ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ComparableTimSort.java
Revision: 1.2
Committed: Tue Sep 1 22:27:21 2009 UTC (14 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.1: +5 -3 lines
Log Message:
the right TimSort revision

File Contents

# Content
1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 package java.util;
18
19 /**
20 * This is a near duplicate of {@link TimSort}, modified for use with
21 * arrays of objects that implement {@link Comparable}, instead of using
22 * explicit comparators.
23 *
24 * <p>If you are using an optimizing VM, you may find that ComparableTimSort
25 * offers no performance benefit over TimSort in conjunction with a
26 * comparator that simply returns {@code ((Comparable)first).compareTo(Second)}.
27 * If this is the case, you are better off deleting ComparableTimSort to
28 * eliminate the code duplication. (See Arrays.java for details.)
29 *
30 * @author Josh Bloch
31 */
32 class ComparableTimSort {
33 /**
34 * This is the minimum sized sequence that will be merged. Shorter
35 * sequences will be lengthened by calling binarySort. If the entire
36 * array is less than this length, no merges will be performed.
37 *
38 * This constant should be a power of two. It was 64 in Tim Peter's C
39 * implementation, but 32 was empirically determined to work better in
40 * this implementation. In the unlikely event that you set this constant
41 * to be a number that's not a power of two, you'll need to change the
42 * {@link #minRunLength} computation.
43 *
44 * If you decrease this constant, you must change the stackLen
45 * computation in the TimSort constructor, or you risk an
46 * ArrayOutOfBounds exception. See listsort.txt for a discussion
47 * of the minimum stack length required as a function of the length
48 * of the array being sorted and the minimum merge sequence length.
49 */
50 private static final int MIN_MERGE = 32;
51
52 /**
53 * The array being sorted.
54 */
55 private final Object[] a;
56
57 /**
58 * When we get into galloping mode, we stay there until both runs win less
59 * often than MIN_GALLOP consecutive times.
60 */
61 private static final int MIN_GALLOP = 7;
62
63 /**
64 * This controls when we get *into* galloping mode. It is initialized
65 * to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
66 * random data, and lower for highly structured data.
67 */
68 private int minGallop = MIN_GALLOP;
69
70 /**
71 * Maximum initial size of tmp array, which is used for merging. The array
72 * can grow to accommodate demand.
73 *
74 * Unlike Tim's original C version, we do not allocate this much storage
75 * when sorting smaller arrays. This change was required for performance.
76 */
77 private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
78
79 /**
80 * Temp storage for merges.
81 */
82 private Object[] tmp;
83
84 /**
85 * A stack of pending runs yet to be merged. Run i starts at
86 * address base[i] and extends for len[i] elements. It's always
87 * true (so long as the indices are in bounds) that:
88 *
89 * runBase[i] + runLen[i] == runBase[i + 1]
90 *
91 * so we could cut the storage for this, but it's a minor amount,
92 * and keeping all the info explicit simplifies the code.
93 */
94 private int stackSize = 0; // Number of pending runs on stack
95 private final int[] runBase;
96 private final int[] runLen;
97
98 /**
99 * Creates a TimSort instance to maintain the state of an ongoing sort.
100 *
101 * @param a the array to be sorted
102 */
103 private ComparableTimSort(Object[] a) {
104 this.a = a;
105
106 // Allocate temp storage (which may be increased later if necessary)
107 int len = a.length;
108 @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
109 Object[] newArray = new Object[len < 2 * INITIAL_TMP_STORAGE_LENGTH ?
110 len >>> 1 : INITIAL_TMP_STORAGE_LENGTH];
111 tmp = newArray;
112
113 /*
114 * Allocate runs-to-be-merged stack (which cannot be expanded). The
115 * stack length requirements are described in listsort.txt. The C
116 * version always uses the same stack length (85), but this was
117 * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
118 * 100 elements) in Java. Therefore, we use smaller (but sufficiently
119 * large) stack lengths for smaller arrays. The "magic numbers" in the
120 * computation below must be changed if MIN_MERGE is decreased. See
121 * the MIN_MERGE declaration above for more information.
122 */
123 int stackLen = (len < 120 ? 5 :
124 len < 1542 ? 10 :
125 len < 119151 ? 19 : 40);
126 runBase = new int[stackLen];
127 runLen = new int[stackLen];
128 }
129
130 /*
131 * The next two methods (which are package private and static) constitute
132 * the entire API of this class. Each of these methods obeys the contract
133 * of the public method with the same signature in java.util.Arrays.
134 */
135
136 static void sort(Object[] a) {
137 sort(a, 0, a.length);
138 }
139
140 static void sort(Object[] a, int lo, int hi) {
141 rangeCheck(a.length, lo, hi);
142 int nRemaining = hi - lo;
143 if (nRemaining < 2)
144 return; // Arrays of size 0 and 1 are always sorted
145
146 // If array is small, do a "mini-TimSort" with no merges
147 if (nRemaining < MIN_MERGE) {
148 int initRunLen = countRunAndMakeAscending(a, lo, hi);
149 binarySort(a, lo, hi, lo + initRunLen);
150 return;
151 }
152
153 /**
154 * March over the array once, left to right, finding natural runs,
155 * extending short natural runs to minRun elements, and merging runs
156 * to maintain stack invariant.
157 */
158 ComparableTimSort ts = new ComparableTimSort(a);
159 int minRun = minRunLength(nRemaining);
160 do {
161 // Identify next run
162 int runLen = countRunAndMakeAscending(a, lo, hi);
163
164 // If run is short, extend to min(minRun, nRemaining)
165 if (runLen < minRun) {
166 int force = nRemaining <= minRun ? nRemaining : minRun;
167 binarySort(a, lo, lo + force, lo + runLen);
168 runLen = force;
169 }
170
171 // Push run onto pending-run stack, and maybe merge
172 ts.pushRun(lo, runLen);
173 ts.mergeCollapse();
174
175 // Advance to find next run
176 lo += runLen;
177 nRemaining -= runLen;
178 } while (nRemaining != 0);
179
180 // Merge all remaining runs to complete sort
181 assert lo == hi;
182 ts.mergeForceCollapse();
183 assert ts.stackSize == 1;
184 }
185
186 /**
187 * Sorts the specified portion of the specified array using a binary
188 * insertion sort. This is the best method for sorting small numbers
189 * of elements. It requires O(n log n) compares, but O(n^2) data
190 * movement (worst case).
191 *
192 * If the initial part of the specified range is already sorted,
193 * this method can take advantage of it: the method assumes that the
194 * elements from index {@code lo}, inclusive, to {@code start},
195 * exclusive are already sorted.
196 *
197 * @param a the array in which a range is to be sorted
198 * @param lo the index of the first element in the range to be sorted
199 * @param hi the index after the last element in the range to be sorted
200 * @param start the index of the first element in the range that is
201 * not already known to be sorted (@code lo <= start <= hi}
202 */
203 @SuppressWarnings("fallthrough")
204 private static void binarySort(Object[] a, int lo, int hi, int start) {
205 assert lo <= start && start <= hi;
206 if (start == lo)
207 start++;
208 for ( ; start < hi; start++) {
209 @SuppressWarnings("unchecked")
210 Comparable<Object> pivot = (Comparable) a[start];
211
212 // Set left (and right) to the index where a[start] (pivot) belongs
213 int left = lo;
214 int right = start;
215 assert left <= right;
216 /*
217 * Invariants:
218 * pivot >= all in [lo, left).
219 * pivot < all in [right, start).
220 */
221 while (left < right) {
222 int mid = (left + right) >>> 1;
223 if (pivot.compareTo(a[mid]) < 0)
224 right = mid;
225 else
226 left = mid + 1;
227 }
228 assert left == right;
229
230 /*
231 * The invariants still hold: pivot >= all in [lo, left) and
232 * pivot < all in [left, start), so pivot belongs at left. Note
233 * that if there are elements equal to pivot, left points to the
234 * first slot after them -- that's why this sort is stable.
235 * Slide elements over to make room to make room for pivot.
236 */
237 int n = start - left; // The number of elements to move
238 // Switch is just an optimization for arraycopy in default case
239 switch(n) {
240 case 2: a[left + 2] = a[left + 1];
241 case 1: a[left + 1] = a[left];
242 break;
243 default: System.arraycopy(a, left, a, left + 1, n);
244 }
245 a[left] = pivot;
246 }
247 }
248
249 /**
250 * Returns the length of the run beginning at the specified position in
251 * the specified array and reverses the run if it is descending (ensuring
252 * that the run will always be ascending when the method returns).
253 *
254 * A run is the longest ascending sequence with:
255 *
256 * a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
257 *
258 * or the longest descending sequence with:
259 *
260 * a[lo] > a[lo + 1] > a[lo + 2] > ...
261 *
262 * For its intended use in a stable mergesort, the strictness of the
263 * definition of "descending" is needed so that the call can safely
264 * reverse a descending sequence without violating stability.
265 *
266 * @param a the array in which a run is to be counted and possibly reversed
267 * @param lo index of the first element in the run
268 * @param hi index after the last element that may be contained in the run.
269 It is required that @code{lo < hi}.
270 * @return the length of the run beginning at the specified position in
271 * the specified array
272 */
273 @SuppressWarnings("unchecked")
274 private static int countRunAndMakeAscending(Object[] a, int lo, int hi) {
275 assert lo < hi;
276 int runHi = lo + 1;
277 if (runHi == hi)
278 return 1;
279
280 // Find end of run, and reverse range if descending
281 if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending
282 while(runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0)
283 runHi++;
284 reverseRange(a, lo, runHi);
285 } else { // Ascending
286 while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0)
287 runHi++;
288 }
289
290 return runHi - lo;
291 }
292
293 /**
294 * Reverse the specified range of the specified array.
295 *
296 * @param a the array in which a range is to be reversed
297 * @param lo the index of the first element in the range to be reversed
298 * @param hi the index after the last element in the range to be reversed
299 */
300 private static void reverseRange(Object[] a, int lo, int hi) {
301 hi--;
302 while (lo < hi) {
303 Object t = a[lo];
304 a[lo++] = a[hi];
305 a[hi--] = t;
306 }
307 }
308
309 /**
310 * Returns the minimum acceptable run length for an array of the specified
311 * length. Natural runs shorter than this will be extended with
312 * {@link #binarySort}.
313 *
314 * Roughly speaking, the computation is:
315 *
316 * If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
317 * Else if n is an exact power of 2, return MIN_MERGE/2.
318 * Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
319 * is close to, but strictly less than, an exact power of 2.
320 *
321 * For the rationale, see listsort.txt.
322 *
323 * @param n the length of the array to be sorted
324 * @return the length of the minimum run to be merged
325 */
326 private static int minRunLength(int n) {
327 assert n >= 0;
328 int r = 0; // Becomes 1 if any 1 bits are shifted off
329 while (n >= MIN_MERGE) {
330 r |= (n & 1);
331 n >>= 1;
332 }
333 return n + r;
334 }
335
336 /**
337 * Pushes the specified run onto the pending-run stack.
338 *
339 * @param runBase index of the first element in the run
340 * @param runLen the number of elements in the run
341 */
342 private void pushRun(int runBase, int runLen) {
343 this.runBase[stackSize] = runBase;
344 this.runLen[stackSize] = runLen;
345 stackSize++;
346 }
347
348 /**
349 * Examines the stack of runs waiting to be merged and merges adjacent runs
350 * until the stack invariants are reestablished:
351 *
352 * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
353 * 2. runLen[i - 2] > runLen[i - 1]
354 *
355 * This method is called each time a new run is pushed onto the stack,
356 * so the invariants are guaranteed to hold for i < stackSize upon
357 * entry to the method.
358 */
359 private void mergeCollapse() {
360 while (stackSize > 1) {
361 int n = stackSize - 2;
362 if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1]) {
363 if (runLen[n - 1] < runLen[n + 1])
364 n--;
365 mergeAt(n);
366 } else if (runLen[n] <= runLen[n + 1]) {
367 mergeAt(n);
368 } else {
369 break; // Invariant is established
370 }
371 }
372 }
373
374 /**
375 * Merges all runs on the stack until only one remains. This method is
376 * called once, to complete the sort.
377 */
378 private void mergeForceCollapse() {
379 while (stackSize > 1) {
380 int n = stackSize - 2;
381 if (n > 0 && runLen[n - 1] < runLen[n + 1])
382 n--;
383 mergeAt(n);
384 }
385 }
386
387 /**
388 * Merges the two runs at stack indices i and i+1. Run i must be
389 * the penultimate or antepenultimate run on the stack. In other words,
390 * i must be equal to stackSize-2 or stackSize-3.
391 *
392 * @param i stack index of the first of the two runs to merge
393 */
394 @SuppressWarnings("unchecked")
395 private void mergeAt(int i) {
396 assert stackSize >= 2;
397 assert i >= 0;
398 assert i == stackSize - 2 || i == stackSize - 3;
399
400 int base1 = runBase[i];
401 int len1 = runLen[i];
402 int base2 = runBase[i + 1];
403 int len2 = runLen[i + 1];
404 assert len1 > 0 && len2 > 0;
405 assert base1 + len1 == base2;
406
407 /*
408 * Record the length of the combined runs; if i is the 3rd-last
409 * run now, also slide over the last run (which isn't involved
410 * in this merge). The current run (i+1) goes away in any case.
411 */
412 runLen[i] = len1 + len2;
413 if (i == stackSize - 3) {
414 runBase[i + 1] = runBase[i + 2];
415 runLen[i + 1] = runLen[i + 2];
416 }
417 stackSize--;
418
419 /*
420 * Find where the first element of run2 goes in run1. Prior elements
421 * in run1 can be ignored (because they're already in place).
422 */
423 int k = gallopRight((Comparable<Object>) a[base2], a, base1, len1, 0);
424 assert k >= 0;
425 base1 += k;
426 len1 -= k;
427 if (len1 == 0)
428 return;
429
430 /*
431 * Find where the last element of run1 goes in run2. Subsequent elements
432 * in run2 can be ignored (because they're already in place).
433 */
434 len2 = gallopLeft((Comparable<Object>) a[base1 + len1 - 1], a,
435 base2, len2, len2 - 1);
436 assert len2 >= 0;
437 if (len2 == 0)
438 return;
439
440 // Merge remaining runs, using tmp array with min(len1, len2) elements
441 if (len1 <= len2)
442 mergeLo(base1, len1, base2, len2);
443 else
444 mergeHi(base1, len1, base2, len2);
445 }
446
447 /**
448 * Locates the position at which to insert the specified key into the
449 * specified sorted range; if the range contains an element equal to key,
450 * returns the index of the leftmost equal element.
451 *
452 * @param key the key whose insertion point to search for
453 * @param a the array in which to search
454 * @param base the index of the first element in the range
455 * @param len the length of the range; must be > 0
456 * @param hint the index at which to begin the search, 0 <= hint < n.
457 * The closer hint is to the result, the faster this method will run.
458 * @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
459 * pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
460 * In other words, key belongs at index b + k; or in other words,
461 * the first k elements of a should precede key, and the last n - k
462 * should follow it.
463 */
464 private static int gallopLeft(Comparable<Object> key, Object[] a,
465 int base, int len, int hint) {
466 assert len > 0 && hint >= 0 && hint < len;
467
468 int lastOfs = 0;
469 int ofs = 1;
470 if (key.compareTo(a[base + hint]) > 0) {
471 // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
472 int maxOfs = len - hint;
473 while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) > 0) {
474 lastOfs = ofs;
475 ofs = (ofs << 1) + 1;
476 if (ofs <= 0) // int overflow
477 ofs = maxOfs;
478 }
479 if (ofs > maxOfs)
480 ofs = maxOfs;
481
482 // Make offsets relative to base
483 lastOfs += hint;
484 ofs += hint;
485 } else { // key <= a[base + hint]
486 // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
487 final int maxOfs = hint + 1;
488 while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) <= 0) {
489 lastOfs = ofs;
490 ofs = (ofs << 1) + 1;
491 if (ofs <= 0) // int overflow
492 ofs = maxOfs;
493 }
494 if (ofs > maxOfs)
495 ofs = maxOfs;
496
497 // Make offsets relative to base
498 int tmp = lastOfs;
499 lastOfs = hint - ofs;
500 ofs = hint - tmp;
501 }
502 assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
503
504 /*
505 * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
506 * to the right of lastOfs but no farther right than ofs. Do a binary
507 * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
508 */
509 lastOfs++;
510 while (lastOfs < ofs) {
511 int m = lastOfs + ((ofs - lastOfs) >>> 1);
512
513 if (key.compareTo(a[base + m]) > 0)
514 lastOfs = m + 1; // a[base + m] < key
515 else
516 ofs = m; // key <= a[base + m]
517 }
518 assert lastOfs == ofs; // so a[base + ofs - 1] < key <= a[base + ofs]
519 return ofs;
520 }
521
522 /**
523 * Like gallopLeft, except that if the range contains an element equal to
524 * key, gallopRight returns the index after the rightmost equal element.
525 *
526 * @param key the key whose insertion point to search for
527 * @param a the array in which to search
528 * @param base the index of the first element in the range
529 * @param len the length of the range; must be > 0
530 * @param hint the index at which to begin the search, 0 <= hint < n.
531 * The closer hint is to the result, the faster this method will run.
532 * @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
533 */
534 private static int gallopRight(Comparable<Object> key, Object[] a,
535 int base, int len, int hint) {
536 assert len > 0 && hint >= 0 && hint < len;
537
538 int ofs = 1;
539 int lastOfs = 0;
540 if (key.compareTo(a[base + hint]) < 0) {
541 // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
542 int maxOfs = hint + 1;
543 while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) < 0) {
544 lastOfs = ofs;
545 ofs = (ofs << 1) + 1;
546 if (ofs <= 0) // int overflow
547 ofs = maxOfs;
548 }
549 if (ofs > maxOfs)
550 ofs = maxOfs;
551
552 // Make offsets relative to b
553 int tmp = lastOfs;
554 lastOfs = hint - ofs;
555 ofs = hint - tmp;
556 } else { // a[b + hint] <= key
557 // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
558 int maxOfs = len - hint;
559 while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) >= 0) {
560 lastOfs = ofs;
561 ofs = (ofs << 1) + 1;
562 if (ofs <= 0) // int overflow
563 ofs = maxOfs;
564 }
565 if (ofs > maxOfs)
566 ofs = maxOfs;
567
568 // Make offsets relative to b
569 lastOfs += hint;
570 ofs += hint;
571 }
572 assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
573
574 /*
575 * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
576 * the right of lastOfs but no farther right than ofs. Do a binary
577 * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
578 */
579 lastOfs++;
580 while (lastOfs < ofs) {
581 int m = lastOfs + ((ofs - lastOfs) >>> 1);
582
583 if (key.compareTo(a[base + m]) < 0)
584 ofs = m; // key < a[b + m]
585 else
586 lastOfs = m + 1; // a[b + m] <= key
587 }
588 assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs]
589 return ofs;
590 }
591
592 /**
593 * Merges two adjacent runs in place, in a stable fashion. The first
594 * element of the first run must be greater than the first element of the
595 * second run (a[base1] > a[base2]), and the last element of the first run
596 * (a[base1 + len1-1]) must be greater than all elements of the second run.
597 *
598 * For performance, this method should be called only when len1 <= len2;
599 * its twin, mergeHi should be called if len1 >= len2. (Either method
600 * may be called if len1 == len2.)
601 *
602 * @param base1 index of first element in first run to be merged
603 * @param len1 length of first run to be merged (must be > 0)
604 * @param base2 index of first element in second run to be merged
605 * (must be aBase + aLen)
606 * @param len2 length of second run to be merged (must be > 0)
607 */
608 @SuppressWarnings("unchecked")
609 private void mergeLo(int base1, int len1, int base2, int len2) {
610 assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
611
612 // Copy first run into temp array
613 Object[] a = this.a; // For performance
614 Object[] tmp = ensureCapacity(len1);
615 System.arraycopy(a, base1, tmp, 0, len1);
616
617 int cursor1 = 0; // Indexes into tmp array
618 int cursor2 = base2; // Indexes int a
619 int dest = base1; // Indexes int a
620
621 // Move first element of second run and deal with degenerate cases
622 a[dest++] = a[cursor2++];
623 if (--len2 == 0) {
624 System.arraycopy(tmp, cursor1, a, dest, len1);
625 return;
626 }
627 if (len1 == 1) {
628 System.arraycopy(a, cursor2, a, dest, len2);
629 a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
630 return;
631 }
632
633 int minGallop = this.minGallop; // Use local variable for performance
634 outer:
635 while (true) {
636 int count1 = 0; // Number of times in a row that first run won
637 int count2 = 0; // Number of times in a row that second run won
638
639 /*
640 * Do the straightforward thing until (if ever) one run starts
641 * winning consistently.
642 */
643 do {
644 assert len1 > 1 && len2 > 0;
645 if (((Comparable) a[cursor2]).compareTo(tmp[cursor1]) < 0) {
646 a[dest++] = a[cursor2++];
647 count2++;
648 count1 = 0;
649 if (--len2 == 0)
650 break outer;
651 } else {
652 a[dest++] = tmp[cursor1++];
653 count1++;
654 count2 = 0;
655 if (--len1 == 1)
656 break outer;
657 }
658 } while ((count1 | count2) < minGallop);
659
660 /*
661 * One run is winning so consistently that galloping may be a
662 * huge win. So try that, and continue galloping until (if ever)
663 * neither run appears to be winning consistently anymore.
664 */
665 do {
666 assert len1 > 1 && len2 > 0;
667 count1 = gallopRight((Comparable) a[cursor2], tmp, cursor1, len1, 0);
668 if (count1 != 0) {
669 System.arraycopy(tmp, cursor1, a, dest, count1);
670 dest += count1;
671 cursor1 += count1;
672 len1 -= count1;
673 if (len1 <= 1) // len1 == 1 || len1 == 0
674 break outer;
675 }
676 a[dest++] = a[cursor2++];
677 if (--len2 == 0)
678 break outer;
679
680 count2 = gallopLeft((Comparable) tmp[cursor1], a, cursor2, len2, 0);
681 if (count2 != 0) {
682 System.arraycopy(a, cursor2, a, dest, count2);
683 dest += count2;
684 cursor2 += count2;
685 len2 -= count2;
686 if (len2 == 0)
687 break outer;
688 }
689 a[dest++] = tmp[cursor1++];
690 if (--len1 == 1)
691 break outer;
692 minGallop--;
693 } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
694 if (minGallop < 0)
695 minGallop = 0;
696 minGallop += 2; // Penalize for leaving gallop mode
697 } // End of "outer" loop
698 this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
699
700 if (len1 == 1) {
701 assert len2 > 0;
702 System.arraycopy(a, cursor2, a, dest, len2);
703 a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
704 } else if (len1 == 0) {
705 throw new IllegalArgumentException(
706 "Comparison method violates its general contract!");
707 } else {
708 assert len2 == 0;
709 assert len1 > 1;
710 System.arraycopy(tmp, cursor1, a, dest, len1);
711 }
712 }
713
714 /**
715 * Like mergeLo, except that this method should be called only if
716 * len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
717 * may be called if len1 == len2.)
718 *
719 * @param base1 index of first element in first run to be merged
720 * @param len1 length of first run to be merged (must be > 0)
721 * @param base2 index of first element in second run to be merged
722 * (must be aBase + aLen)
723 * @param len2 length of second run to be merged (must be > 0)
724 */
725 @SuppressWarnings("unchecked")
726 private void mergeHi(int base1, int len1, int base2, int len2) {
727 assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
728
729 // Copy second run into temp array
730 Object[] a = this.a; // For performance
731 Object[] tmp = ensureCapacity(len2);
732 System.arraycopy(a, base2, tmp, 0, len2);
733
734 int cursor1 = base1 + len1 - 1; // Indexes into a
735 int cursor2 = len2 - 1; // Indexes into tmp array
736 int dest = base2 + len2 - 1; // Indexes into a
737
738 // Move last element of first run and deal with degenerate cases
739 a[dest--] = a[cursor1--];
740 if (--len1 == 0) {
741 System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2);
742 return;
743 }
744 if (len2 == 1) {
745 dest -= len1;
746 cursor1 -= len1;
747 System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
748 a[dest] = tmp[cursor2];
749 return;
750 }
751
752 int minGallop = this.minGallop; // Use local variable for performance
753 outer:
754 while (true) {
755 int count1 = 0; // Number of times in a row that first run won
756 int count2 = 0; // Number of times in a row that second run won
757
758 /*
759 * Do the straightforward thing until (if ever) one run
760 * appears to win consistently.
761 */
762 do {
763 assert len1 > 0 && len2 > 1;
764 if (((Comparable) tmp[cursor2]).compareTo(a[cursor1]) < 0) {
765 a[dest--] = a[cursor1--];
766 count1++;
767 count2 = 0;
768 if (--len1 == 0)
769 break outer;
770 } else {
771 a[dest--] = tmp[cursor2--];
772 count2++;
773 count1 = 0;
774 if (--len2 == 1)
775 break outer;
776 }
777 } while ((count1 | count2) < minGallop);
778
779 /*
780 * One run is winning so consistently that galloping may be a
781 * huge win. So try that, and continue galloping until (if ever)
782 * neither run appears to be winning consistently anymore.
783 */
784 do {
785 assert len1 > 0 && len2 > 1;
786 count1 = len1 - gallopRight((Comparable) tmp[cursor2], a, base1, len1, len1 - 1);
787 if (count1 != 0) {
788 dest -= count1;
789 cursor1 -= count1;
790 len1 -= count1;
791 System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
792 if (len1 == 0)
793 break outer;
794 }
795 a[dest--] = tmp[cursor2--];
796 if (--len2 == 1)
797 break outer;
798
799 count2 = len2 - gallopLeft((Comparable) a[cursor1], tmp, 0, len2, len2 - 1);
800 if (count2 != 0) {
801 dest -= count2;
802 cursor2 -= count2;
803 len2 -= count2;
804 System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
805 if (len2 <= 1)
806 break outer; // len2 == 1 || len2 == 0
807 }
808 a[dest--] = a[cursor1--];
809 if (--len1 == 0)
810 break outer;
811 minGallop--;
812 } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
813 if (minGallop < 0)
814 minGallop = 0;
815 minGallop += 2; // Penalize for leaving gallop mode
816 } // End of "outer" loop
817 this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
818
819 if (len2 == 1) {
820 assert len1 > 0;
821 dest -= len1;
822 cursor1 -= len1;
823 System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
824 a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
825 } else if (len2 == 0) {
826 throw new IllegalArgumentException(
827 "Comparison method violates its general contract!");
828 } else {
829 assert len1 == 0;
830 assert len2 > 0;
831 System.arraycopy(tmp, 0, a, dest - (len2 - 1), len2);
832 }
833 }
834
835 /**
836 * Ensures that the external array tmp has at least the specified
837 * number of elements, increasing its size if necessary. The size
838 * increases exponentially to ensure amortized linear time complexity.
839 *
840 * @param minCapacity the minimum required capacity of the tmp array
841 * @return tmp, whether or not it grew
842 */
843 private Object[] ensureCapacity(int minCapacity) {
844 if (tmp.length < minCapacity) {
845 // Compute smallest power of 2 > minCapacity
846 int newSize = minCapacity;
847 newSize |= newSize >> 1;
848 newSize |= newSize >> 2;
849 newSize |= newSize >> 4;
850 newSize |= newSize >> 8;
851 newSize |= newSize >> 16;
852 newSize++;
853
854 if (newSize < 0) // Not bloody likely!
855 newSize = minCapacity;
856 else
857 newSize = Math.min(newSize, a.length >>> 1);
858
859 @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
860 Object[] newArray = new Object[newSize];
861 tmp = newArray;
862 }
863 return tmp;
864 }
865
866 /**
867 * Checks that fromIndex and toIndex are in range, and throws an
868 * appropriate exception if they aren't.
869 *
870 * @param arrayLen the length of the array
871 * @param fromIndex the index of the first element of the range
872 * @param toIndex the index after the last element of the range
873 * @throws IllegalArgumentException if fromIndex > toIndex
874 * @throws ArrayIndexOutOfBoundsException if fromIndex < 0
875 * or toIndex > arrayLen
876 */
877 private static void rangeCheck(int arrayLen, int fromIndex, int toIndex) {
878 if (fromIndex > toIndex)
879 throw new IllegalArgumentException("fromIndex(" + fromIndex +
880 ") > toIndex(" + toIndex+")");
881 if (fromIndex < 0)
882 throw new ArrayIndexOutOfBoundsException(fromIndex);
883 if (toIndex > arrayLen)
884 throw new ArrayIndexOutOfBoundsException(toIndex);
885 }
886 }