ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ComparableTimSort.java
Revision: 1.7
Committed: Fri Jun 1 14:57:28 2018 UTC (5 years, 11 months ago) by jsr166
Branch: MAIN
CVS Tags: HEAD
Changes since 1.6: +1 -1 lines
Log Message:
fix javadoc formatting

File Contents

# User Rev Content
1 jsr166 1.1 /*
2 dl 1.6 * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
3     * Copyright 2009 Google Inc. All Rights Reserved.
4     * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 jsr166 1.1 *
6 dl 1.6 * This code is free software; you can redistribute it and/or modify it
7     * under the terms of the GNU General Public License version 2 only, as
8     * published by the Free Software Foundation. Oracle designates this
9     * particular file as subject to the "Classpath" exception as provided
10     * by Oracle in the LICENSE file that accompanied this code.
11 jsr166 1.1 *
12 dl 1.6 * This code is distributed in the hope that it will be useful, but WITHOUT
13     * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14     * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15     * version 2 for more details (a copy is included in the LICENSE file that
16     * accompanied this code).
17 jsr166 1.1 *
18 dl 1.6 * You should have received a copy of the GNU General Public License version
19     * 2 along with this work; if not, write to the Free Software Foundation,
20     * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
21     *
22     * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
23     * or visit www.oracle.com if you need additional information or have any
24     * questions.
25 jsr166 1.1 */
26    
27 jsr166 1.2 package java.util;
28 jsr166 1.1
29     /**
30     * This is a near duplicate of {@link TimSort}, modified for use with
31     * arrays of objects that implement {@link Comparable}, instead of using
32     * explicit comparators.
33     *
34     * <p>If you are using an optimizing VM, you may find that ComparableTimSort
35     * offers no performance benefit over TimSort in conjunction with a
36     * comparator that simply returns {@code ((Comparable)first).compareTo(Second)}.
37     * If this is the case, you are better off deleting ComparableTimSort to
38     * eliminate the code duplication. (See Arrays.java for details.)
39 jsr166 1.2 *
40     * @author Josh Bloch
41 jsr166 1.1 */
42     class ComparableTimSort {
43     /**
44     * This is the minimum sized sequence that will be merged. Shorter
45     * sequences will be lengthened by calling binarySort. If the entire
46     * array is less than this length, no merges will be performed.
47     *
48     * This constant should be a power of two. It was 64 in Tim Peter's C
49     * implementation, but 32 was empirically determined to work better in
50     * this implementation. In the unlikely event that you set this constant
51     * to be a number that's not a power of two, you'll need to change the
52     * {@link #minRunLength} computation.
53     *
54     * If you decrease this constant, you must change the stackLen
55     * computation in the TimSort constructor, or you risk an
56     * ArrayOutOfBounds exception. See listsort.txt for a discussion
57     * of the minimum stack length required as a function of the length
58     * of the array being sorted and the minimum merge sequence length.
59     */
60     private static final int MIN_MERGE = 32;
61    
62     /**
63     * The array being sorted.
64     */
65     private final Object[] a;
66    
67     /**
68     * When we get into galloping mode, we stay there until both runs win less
69     * often than MIN_GALLOP consecutive times.
70     */
71     private static final int MIN_GALLOP = 7;
72    
73     /**
74     * This controls when we get *into* galloping mode. It is initialized
75     * to MIN_GALLOP. The mergeLo and mergeHi methods nudge it higher for
76     * random data, and lower for highly structured data.
77     */
78     private int minGallop = MIN_GALLOP;
79    
80     /**
81     * Maximum initial size of tmp array, which is used for merging. The array
82     * can grow to accommodate demand.
83     *
84     * Unlike Tim's original C version, we do not allocate this much storage
85     * when sorting smaller arrays. This change was required for performance.
86     */
87     private static final int INITIAL_TMP_STORAGE_LENGTH = 256;
88    
89     /**
90 dl 1.6 * Temp storage for merges. A workspace array may optionally be
91     * provided in constructor, and if so will be used as long as it
92     * is big enough.
93 jsr166 1.1 */
94     private Object[] tmp;
95 dl 1.6 private int tmpBase; // base of tmp array slice
96     private int tmpLen; // length of tmp array slice
97 jsr166 1.1
98     /**
99     * A stack of pending runs yet to be merged. Run i starts at
100     * address base[i] and extends for len[i] elements. It's always
101     * true (so long as the indices are in bounds) that:
102     *
103     * runBase[i] + runLen[i] == runBase[i + 1]
104     *
105     * so we could cut the storage for this, but it's a minor amount,
106     * and keeping all the info explicit simplifies the code.
107     */
108     private int stackSize = 0; // Number of pending runs on stack
109     private final int[] runBase;
110     private final int[] runLen;
111    
112     /**
113     * Creates a TimSort instance to maintain the state of an ongoing sort.
114     *
115     * @param a the array to be sorted
116 dl 1.6 * @param work a workspace array (slice)
117     * @param workBase origin of usable space in work array
118     * @param workLen usable size of work array
119 jsr166 1.1 */
120 dl 1.6 private ComparableTimSort(Object[] a, Object[] work, int workBase, int workLen) {
121 jsr166 1.1 this.a = a;
122    
123     // Allocate temp storage (which may be increased later if necessary)
124     int len = a.length;
125 dl 1.6 int tlen = (len < 2 * INITIAL_TMP_STORAGE_LENGTH) ?
126     len >>> 1 : INITIAL_TMP_STORAGE_LENGTH;
127     if (work == null || workLen < tlen || workBase + tlen > work.length) {
128     tmp = new Object[tlen];
129     tmpBase = 0;
130     tmpLen = tlen;
131     }
132     else {
133     tmp = work;
134     tmpBase = workBase;
135     tmpLen = workLen;
136     }
137 jsr166 1.1
138     /*
139     * Allocate runs-to-be-merged stack (which cannot be expanded). The
140     * stack length requirements are described in listsort.txt. The C
141     * version always uses the same stack length (85), but this was
142     * measured to be too expensive when sorting "mid-sized" arrays (e.g.,
143     * 100 elements) in Java. Therefore, we use smaller (but sufficiently
144     * large) stack lengths for smaller arrays. The "magic numbers" in the
145     * computation below must be changed if MIN_MERGE is decreased. See
146     * the MIN_MERGE declaration above for more information.
147 dl 1.6 * The maximum value of 49 allows for an array up to length
148     * Integer.MAX_VALUE-4, if array is filled by the worst case stack size
149     * increasing scenario. More explanations are given in section 4 of:
150     * http://envisage-project.eu/wp-content/uploads/2015/02/sorting.pdf
151 jsr166 1.1 */
152     int stackLen = (len < 120 ? 5 :
153     len < 1542 ? 10 :
154 dl 1.6 len < 119151 ? 24 : 49);
155 jsr166 1.1 runBase = new int[stackLen];
156     runLen = new int[stackLen];
157     }
158    
159     /*
160 dl 1.6 * The next method (package private and static) constitutes the
161     * entire API of this class.
162 jsr166 1.1 */
163    
164 dl 1.6 /**
165     * Sorts the given range, using the given workspace array slice
166     * for temp storage when possible. This method is designed to be
167     * invoked from public methods (in class Arrays) after performing
168     * any necessary array bounds checks and expanding parameters into
169     * the required forms.
170     *
171     * @param a the array to be sorted
172     * @param lo the index of the first element, inclusive, to be sorted
173     * @param hi the index of the last element, exclusive, to be sorted
174     * @param work a workspace array (slice)
175     * @param workBase origin of usable space in work array
176     * @param workLen usable size of work array
177     * @since 1.8
178     */
179     static void sort(Object[] a, int lo, int hi, Object[] work, int workBase, int workLen) {
180     assert a != null && lo >= 0 && lo <= hi && hi <= a.length;
181 jsr166 1.1
182     int nRemaining = hi - lo;
183     if (nRemaining < 2)
184     return; // Arrays of size 0 and 1 are always sorted
185    
186     // If array is small, do a "mini-TimSort" with no merges
187     if (nRemaining < MIN_MERGE) {
188 jsr166 1.2 int initRunLen = countRunAndMakeAscending(a, lo, hi);
189 jsr166 1.1 binarySort(a, lo, hi, lo + initRunLen);
190     return;
191     }
192    
193     /**
194     * March over the array once, left to right, finding natural runs,
195     * extending short natural runs to minRun elements, and merging runs
196     * to maintain stack invariant.
197     */
198 dl 1.6 ComparableTimSort ts = new ComparableTimSort(a, work, workBase, workLen);
199 jsr166 1.1 int minRun = minRunLength(nRemaining);
200     do {
201     // Identify next run
202     int runLen = countRunAndMakeAscending(a, lo, hi);
203    
204     // If run is short, extend to min(minRun, nRemaining)
205     if (runLen < minRun) {
206     int force = nRemaining <= minRun ? nRemaining : minRun;
207     binarySort(a, lo, lo + force, lo + runLen);
208     runLen = force;
209     }
210    
211     // Push run onto pending-run stack, and maybe merge
212     ts.pushRun(lo, runLen);
213     ts.mergeCollapse();
214    
215     // Advance to find next run
216     lo += runLen;
217     nRemaining -= runLen;
218     } while (nRemaining != 0);
219    
220     // Merge all remaining runs to complete sort
221     assert lo == hi;
222     ts.mergeForceCollapse();
223     assert ts.stackSize == 1;
224     }
225    
226     /**
227     * Sorts the specified portion of the specified array using a binary
228     * insertion sort. This is the best method for sorting small numbers
229     * of elements. It requires O(n log n) compares, but O(n^2) data
230     * movement (worst case).
231     *
232     * If the initial part of the specified range is already sorted,
233     * this method can take advantage of it: the method assumes that the
234     * elements from index {@code lo}, inclusive, to {@code start},
235     * exclusive are already sorted.
236     *
237     * @param a the array in which a range is to be sorted
238     * @param lo the index of the first element in the range to be sorted
239     * @param hi the index after the last element in the range to be sorted
240     * @param start the index of the first element in the range that is
241 jsr166 1.4 * not already known to be sorted ({@code lo <= start <= hi})
242 jsr166 1.1 */
243 dl 1.6 @SuppressWarnings({"fallthrough", "rawtypes", "unchecked"})
244 jsr166 1.1 private static void binarySort(Object[] a, int lo, int hi, int start) {
245     assert lo <= start && start <= hi;
246     if (start == lo)
247     start++;
248     for ( ; start < hi; start++) {
249 dl 1.6 Comparable pivot = (Comparable) a[start];
250 jsr166 1.1
251     // Set left (and right) to the index where a[start] (pivot) belongs
252     int left = lo;
253     int right = start;
254     assert left <= right;
255     /*
256     * Invariants:
257     * pivot >= all in [lo, left).
258     * pivot < all in [right, start).
259     */
260     while (left < right) {
261     int mid = (left + right) >>> 1;
262     if (pivot.compareTo(a[mid]) < 0)
263     right = mid;
264     else
265     left = mid + 1;
266     }
267     assert left == right;
268    
269     /*
270     * The invariants still hold: pivot >= all in [lo, left) and
271     * pivot < all in [left, start), so pivot belongs at left. Note
272     * that if there are elements equal to pivot, left points to the
273     * first slot after them -- that's why this sort is stable.
274 dl 1.6 * Slide elements over to make room for pivot.
275 jsr166 1.1 */
276     int n = start - left; // The number of elements to move
277     // Switch is just an optimization for arraycopy in default case
278 jsr166 1.3 switch (n) {
279 jsr166 1.1 case 2: a[left + 2] = a[left + 1];
280     case 1: a[left + 1] = a[left];
281     break;
282     default: System.arraycopy(a, left, a, left + 1, n);
283     }
284     a[left] = pivot;
285     }
286     }
287    
288     /**
289     * Returns the length of the run beginning at the specified position in
290     * the specified array and reverses the run if it is descending (ensuring
291     * that the run will always be ascending when the method returns).
292     *
293     * A run is the longest ascending sequence with:
294     *
295     * a[lo] <= a[lo + 1] <= a[lo + 2] <= ...
296     *
297     * or the longest descending sequence with:
298     *
299     * a[lo] > a[lo + 1] > a[lo + 2] > ...
300     *
301     * For its intended use in a stable mergesort, the strictness of the
302     * definition of "descending" is needed so that the call can safely
303     * reverse a descending sequence without violating stability.
304     *
305     * @param a the array in which a run is to be counted and possibly reversed
306     * @param lo index of the first element in the run
307     * @param hi index after the last element that may be contained in the run.
308 jsr166 1.7 * It is required that {@code lo < hi}.
309 jsr166 1.1 * @return the length of the run beginning at the specified position in
310     * the specified array
311     */
312 dl 1.6 @SuppressWarnings({"unchecked", "rawtypes"})
313 jsr166 1.1 private static int countRunAndMakeAscending(Object[] a, int lo, int hi) {
314     assert lo < hi;
315     int runHi = lo + 1;
316     if (runHi == hi)
317     return 1;
318    
319     // Find end of run, and reverse range if descending
320     if (((Comparable) a[runHi++]).compareTo(a[lo]) < 0) { // Descending
321 jsr166 1.3 while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) < 0)
322 jsr166 1.1 runHi++;
323     reverseRange(a, lo, runHi);
324     } else { // Ascending
325     while (runHi < hi && ((Comparable) a[runHi]).compareTo(a[runHi - 1]) >= 0)
326     runHi++;
327     }
328    
329     return runHi - lo;
330     }
331    
332     /**
333     * Reverse the specified range of the specified array.
334     *
335     * @param a the array in which a range is to be reversed
336     * @param lo the index of the first element in the range to be reversed
337     * @param hi the index after the last element in the range to be reversed
338     */
339     private static void reverseRange(Object[] a, int lo, int hi) {
340     hi--;
341     while (lo < hi) {
342     Object t = a[lo];
343     a[lo++] = a[hi];
344     a[hi--] = t;
345     }
346     }
347    
348     /**
349     * Returns the minimum acceptable run length for an array of the specified
350     * length. Natural runs shorter than this will be extended with
351     * {@link #binarySort}.
352     *
353     * Roughly speaking, the computation is:
354     *
355     * If n < MIN_MERGE, return n (it's too small to bother with fancy stuff).
356     * Else if n is an exact power of 2, return MIN_MERGE/2.
357     * Else return an int k, MIN_MERGE/2 <= k <= MIN_MERGE, such that n/k
358     * is close to, but strictly less than, an exact power of 2.
359     *
360     * For the rationale, see listsort.txt.
361     *
362     * @param n the length of the array to be sorted
363     * @return the length of the minimum run to be merged
364     */
365     private static int minRunLength(int n) {
366     assert n >= 0;
367     int r = 0; // Becomes 1 if any 1 bits are shifted off
368     while (n >= MIN_MERGE) {
369     r |= (n & 1);
370     n >>= 1;
371     }
372     return n + r;
373     }
374    
375     /**
376     * Pushes the specified run onto the pending-run stack.
377     *
378     * @param runBase index of the first element in the run
379     * @param runLen the number of elements in the run
380     */
381     private void pushRun(int runBase, int runLen) {
382     this.runBase[stackSize] = runBase;
383     this.runLen[stackSize] = runLen;
384     stackSize++;
385     }
386    
387     /**
388     * Examines the stack of runs waiting to be merged and merges adjacent runs
389     * until the stack invariants are reestablished:
390     *
391     * 1. runLen[i - 3] > runLen[i - 2] + runLen[i - 1]
392     * 2. runLen[i - 2] > runLen[i - 1]
393     *
394     * This method is called each time a new run is pushed onto the stack,
395     * so the invariants are guaranteed to hold for i < stackSize upon
396     * entry to the method.
397 dl 1.6 *
398     * Thanks to Stijn de Gouw, Jurriaan Rot, Frank S. de Boer,
399     * Richard Bubel and Reiner Hahnle, this is fixed with respect to
400     * the analysis in "On the Worst-Case Complexity of TimSort" by
401     * Nicolas Auger, Vincent Jug, Cyril Nicaud, and Carine Pivoteau.
402 jsr166 1.1 */
403     private void mergeCollapse() {
404     while (stackSize > 1) {
405     int n = stackSize - 2;
406 dl 1.6 if (n > 0 && runLen[n-1] <= runLen[n] + runLen[n+1] ||
407     n > 1 && runLen[n-2] <= runLen[n] + runLen[n-1]) {
408 jsr166 1.1 if (runLen[n - 1] < runLen[n + 1])
409     n--;
410 dl 1.6 } else if (n < 0 || runLen[n] > runLen[n + 1]) {
411 jsr166 1.1 break; // Invariant is established
412     }
413 dl 1.6 mergeAt(n);
414 jsr166 1.1 }
415     }
416    
417     /**
418     * Merges all runs on the stack until only one remains. This method is
419     * called once, to complete the sort.
420     */
421     private void mergeForceCollapse() {
422     while (stackSize > 1) {
423     int n = stackSize - 2;
424     if (n > 0 && runLen[n - 1] < runLen[n + 1])
425     n--;
426     mergeAt(n);
427     }
428     }
429    
430     /**
431     * Merges the two runs at stack indices i and i+1. Run i must be
432     * the penultimate or antepenultimate run on the stack. In other words,
433     * i must be equal to stackSize-2 or stackSize-3.
434     *
435     * @param i stack index of the first of the two runs to merge
436     */
437     @SuppressWarnings("unchecked")
438     private void mergeAt(int i) {
439     assert stackSize >= 2;
440     assert i >= 0;
441     assert i == stackSize - 2 || i == stackSize - 3;
442    
443     int base1 = runBase[i];
444     int len1 = runLen[i];
445     int base2 = runBase[i + 1];
446     int len2 = runLen[i + 1];
447     assert len1 > 0 && len2 > 0;
448     assert base1 + len1 == base2;
449    
450     /*
451     * Record the length of the combined runs; if i is the 3rd-last
452     * run now, also slide over the last run (which isn't involved
453     * in this merge). The current run (i+1) goes away in any case.
454     */
455     runLen[i] = len1 + len2;
456     if (i == stackSize - 3) {
457     runBase[i + 1] = runBase[i + 2];
458     runLen[i + 1] = runLen[i + 2];
459     }
460     stackSize--;
461    
462     /*
463     * Find where the first element of run2 goes in run1. Prior elements
464     * in run1 can be ignored (because they're already in place).
465     */
466     int k = gallopRight((Comparable<Object>) a[base2], a, base1, len1, 0);
467     assert k >= 0;
468     base1 += k;
469     len1 -= k;
470     if (len1 == 0)
471     return;
472    
473     /*
474     * Find where the last element of run1 goes in run2. Subsequent elements
475     * in run2 can be ignored (because they're already in place).
476     */
477     len2 = gallopLeft((Comparable<Object>) a[base1 + len1 - 1], a,
478     base2, len2, len2 - 1);
479     assert len2 >= 0;
480     if (len2 == 0)
481     return;
482    
483     // Merge remaining runs, using tmp array with min(len1, len2) elements
484     if (len1 <= len2)
485     mergeLo(base1, len1, base2, len2);
486     else
487     mergeHi(base1, len1, base2, len2);
488     }
489    
490     /**
491     * Locates the position at which to insert the specified key into the
492     * specified sorted range; if the range contains an element equal to key,
493     * returns the index of the leftmost equal element.
494     *
495     * @param key the key whose insertion point to search for
496     * @param a the array in which to search
497     * @param base the index of the first element in the range
498     * @param len the length of the range; must be > 0
499     * @param hint the index at which to begin the search, 0 <= hint < n.
500     * The closer hint is to the result, the faster this method will run.
501     * @return the int k, 0 <= k <= n such that a[b + k - 1] < key <= a[b + k],
502     * pretending that a[b - 1] is minus infinity and a[b + n] is infinity.
503     * In other words, key belongs at index b + k; or in other words,
504     * the first k elements of a should precede key, and the last n - k
505     * should follow it.
506     */
507     private static int gallopLeft(Comparable<Object> key, Object[] a,
508     int base, int len, int hint) {
509     assert len > 0 && hint >= 0 && hint < len;
510    
511     int lastOfs = 0;
512     int ofs = 1;
513     if (key.compareTo(a[base + hint]) > 0) {
514     // Gallop right until a[base+hint+lastOfs] < key <= a[base+hint+ofs]
515     int maxOfs = len - hint;
516     while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) > 0) {
517     lastOfs = ofs;
518     ofs = (ofs << 1) + 1;
519     if (ofs <= 0) // int overflow
520     ofs = maxOfs;
521     }
522     if (ofs > maxOfs)
523     ofs = maxOfs;
524    
525     // Make offsets relative to base
526     lastOfs += hint;
527     ofs += hint;
528     } else { // key <= a[base + hint]
529     // Gallop left until a[base+hint-ofs] < key <= a[base+hint-lastOfs]
530     final int maxOfs = hint + 1;
531     while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) <= 0) {
532     lastOfs = ofs;
533     ofs = (ofs << 1) + 1;
534     if (ofs <= 0) // int overflow
535     ofs = maxOfs;
536     }
537     if (ofs > maxOfs)
538     ofs = maxOfs;
539    
540     // Make offsets relative to base
541     int tmp = lastOfs;
542     lastOfs = hint - ofs;
543     ofs = hint - tmp;
544     }
545     assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
546    
547     /*
548     * Now a[base+lastOfs] < key <= a[base+ofs], so key belongs somewhere
549     * to the right of lastOfs but no farther right than ofs. Do a binary
550     * search, with invariant a[base + lastOfs - 1] < key <= a[base + ofs].
551     */
552     lastOfs++;
553     while (lastOfs < ofs) {
554     int m = lastOfs + ((ofs - lastOfs) >>> 1);
555    
556     if (key.compareTo(a[base + m]) > 0)
557     lastOfs = m + 1; // a[base + m] < key
558     else
559     ofs = m; // key <= a[base + m]
560     }
561     assert lastOfs == ofs; // so a[base + ofs - 1] < key <= a[base + ofs]
562     return ofs;
563     }
564    
565     /**
566     * Like gallopLeft, except that if the range contains an element equal to
567     * key, gallopRight returns the index after the rightmost equal element.
568     *
569     * @param key the key whose insertion point to search for
570     * @param a the array in which to search
571     * @param base the index of the first element in the range
572     * @param len the length of the range; must be > 0
573     * @param hint the index at which to begin the search, 0 <= hint < n.
574     * The closer hint is to the result, the faster this method will run.
575     * @return the int k, 0 <= k <= n such that a[b + k - 1] <= key < a[b + k]
576     */
577     private static int gallopRight(Comparable<Object> key, Object[] a,
578     int base, int len, int hint) {
579     assert len > 0 && hint >= 0 && hint < len;
580    
581     int ofs = 1;
582     int lastOfs = 0;
583     if (key.compareTo(a[base + hint]) < 0) {
584     // Gallop left until a[b+hint - ofs] <= key < a[b+hint - lastOfs]
585     int maxOfs = hint + 1;
586     while (ofs < maxOfs && key.compareTo(a[base + hint - ofs]) < 0) {
587     lastOfs = ofs;
588     ofs = (ofs << 1) + 1;
589     if (ofs <= 0) // int overflow
590     ofs = maxOfs;
591     }
592     if (ofs > maxOfs)
593     ofs = maxOfs;
594    
595     // Make offsets relative to b
596     int tmp = lastOfs;
597     lastOfs = hint - ofs;
598     ofs = hint - tmp;
599     } else { // a[b + hint] <= key
600     // Gallop right until a[b+hint + lastOfs] <= key < a[b+hint + ofs]
601     int maxOfs = len - hint;
602     while (ofs < maxOfs && key.compareTo(a[base + hint + ofs]) >= 0) {
603     lastOfs = ofs;
604     ofs = (ofs << 1) + 1;
605     if (ofs <= 0) // int overflow
606     ofs = maxOfs;
607     }
608     if (ofs > maxOfs)
609     ofs = maxOfs;
610    
611     // Make offsets relative to b
612     lastOfs += hint;
613     ofs += hint;
614     }
615     assert -1 <= lastOfs && lastOfs < ofs && ofs <= len;
616    
617     /*
618     * Now a[b + lastOfs] <= key < a[b + ofs], so key belongs somewhere to
619     * the right of lastOfs but no farther right than ofs. Do a binary
620     * search, with invariant a[b + lastOfs - 1] <= key < a[b + ofs].
621     */
622     lastOfs++;
623     while (lastOfs < ofs) {
624     int m = lastOfs + ((ofs - lastOfs) >>> 1);
625    
626     if (key.compareTo(a[base + m]) < 0)
627     ofs = m; // key < a[b + m]
628     else
629     lastOfs = m + 1; // a[b + m] <= key
630     }
631     assert lastOfs == ofs; // so a[b + ofs - 1] <= key < a[b + ofs]
632     return ofs;
633     }
634    
635     /**
636     * Merges two adjacent runs in place, in a stable fashion. The first
637     * element of the first run must be greater than the first element of the
638     * second run (a[base1] > a[base2]), and the last element of the first run
639     * (a[base1 + len1-1]) must be greater than all elements of the second run.
640     *
641     * For performance, this method should be called only when len1 <= len2;
642     * its twin, mergeHi should be called if len1 >= len2. (Either method
643     * may be called if len1 == len2.)
644     *
645     * @param base1 index of first element in first run to be merged
646     * @param len1 length of first run to be merged (must be > 0)
647     * @param base2 index of first element in second run to be merged
648     * (must be aBase + aLen)
649     * @param len2 length of second run to be merged (must be > 0)
650     */
651 dl 1.6 @SuppressWarnings({"unchecked", "rawtypes"})
652 jsr166 1.1 private void mergeLo(int base1, int len1, int base2, int len2) {
653     assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
654    
655     // Copy first run into temp array
656     Object[] a = this.a; // For performance
657     Object[] tmp = ensureCapacity(len1);
658    
659 dl 1.6 int cursor1 = tmpBase; // Indexes into tmp array
660 jsr166 1.1 int cursor2 = base2; // Indexes int a
661     int dest = base1; // Indexes int a
662 dl 1.6 System.arraycopy(a, base1, tmp, cursor1, len1);
663 jsr166 1.1
664     // Move first element of second run and deal with degenerate cases
665     a[dest++] = a[cursor2++];
666     if (--len2 == 0) {
667     System.arraycopy(tmp, cursor1, a, dest, len1);
668     return;
669     }
670     if (len1 == 1) {
671     System.arraycopy(a, cursor2, a, dest, len2);
672     a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
673     return;
674     }
675    
676     int minGallop = this.minGallop; // Use local variable for performance
677     outer:
678     while (true) {
679     int count1 = 0; // Number of times in a row that first run won
680     int count2 = 0; // Number of times in a row that second run won
681    
682     /*
683     * Do the straightforward thing until (if ever) one run starts
684     * winning consistently.
685     */
686     do {
687     assert len1 > 1 && len2 > 0;
688     if (((Comparable) a[cursor2]).compareTo(tmp[cursor1]) < 0) {
689     a[dest++] = a[cursor2++];
690     count2++;
691     count1 = 0;
692     if (--len2 == 0)
693     break outer;
694     } else {
695     a[dest++] = tmp[cursor1++];
696     count1++;
697     count2 = 0;
698     if (--len1 == 1)
699     break outer;
700     }
701     } while ((count1 | count2) < minGallop);
702    
703     /*
704     * One run is winning so consistently that galloping may be a
705     * huge win. So try that, and continue galloping until (if ever)
706     * neither run appears to be winning consistently anymore.
707     */
708     do {
709     assert len1 > 1 && len2 > 0;
710     count1 = gallopRight((Comparable) a[cursor2], tmp, cursor1, len1, 0);
711     if (count1 != 0) {
712     System.arraycopy(tmp, cursor1, a, dest, count1);
713     dest += count1;
714     cursor1 += count1;
715     len1 -= count1;
716 jsr166 1.2 if (len1 <= 1) // len1 == 1 || len1 == 0
717 jsr166 1.1 break outer;
718     }
719     a[dest++] = a[cursor2++];
720     if (--len2 == 0)
721     break outer;
722    
723     count2 = gallopLeft((Comparable) tmp[cursor1], a, cursor2, len2, 0);
724     if (count2 != 0) {
725     System.arraycopy(a, cursor2, a, dest, count2);
726     dest += count2;
727     cursor2 += count2;
728     len2 -= count2;
729     if (len2 == 0)
730     break outer;
731     }
732     a[dest++] = tmp[cursor1++];
733     if (--len1 == 1)
734     break outer;
735     minGallop--;
736     } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
737     if (minGallop < 0)
738     minGallop = 0;
739     minGallop += 2; // Penalize for leaving gallop mode
740     } // End of "outer" loop
741     this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
742    
743     if (len1 == 1) {
744     assert len2 > 0;
745     System.arraycopy(a, cursor2, a, dest, len2);
746     a[dest + len2] = tmp[cursor1]; // Last elt of run 1 to end of merge
747     } else if (len1 == 0) {
748     throw new IllegalArgumentException(
749     "Comparison method violates its general contract!");
750     } else {
751     assert len2 == 0;
752     assert len1 > 1;
753     System.arraycopy(tmp, cursor1, a, dest, len1);
754     }
755     }
756    
757     /**
758     * Like mergeLo, except that this method should be called only if
759     * len1 >= len2; mergeLo should be called if len1 <= len2. (Either method
760     * may be called if len1 == len2.)
761     *
762     * @param base1 index of first element in first run to be merged
763     * @param len1 length of first run to be merged (must be > 0)
764     * @param base2 index of first element in second run to be merged
765     * (must be aBase + aLen)
766     * @param len2 length of second run to be merged (must be > 0)
767     */
768 dl 1.6 @SuppressWarnings({"unchecked", "rawtypes"})
769 jsr166 1.1 private void mergeHi(int base1, int len1, int base2, int len2) {
770     assert len1 > 0 && len2 > 0 && base1 + len1 == base2;
771    
772     // Copy second run into temp array
773     Object[] a = this.a; // For performance
774     Object[] tmp = ensureCapacity(len2);
775 dl 1.6 int tmpBase = this.tmpBase;
776     System.arraycopy(a, base2, tmp, tmpBase, len2);
777 jsr166 1.1
778     int cursor1 = base1 + len1 - 1; // Indexes into a
779 dl 1.6 int cursor2 = tmpBase + len2 - 1; // Indexes into tmp array
780 jsr166 1.1 int dest = base2 + len2 - 1; // Indexes into a
781    
782     // Move last element of first run and deal with degenerate cases
783     a[dest--] = a[cursor1--];
784     if (--len1 == 0) {
785 dl 1.6 System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
786 jsr166 1.1 return;
787     }
788     if (len2 == 1) {
789     dest -= len1;
790     cursor1 -= len1;
791     System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
792     a[dest] = tmp[cursor2];
793     return;
794     }
795    
796     int minGallop = this.minGallop; // Use local variable for performance
797     outer:
798     while (true) {
799     int count1 = 0; // Number of times in a row that first run won
800     int count2 = 0; // Number of times in a row that second run won
801    
802     /*
803     * Do the straightforward thing until (if ever) one run
804     * appears to win consistently.
805     */
806     do {
807     assert len1 > 0 && len2 > 1;
808     if (((Comparable) tmp[cursor2]).compareTo(a[cursor1]) < 0) {
809     a[dest--] = a[cursor1--];
810     count1++;
811     count2 = 0;
812     if (--len1 == 0)
813     break outer;
814     } else {
815     a[dest--] = tmp[cursor2--];
816     count2++;
817     count1 = 0;
818     if (--len2 == 1)
819     break outer;
820     }
821     } while ((count1 | count2) < minGallop);
822    
823     /*
824     * One run is winning so consistently that galloping may be a
825     * huge win. So try that, and continue galloping until (if ever)
826     * neither run appears to be winning consistently anymore.
827     */
828     do {
829     assert len1 > 0 && len2 > 1;
830     count1 = len1 - gallopRight((Comparable) tmp[cursor2], a, base1, len1, len1 - 1);
831     if (count1 != 0) {
832     dest -= count1;
833     cursor1 -= count1;
834     len1 -= count1;
835     System.arraycopy(a, cursor1 + 1, a, dest + 1, count1);
836     if (len1 == 0)
837     break outer;
838     }
839     a[dest--] = tmp[cursor2--];
840     if (--len2 == 1)
841     break outer;
842    
843 dl 1.6 count2 = len2 - gallopLeft((Comparable) a[cursor1], tmp, tmpBase, len2, len2 - 1);
844 jsr166 1.1 if (count2 != 0) {
845     dest -= count2;
846     cursor2 -= count2;
847     len2 -= count2;
848     System.arraycopy(tmp, cursor2 + 1, a, dest + 1, count2);
849     if (len2 <= 1)
850     break outer; // len2 == 1 || len2 == 0
851     }
852     a[dest--] = a[cursor1--];
853     if (--len1 == 0)
854     break outer;
855     minGallop--;
856     } while (count1 >= MIN_GALLOP | count2 >= MIN_GALLOP);
857     if (minGallop < 0)
858     minGallop = 0;
859     minGallop += 2; // Penalize for leaving gallop mode
860     } // End of "outer" loop
861     this.minGallop = minGallop < 1 ? 1 : minGallop; // Write back to field
862    
863     if (len2 == 1) {
864     assert len1 > 0;
865     dest -= len1;
866     cursor1 -= len1;
867     System.arraycopy(a, cursor1 + 1, a, dest + 1, len1);
868     a[dest] = tmp[cursor2]; // Move first elt of run2 to front of merge
869     } else if (len2 == 0) {
870     throw new IllegalArgumentException(
871     "Comparison method violates its general contract!");
872     } else {
873     assert len1 == 0;
874     assert len2 > 0;
875 dl 1.6 System.arraycopy(tmp, tmpBase, a, dest - (len2 - 1), len2);
876 jsr166 1.1 }
877     }
878    
879     /**
880     * Ensures that the external array tmp has at least the specified
881     * number of elements, increasing its size if necessary. The size
882     * increases exponentially to ensure amortized linear time complexity.
883     *
884     * @param minCapacity the minimum required capacity of the tmp array
885     * @return tmp, whether or not it grew
886     */
887     private Object[] ensureCapacity(int minCapacity) {
888 dl 1.6 if (tmpLen < minCapacity) {
889 jsr166 1.1 // Compute smallest power of 2 > minCapacity
890 dl 1.6 int newSize = -1 >>> Integer.numberOfLeadingZeros(minCapacity);
891 jsr166 1.1 newSize++;
892    
893     if (newSize < 0) // Not bloody likely!
894     newSize = minCapacity;
895     else
896     newSize = Math.min(newSize, a.length >>> 1);
897    
898     @SuppressWarnings({"unchecked", "UnnecessaryLocalVariable"})
899     Object[] newArray = new Object[newSize];
900     tmp = newArray;
901 dl 1.6 tmpLen = newSize;
902     tmpBase = 0;
903 jsr166 1.1 }
904     return tmp;
905     }
906    
907     }