean contains(Object o) { return q.contains(o); }
3625 public Iterator<E> iterator() { return q.iterator(); }
3626 public Object[] toArray() { return q.toArray(); }
3627 public <T> T[] toArray(T[] a) { return q.toArray(a); }
3628 public boolean add(E e) { return q.offerFirst(e); }
3629 public boolean remove(Object o) { return q.remove(o); }
3630 public void clear() { q.clear(); }
3631 }
3632 }