ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/HashMap.java
Revision: 1.2
Committed: Sun Sep 3 16:15:38 2017 UTC (6 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.1: +8 -4 lines
Log Message:
fix javadoc warnings for serialization methods

File Contents

# Content
1 /*
2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation. Oracle designates this
8 * particular file as subject to the "Classpath" exception as provided
9 * by Oracle in the LICENSE file that accompanied this code.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 */
25
26 package java.util;
27
28 import java.io.IOException;
29 import java.io.InvalidObjectException;
30 import java.io.Serializable;
31 import java.lang.reflect.ParameterizedType;
32 import java.lang.reflect.Type;
33 import java.util.function.BiConsumer;
34 import java.util.function.BiFunction;
35 import java.util.function.Consumer;
36 import java.util.function.Function;
37
38 /**
39 * Hash table based implementation of the {@code Map} interface. This
40 * implementation provides all of the optional map operations, and permits
41 * {@code null} values and the {@code null} key. (The {@code HashMap}
42 * class is roughly equivalent to {@code Hashtable}, except that it is
43 * unsynchronized and permits nulls.) This class makes no guarantees as to
44 * the order of the map; in particular, it does not guarantee that the order
45 * will remain constant over time.
46 *
47 * <p>This implementation provides constant-time performance for the basic
48 * operations ({@code get} and {@code put}), assuming the hash function
49 * disperses the elements properly among the buckets. Iteration over
50 * collection views requires time proportional to the "capacity" of the
51 * {@code HashMap} instance (the number of buckets) plus its size (the number
52 * of key-value mappings). Thus, it's very important not to set the initial
53 * capacity too high (or the load factor too low) if iteration performance is
54 * important.
55 *
56 * <p>An instance of {@code HashMap} has two parameters that affect its
57 * performance: <i>initial capacity</i> and <i>load factor</i>. The
58 * <i>capacity</i> is the number of buckets in the hash table, and the initial
59 * capacity is simply the capacity at the time the hash table is created. The
60 * <i>load factor</i> is a measure of how full the hash table is allowed to
61 * get before its capacity is automatically increased. When the number of
62 * entries in the hash table exceeds the product of the load factor and the
63 * current capacity, the hash table is <i>rehashed</i> (that is, internal data
64 * structures are rebuilt) so that the hash table has approximately twice the
65 * number of buckets.
66 *
67 * <p>As a general rule, the default load factor (.75) offers a good
68 * tradeoff between time and space costs. Higher values decrease the
69 * space overhead but increase the lookup cost (reflected in most of
70 * the operations of the {@code HashMap} class, including
71 * {@code get} and {@code put}). The expected number of entries in
72 * the map and its load factor should be taken into account when
73 * setting its initial capacity, so as to minimize the number of
74 * rehash operations. If the initial capacity is greater than the
75 * maximum number of entries divided by the load factor, no rehash
76 * operations will ever occur.
77 *
78 * <p>If many mappings are to be stored in a {@code HashMap}
79 * instance, creating it with a sufficiently large capacity will allow
80 * the mappings to be stored more efficiently than letting it perform
81 * automatic rehashing as needed to grow the table. Note that using
82 * many keys with the same {@code hashCode()} is a sure way to slow
83 * down performance of any hash table. To ameliorate impact, when keys
84 * are {@link Comparable}, this class may use comparison order among
85 * keys to help break ties.
86 *
87 * <p><strong>Note that this implementation is not synchronized.</strong>
88 * If multiple threads access a hash map concurrently, and at least one of
89 * the threads modifies the map structurally, it <i>must</i> be
90 * synchronized externally. (A structural modification is any operation
91 * that adds or deletes one or more mappings; merely changing the value
92 * associated with a key that an instance already contains is not a
93 * structural modification.) This is typically accomplished by
94 * synchronizing on some object that naturally encapsulates the map.
95 *
96 * If no such object exists, the map should be "wrapped" using the
97 * {@link Collections#synchronizedMap Collections.synchronizedMap}
98 * method. This is best done at creation time, to prevent accidental
99 * unsynchronized access to the map:<pre>
100 * Map m = Collections.synchronizedMap(new HashMap(...));</pre>
101 *
102 * <p>The iterators returned by all of this class's "collection view methods"
103 * are <i>fail-fast</i>: if the map is structurally modified at any time after
104 * the iterator is created, in any way except through the iterator's own
105 * {@code remove} method, the iterator will throw a
106 * {@link ConcurrentModificationException}. Thus, in the face of concurrent
107 * modification, the iterator fails quickly and cleanly, rather than risking
108 * arbitrary, non-deterministic behavior at an undetermined time in the
109 * future.
110 *
111 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
112 * as it is, generally speaking, impossible to make any hard guarantees in the
113 * presence of unsynchronized concurrent modification. Fail-fast iterators
114 * throw {@code ConcurrentModificationException} on a best-effort basis.
115 * Therefore, it would be wrong to write a program that depended on this
116 * exception for its correctness: <i>the fail-fast behavior of iterators
117 * should be used only to detect bugs.</i>
118 *
119 * <p>This class is a member of the
120 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
121 * Java Collections Framework</a>.
122 *
123 * @param <K> the type of keys maintained by this map
124 * @param <V> the type of mapped values
125 *
126 * @author Doug Lea
127 * @author Josh Bloch
128 * @author Arthur van Hoff
129 * @author Neal Gafter
130 * @see Object#hashCode()
131 * @see Collection
132 * @see Map
133 * @see TreeMap
134 * @see Hashtable
135 * @since 1.2
136 */
137 public class HashMap<K,V> extends AbstractMap<K,V>
138 implements Map<K,V>, Cloneable, Serializable {
139
140 private static final long serialVersionUID = 362498820763181265L;
141
142 /*
143 * Implementation notes.
144 *
145 * This map usually acts as a binned (bucketed) hash table, but
146 * when bins get too large, they are transformed into bins of
147 * TreeNodes, each structured similarly to those in
148 * java.util.TreeMap. Most methods try to use normal bins, but
149 * relay to TreeNode methods when applicable (simply by checking
150 * instanceof a node). Bins of TreeNodes may be traversed and
151 * used like any others, but additionally support faster lookup
152 * when overpopulated. However, since the vast majority of bins in
153 * normal use are not overpopulated, checking for existence of
154 * tree bins may be delayed in the course of table methods.
155 *
156 * Tree bins (i.e., bins whose elements are all TreeNodes) are
157 * ordered primarily by hashCode, but in the case of ties, if two
158 * elements are of the same "class C implements Comparable<C>",
159 * type then their compareTo method is used for ordering. (We
160 * conservatively check generic types via reflection to validate
161 * this -- see method comparableClassFor). The added complexity
162 * of tree bins is worthwhile in providing worst-case O(log n)
163 * operations when keys either have distinct hashes or are
164 * orderable, Thus, performance degrades gracefully under
165 * accidental or malicious usages in which hashCode() methods
166 * return values that are poorly distributed, as well as those in
167 * which many keys share a hashCode, so long as they are also
168 * Comparable. (If neither of these apply, we may waste about a
169 * factor of two in time and space compared to taking no
170 * precautions. But the only known cases stem from poor user
171 * programming practices that are already so slow that this makes
172 * little difference.)
173 *
174 * Because TreeNodes are about twice the size of regular nodes, we
175 * use them only when bins contain enough nodes to warrant use
176 * (see TREEIFY_THRESHOLD). And when they become too small (due to
177 * removal or resizing) they are converted back to plain bins. In
178 * usages with well-distributed user hashCodes, tree bins are
179 * rarely used. Ideally, under random hashCodes, the frequency of
180 * nodes in bins follows a Poisson distribution
181 * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
182 * parameter of about 0.5 on average for the default resizing
183 * threshold of 0.75, although with a large variance because of
184 * resizing granularity. Ignoring variance, the expected
185 * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
186 * factorial(k)). The first values are:
187 *
188 * 0: 0.60653066
189 * 1: 0.30326533
190 * 2: 0.07581633
191 * 3: 0.01263606
192 * 4: 0.00157952
193 * 5: 0.00015795
194 * 6: 0.00001316
195 * 7: 0.00000094
196 * 8: 0.00000006
197 * more: less than 1 in ten million
198 *
199 * The root of a tree bin is normally its first node. However,
200 * sometimes (currently only upon Iterator.remove), the root might
201 * be elsewhere, but can be recovered following parent links
202 * (method TreeNode.root()).
203 *
204 * All applicable internal methods accept a hash code as an
205 * argument (as normally supplied from a public method), allowing
206 * them to call each other without recomputing user hashCodes.
207 * Most internal methods also accept a "tab" argument, that is
208 * normally the current table, but may be a new or old one when
209 * resizing or converting.
210 *
211 * When bin lists are treeified, split, or untreeified, we keep
212 * them in the same relative access/traversal order (i.e., field
213 * Node.next) to better preserve locality, and to slightly
214 * simplify handling of splits and traversals that invoke
215 * iterator.remove. When using comparators on insertion, to keep a
216 * total ordering (or as close as is required here) across
217 * rebalancings, we compare classes and identityHashCodes as
218 * tie-breakers.
219 *
220 * The use and transitions among plain vs tree modes is
221 * complicated by the existence of subclass LinkedHashMap. See
222 * below for hook methods defined to be invoked upon insertion,
223 * removal and access that allow LinkedHashMap internals to
224 * otherwise remain independent of these mechanics. (This also
225 * requires that a map instance be passed to some utility methods
226 * that may create new nodes.)
227 *
228 * The concurrent-programming-like SSA-based coding style helps
229 * avoid aliasing errors amid all of the twisty pointer operations.
230 */
231
232 /**
233 * The default initial capacity - MUST be a power of two.
234 */
235 static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
236
237 /**
238 * The maximum capacity, used if a higher value is implicitly specified
239 * by either of the constructors with arguments.
240 * MUST be a power of two <= 1<<30.
241 */
242 static final int MAXIMUM_CAPACITY = 1 << 30;
243
244 /**
245 * The load factor used when none specified in constructor.
246 */
247 static final float DEFAULT_LOAD_FACTOR = 0.75f;
248
249 /**
250 * The bin count threshold for using a tree rather than list for a
251 * bin. Bins are converted to trees when adding an element to a
252 * bin with at least this many nodes. The value must be greater
253 * than 2 and should be at least 8 to mesh with assumptions in
254 * tree removal about conversion back to plain bins upon
255 * shrinkage.
256 */
257 static final int TREEIFY_THRESHOLD = 8;
258
259 /**
260 * The bin count threshold for untreeifying a (split) bin during a
261 * resize operation. Should be less than TREEIFY_THRESHOLD, and at
262 * most 6 to mesh with shrinkage detection under removal.
263 */
264 static final int UNTREEIFY_THRESHOLD = 6;
265
266 /**
267 * The smallest table capacity for which bins may be treeified.
268 * (Otherwise the table is resized if too many nodes in a bin.)
269 * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
270 * between resizing and treeification thresholds.
271 */
272 static final int MIN_TREEIFY_CAPACITY = 64;
273
274 /**
275 * Basic hash bin node, used for most entries. (See below for
276 * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
277 */
278 static class Node<K,V> implements Map.Entry<K,V> {
279 final int hash;
280 final K key;
281 V value;
282 Node<K,V> next;
283
284 Node(int hash, K key, V value, Node<K,V> next) {
285 this.hash = hash;
286 this.key = key;
287 this.value = value;
288 this.next = next;
289 }
290
291 public final K getKey() { return key; }
292 public final V getValue() { return value; }
293 public final String toString() { return key + "=" + value; }
294
295 public final int hashCode() {
296 return Objects.hashCode(key) ^ Objects.hashCode(value);
297 }
298
299 public final V setValue(V newValue) {
300 V oldValue = value;
301 value = newValue;
302 return oldValue;
303 }
304
305 public final boolean equals(Object o) {
306 if (o == this)
307 return true;
308 if (o instanceof Map.Entry) {
309 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
310 if (Objects.equals(key, e.getKey()) &&
311 Objects.equals(value, e.getValue()))
312 return true;
313 }
314 return false;
315 }
316 }
317
318 /* ---------------- Static utilities -------------- */
319
320 /**
321 * Computes key.hashCode() and spreads (XORs) higher bits of hash
322 * to lower. Because the table uses power-of-two masking, sets of
323 * hashes that vary only in bits above the current mask will
324 * always collide. (Among known examples are sets of Float keys
325 * holding consecutive whole numbers in small tables.) So we
326 * apply a transform that spreads the impact of higher bits
327 * downward. There is a tradeoff between speed, utility, and
328 * quality of bit-spreading. Because many common sets of hashes
329 * are already reasonably distributed (so don't benefit from
330 * spreading), and because we use trees to handle large sets of
331 * collisions in bins, we just XOR some shifted bits in the
332 * cheapest possible way to reduce systematic lossage, as well as
333 * to incorporate impact of the highest bits that would otherwise
334 * never be used in index calculations because of table bounds.
335 */
336 static final int hash(Object key) {
337 int h;
338 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
339 }
340
341 /**
342 * Returns x's Class if it is of the form "class C implements
343 * Comparable<C>", else null.
344 */
345 static Class<?> comparableClassFor(Object x) {
346 if (x instanceof Comparable) {
347 Class<?> c; Type[] ts, as; ParameterizedType p;
348 if ((c = x.getClass()) == String.class) // bypass checks
349 return c;
350 if ((ts = c.getGenericInterfaces()) != null) {
351 for (Type t : ts) {
352 if ((t instanceof ParameterizedType) &&
353 ((p = (ParameterizedType) t).getRawType() ==
354 Comparable.class) &&
355 (as = p.getActualTypeArguments()) != null &&
356 as.length == 1 && as[0] == c) // type arg is c
357 return c;
358 }
359 }
360 }
361 return null;
362 }
363
364 /**
365 * Returns k.compareTo(x) if x matches kc (k's screened comparable
366 * class), else 0.
367 */
368 @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
369 static int compareComparables(Class<?> kc, Object k, Object x) {
370 return (x == null || x.getClass() != kc ? 0 :
371 ((Comparable)k).compareTo(x));
372 }
373
374 /**
375 * Returns a power of two size for the given target capacity.
376 */
377 static final int tableSizeFor(int cap) {
378 int n = cap - 1;
379 n |= n >>> 1;
380 n |= n >>> 2;
381 n |= n >>> 4;
382 n |= n >>> 8;
383 n |= n >>> 16;
384 return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
385 }
386
387 /* ---------------- Fields -------------- */
388
389 /**
390 * The table, initialized on first use, and resized as
391 * necessary. When allocated, length is always a power of two.
392 * (We also tolerate length zero in some operations to allow
393 * bootstrapping mechanics that are currently not needed.)
394 */
395 transient Node<K,V>[] table;
396
397 /**
398 * Holds cached entrySet(). Note that AbstractMap fields are used
399 * for keySet() and values().
400 */
401 transient Set<Map.Entry<K,V>> entrySet;
402
403 /**
404 * The number of key-value mappings contained in this map.
405 */
406 transient int size;
407
408 /**
409 * The number of times this HashMap has been structurally modified
410 * Structural modifications are those that change the number of mappings in
411 * the HashMap or otherwise modify its internal structure (e.g.,
412 * rehash). This field is used to make iterators on Collection-views of
413 * the HashMap fail-fast. (See ConcurrentModificationException).
414 */
415 transient int modCount;
416
417 /**
418 * The next size value at which to resize (capacity * load factor).
419 *
420 * @serial
421 */
422 // (The javadoc description is true upon serialization.
423 // Additionally, if the table array has not been allocated, this
424 // field holds the initial array capacity, or zero signifying
425 // DEFAULT_INITIAL_CAPACITY.)
426 int threshold;
427
428 /**
429 * The load factor for the hash table.
430 *
431 * @serial
432 */
433 final float loadFactor;
434
435 /* ---------------- Public operations -------------- */
436
437 /**
438 * Constructs an empty {@code HashMap} with the specified initial
439 * capacity and load factor.
440 *
441 * @param initialCapacity the initial capacity
442 * @param loadFactor the load factor
443 * @throws IllegalArgumentException if the initial capacity is negative
444 * or the load factor is nonpositive
445 */
446 public HashMap(int initialCapacity, float loadFactor) {
447 if (initialCapacity < 0)
448 throw new IllegalArgumentException("Illegal initial capacity: " +
449 initialCapacity);
450 if (initialCapacity > MAXIMUM_CAPACITY)
451 initialCapacity = MAXIMUM_CAPACITY;
452 if (loadFactor <= 0 || Float.isNaN(loadFactor))
453 throw new IllegalArgumentException("Illegal load factor: " +
454 loadFactor);
455 this.loadFactor = loadFactor;
456 this.threshold = tableSizeFor(initialCapacity);
457 }
458
459 /**
460 * Constructs an empty {@code HashMap} with the specified initial
461 * capacity and the default load factor (0.75).
462 *
463 * @param initialCapacity the initial capacity.
464 * @throws IllegalArgumentException if the initial capacity is negative.
465 */
466 public HashMap(int initialCapacity) {
467 this(initialCapacity, DEFAULT_LOAD_FACTOR);
468 }
469
470 /**
471 * Constructs an empty {@code HashMap} with the default initial capacity
472 * (16) and the default load factor (0.75).
473 */
474 public HashMap() {
475 this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
476 }
477
478 /**
479 * Constructs a new {@code HashMap} with the same mappings as the
480 * specified {@code Map}. The {@code HashMap} is created with
481 * default load factor (0.75) and an initial capacity sufficient to
482 * hold the mappings in the specified {@code Map}.
483 *
484 * @param m the map whose mappings are to be placed in this map
485 * @throws NullPointerException if the specified map is null
486 */
487 public HashMap(Map<? extends K, ? extends V> m) {
488 this.loadFactor = DEFAULT_LOAD_FACTOR;
489 putMapEntries(m, false);
490 }
491
492 /**
493 * Implements Map.putAll and Map constructor.
494 *
495 * @param m the map
496 * @param evict false when initially constructing this map, else
497 * true (relayed to method afterNodeInsertion).
498 */
499 final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
500 int s = m.size();
501 if (s > 0) {
502 if (table == null) { // pre-size
503 float ft = ((float)s / loadFactor) + 1.0F;
504 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
505 (int)ft : MAXIMUM_CAPACITY);
506 if (t > threshold)
507 threshold = tableSizeFor(t);
508 }
509 else if (s > threshold)
510 resize();
511 for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
512 K key = e.getKey();
513 V value = e.getValue();
514 putVal(hash(key), key, value, false, evict);
515 }
516 }
517 }
518
519 /**
520 * Returns the number of key-value mappings in this map.
521 *
522 * @return the number of key-value mappings in this map
523 */
524 public int size() {
525 return size;
526 }
527
528 /**
529 * Returns {@code true} if this map contains no key-value mappings.
530 *
531 * @return {@code true} if this map contains no key-value mappings
532 */
533 public boolean isEmpty() {
534 return size == 0;
535 }
536
537 /**
538 * Returns the value to which the specified key is mapped,
539 * or {@code null} if this map contains no mapping for the key.
540 *
541 * <p>More formally, if this map contains a mapping from a key
542 * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
543 * key.equals(k))}, then this method returns {@code v}; otherwise
544 * it returns {@code null}. (There can be at most one such mapping.)
545 *
546 * <p>A return value of {@code null} does not <i>necessarily</i>
547 * indicate that the map contains no mapping for the key; it's also
548 * possible that the map explicitly maps the key to {@code null}.
549 * The {@link #containsKey containsKey} operation may be used to
550 * distinguish these two cases.
551 *
552 * @see #put(Object, Object)
553 */
554 public V get(Object key) {
555 Node<K,V> e;
556 return (e = getNode(hash(key), key)) == null ? null : e.value;
557 }
558
559 /**
560 * Implements Map.get and related methods.
561 *
562 * @param hash hash for key
563 * @param key the key
564 * @return the node, or null if none
565 */
566 final Node<K,V> getNode(int hash, Object key) {
567 Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
568 if ((tab = table) != null && (n = tab.length) > 0 &&
569 (first = tab[(n - 1) & hash]) != null) {
570 if (first.hash == hash && // always check first node
571 ((k = first.key) == key || (key != null && key.equals(k))))
572 return first;
573 if ((e = first.next) != null) {
574 if (first instanceof TreeNode)
575 return ((TreeNode<K,V>)first).getTreeNode(hash, key);
576 do {
577 if (e.hash == hash &&
578 ((k = e.key) == key || (key != null && key.equals(k))))
579 return e;
580 } while ((e = e.next) != null);
581 }
582 }
583 return null;
584 }
585
586 /**
587 * Returns {@code true} if this map contains a mapping for the
588 * specified key.
589 *
590 * @param key The key whose presence in this map is to be tested
591 * @return {@code true} if this map contains a mapping for the specified
592 * key.
593 */
594 public boolean containsKey(Object key) {
595 return getNode(hash(key), key) != null;
596 }
597
598 /**
599 * Associates the specified value with the specified key in this map.
600 * If the map previously contained a mapping for the key, the old
601 * value is replaced.
602 *
603 * @param key key with which the specified value is to be associated
604 * @param value value to be associated with the specified key
605 * @return the previous value associated with {@code key}, or
606 * {@code null} if there was no mapping for {@code key}.
607 * (A {@code null} return can also indicate that the map
608 * previously associated {@code null} with {@code key}.)
609 */
610 public V put(K key, V value) {
611 return putVal(hash(key), key, value, false, true);
612 }
613
614 /**
615 * Implements Map.put and related methods.
616 *
617 * @param hash hash for key
618 * @param key the key
619 * @param value the value to put
620 * @param onlyIfAbsent if true, don't change existing value
621 * @param evict if false, the table is in creation mode.
622 * @return previous value, or null if none
623 */
624 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
625 boolean evict) {
626 Node<K,V>[] tab; Node<K,V> p; int n, i;
627 if ((tab = table) == null || (n = tab.length) == 0)
628 n = (tab = resize()).length;
629 if ((p = tab[i = (n - 1) & hash]) == null)
630 tab[i] = newNode(hash, key, value, null);
631 else {
632 Node<K,V> e; K k;
633 if (p.hash == hash &&
634 ((k = p.key) == key || (key != null && key.equals(k))))
635 e = p;
636 else if (p instanceof TreeNode)
637 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
638 else {
639 for (int binCount = 0; ; ++binCount) {
640 if ((e = p.next) == null) {
641 p.next = newNode(hash, key, value, null);
642 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
643 treeifyBin(tab, hash);
644 break;
645 }
646 if (e.hash == hash &&
647 ((k = e.key) == key || (key != null && key.equals(k))))
648 break;
649 p = e;
650 }
651 }
652 if (e != null) { // existing mapping for key
653 V oldValue = e.value;
654 if (!onlyIfAbsent || oldValue == null)
655 e.value = value;
656 afterNodeAccess(e);
657 return oldValue;
658 }
659 }
660 ++modCount;
661 if (++size > threshold)
662 resize();
663 afterNodeInsertion(evict);
664 return null;
665 }
666
667 /**
668 * Initializes or doubles table size. If null, allocates in
669 * accord with initial capacity target held in field threshold.
670 * Otherwise, because we are using power-of-two expansion, the
671 * elements from each bin must either stay at same index, or move
672 * with a power of two offset in the new table.
673 *
674 * @return the table
675 */
676 final Node<K,V>[] resize() {
677 Node<K,V>[] oldTab = table;
678 int oldCap = (oldTab == null) ? 0 : oldTab.length;
679 int oldThr = threshold;
680 int newCap, newThr = 0;
681 if (oldCap > 0) {
682 if (oldCap >= MAXIMUM_CAPACITY) {
683 threshold = Integer.MAX_VALUE;
684 return oldTab;
685 }
686 else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
687 oldCap >= DEFAULT_INITIAL_CAPACITY)
688 newThr = oldThr << 1; // double threshold
689 }
690 else if (oldThr > 0) // initial capacity was placed in threshold
691 newCap = oldThr;
692 else { // zero initial threshold signifies using defaults
693 newCap = DEFAULT_INITIAL_CAPACITY;
694 newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
695 }
696 if (newThr == 0) {
697 float ft = (float)newCap * loadFactor;
698 newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
699 (int)ft : Integer.MAX_VALUE);
700 }
701 threshold = newThr;
702 @SuppressWarnings({"rawtypes","unchecked"})
703 Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
704 table = newTab;
705 if (oldTab != null) {
706 for (int j = 0; j < oldCap; ++j) {
707 Node<K,V> e;
708 if ((e = oldTab[j]) != null) {
709 oldTab[j] = null;
710 if (e.next == null)
711 newTab[e.hash & (newCap - 1)] = e;
712 else if (e instanceof TreeNode)
713 ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
714 else { // preserve order
715 Node<K,V> loHead = null, loTail = null;
716 Node<K,V> hiHead = null, hiTail = null;
717 Node<K,V> next;
718 do {
719 next = e.next;
720 if ((e.hash & oldCap) == 0) {
721 if (loTail == null)
722 loHead = e;
723 else
724 loTail.next = e;
725 loTail = e;
726 }
727 else {
728 if (hiTail == null)
729 hiHead = e;
730 else
731 hiTail.next = e;
732 hiTail = e;
733 }
734 } while ((e = next) != null);
735 if (loTail != null) {
736 loTail.next = null;
737 newTab[j] = loHead;
738 }
739 if (hiTail != null) {
740 hiTail.next = null;
741 newTab[j + oldCap] = hiHead;
742 }
743 }
744 }
745 }
746 }
747 return newTab;
748 }
749
750 /**
751 * Replaces all linked nodes in bin at index for given hash unless
752 * table is too small, in which case resizes instead.
753 */
754 final void treeifyBin(Node<K,V>[] tab, int hash) {
755 int n, index; Node<K,V> e;
756 if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
757 resize();
758 else if ((e = tab[index = (n - 1) & hash]) != null) {
759 TreeNode<K,V> hd = null, tl = null;
760 do {
761 TreeNode<K,V> p = replacementTreeNode(e, null);
762 if (tl == null)
763 hd = p;
764 else {
765 p.prev = tl;
766 tl.next = p;
767 }
768 tl = p;
769 } while ((e = e.next) != null);
770 if ((tab[index] = hd) != null)
771 hd.treeify(tab);
772 }
773 }
774
775 /**
776 * Copies all of the mappings from the specified map to this map.
777 * These mappings will replace any mappings that this map had for
778 * any of the keys currently in the specified map.
779 *
780 * @param m mappings to be stored in this map
781 * @throws NullPointerException if the specified map is null
782 */
783 public void putAll(Map<? extends K, ? extends V> m) {
784 putMapEntries(m, true);
785 }
786
787 /**
788 * Removes the mapping for the specified key from this map if present.
789 *
790 * @param key key whose mapping is to be removed from the map
791 * @return the previous value associated with {@code key}, or
792 * {@code null} if there was no mapping for {@code key}.
793 * (A {@code null} return can also indicate that the map
794 * previously associated {@code null} with {@code key}.)
795 */
796 public V remove(Object key) {
797 Node<K,V> e;
798 return (e = removeNode(hash(key), key, null, false, true)) == null ?
799 null : e.value;
800 }
801
802 /**
803 * Implements Map.remove and related methods.
804 *
805 * @param hash hash for key
806 * @param key the key
807 * @param value the value to match if matchValue, else ignored
808 * @param matchValue if true only remove if value is equal
809 * @param movable if false do not move other nodes while removing
810 * @return the node, or null if none
811 */
812 final Node<K,V> removeNode(int hash, Object key, Object value,
813 boolean matchValue, boolean movable) {
814 Node<K,V>[] tab; Node<K,V> p; int n, index;
815 if ((tab = table) != null && (n = tab.length) > 0 &&
816 (p = tab[index = (n - 1) & hash]) != null) {
817 Node<K,V> node = null, e; K k; V v;
818 if (p.hash == hash &&
819 ((k = p.key) == key || (key != null && key.equals(k))))
820 node = p;
821 else if ((e = p.next) != null) {
822 if (p instanceof TreeNode)
823 node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
824 else {
825 do {
826 if (e.hash == hash &&
827 ((k = e.key) == key ||
828 (key != null && key.equals(k)))) {
829 node = e;
830 break;
831 }
832 p = e;
833 } while ((e = e.next) != null);
834 }
835 }
836 if (node != null && (!matchValue || (v = node.value) == value ||
837 (value != null && value.equals(v)))) {
838 if (node instanceof TreeNode)
839 ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
840 else if (node == p)
841 tab[index] = node.next;
842 else
843 p.next = node.next;
844 ++modCount;
845 --size;
846 afterNodeRemoval(node);
847 return node;
848 }
849 }
850 return null;
851 }
852
853 /**
854 * Removes all of the mappings from this map.
855 * The map will be empty after this call returns.
856 */
857 public void clear() {
858 Node<K,V>[] tab;
859 modCount++;
860 if ((tab = table) != null && size > 0) {
861 size = 0;
862 for (int i = 0; i < tab.length; ++i)
863 tab[i] = null;
864 }
865 }
866
867 /**
868 * Returns {@code true} if this map maps one or more keys to the
869 * specified value.
870 *
871 * @param value value whose presence in this map is to be tested
872 * @return {@code true} if this map maps one or more keys to the
873 * specified value
874 */
875 public boolean containsValue(Object value) {
876 Node<K,V>[] tab; V v;
877 if ((tab = table) != null && size > 0) {
878 for (Node<K,V> e : tab) {
879 for (; e != null; e = e.next) {
880 if ((v = e.value) == value ||
881 (value != null && value.equals(v)))
882 return true;
883 }
884 }
885 }
886 return false;
887 }
888
889 /**
890 * Returns a {@link Set} view of the keys contained in this map.
891 * The set is backed by the map, so changes to the map are
892 * reflected in the set, and vice-versa. If the map is modified
893 * while an iteration over the set is in progress (except through
894 * the iterator's own {@code remove} operation), the results of
895 * the iteration are undefined. The set supports element removal,
896 * which removes the corresponding mapping from the map, via the
897 * {@code Iterator.remove}, {@code Set.remove},
898 * {@code removeAll}, {@code retainAll}, and {@code clear}
899 * operations. It does not support the {@code add} or {@code addAll}
900 * operations.
901 *
902 * @return a set view of the keys contained in this map
903 */
904 public Set<K> keySet() {
905 Set<K> ks = keySet;
906 if (ks == null) {
907 ks = new KeySet();
908 keySet = ks;
909 }
910 return ks;
911 }
912
913 final class KeySet extends AbstractSet<K> {
914 public final int size() { return size; }
915 public final void clear() { HashMap.this.clear(); }
916 public final Iterator<K> iterator() { return new KeyIterator(); }
917 public final boolean contains(Object o) { return containsKey(o); }
918 public final boolean remove(Object key) {
919 return removeNode(hash(key), key, null, false, true) != null;
920 }
921 public final Spliterator<K> spliterator() {
922 return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
923 }
924 public final void forEach(Consumer<? super K> action) {
925 Node<K,V>[] tab;
926 if (action == null)
927 throw new NullPointerException();
928 if (size > 0 && (tab = table) != null) {
929 int mc = modCount;
930 for (Node<K,V> e : tab) {
931 for (; e != null; e = e.next)
932 action.accept(e.key);
933 }
934 if (modCount != mc)
935 throw new ConcurrentModificationException();
936 }
937 }
938 }
939
940 /**
941 * Returns a {@link Collection} view of the values contained in this map.
942 * The collection is backed by the map, so changes to the map are
943 * reflected in the collection, and vice-versa. If the map is
944 * modified while an iteration over the collection is in progress
945 * (except through the iterator's own {@code remove} operation),
946 * the results of the iteration are undefined. The collection
947 * supports element removal, which removes the corresponding
948 * mapping from the map, via the {@code Iterator.remove},
949 * {@code Collection.remove}, {@code removeAll},
950 * {@code retainAll} and {@code clear} operations. It does not
951 * support the {@code add} or {@code addAll} operations.
952 *
953 * @return a view of the values contained in this map
954 */
955 public Collection<V> values() {
956 Collection<V> vs = values;
957 if (vs == null) {
958 vs = new Values();
959 values = vs;
960 }
961 return vs;
962 }
963
964 final class Values extends AbstractCollection<V> {
965 public final int size() { return size; }
966 public final void clear() { HashMap.this.clear(); }
967 public final Iterator<V> iterator() { return new ValueIterator(); }
968 public final boolean contains(Object o) { return containsValue(o); }
969 public final Spliterator<V> spliterator() {
970 return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
971 }
972 public final void forEach(Consumer<? super V> action) {
973 Node<K,V>[] tab;
974 if (action == null)
975 throw new NullPointerException();
976 if (size > 0 && (tab = table) != null) {
977 int mc = modCount;
978 for (Node<K,V> e : tab) {
979 for (; e != null; e = e.next)
980 action.accept(e.value);
981 }
982 if (modCount != mc)
983 throw new ConcurrentModificationException();
984 }
985 }
986 }
987
988 /**
989 * Returns a {@link Set} view of the mappings contained in this map.
990 * The set is backed by the map, so changes to the map are
991 * reflected in the set, and vice-versa. If the map is modified
992 * while an iteration over the set is in progress (except through
993 * the iterator's own {@code remove} operation, or through the
994 * {@code setValue} operation on a map entry returned by the
995 * iterator) the results of the iteration are undefined. The set
996 * supports element removal, which removes the corresponding
997 * mapping from the map, via the {@code Iterator.remove},
998 * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
999 * {@code clear} operations. It does not support the
1000 * {@code add} or {@code addAll} operations.
1001 *
1002 * @return a set view of the mappings contained in this map
1003 */
1004 public Set<Map.Entry<K,V>> entrySet() {
1005 Set<Map.Entry<K,V>> es;
1006 return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
1007 }
1008
1009 final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1010 public final int size() { return size; }
1011 public final void clear() { HashMap.this.clear(); }
1012 public final Iterator<Map.Entry<K,V>> iterator() {
1013 return new EntryIterator();
1014 }
1015 public final boolean contains(Object o) {
1016 if (!(o instanceof Map.Entry))
1017 return false;
1018 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1019 Object key = e.getKey();
1020 Node<K,V> candidate = getNode(hash(key), key);
1021 return candidate != null && candidate.equals(e);
1022 }
1023 public final boolean remove(Object o) {
1024 if (o instanceof Map.Entry) {
1025 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1026 Object key = e.getKey();
1027 Object value = e.getValue();
1028 return removeNode(hash(key), key, value, true, true) != null;
1029 }
1030 return false;
1031 }
1032 public final Spliterator<Map.Entry<K,V>> spliterator() {
1033 return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
1034 }
1035 public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
1036 Node<K,V>[] tab;
1037 if (action == null)
1038 throw new NullPointerException();
1039 if (size > 0 && (tab = table) != null) {
1040 int mc = modCount;
1041 for (Node<K,V> e : tab) {
1042 for (; e != null; e = e.next)
1043 action.accept(e);
1044 }
1045 if (modCount != mc)
1046 throw new ConcurrentModificationException();
1047 }
1048 }
1049 }
1050
1051 // Overrides of JDK8 Map extension methods
1052
1053 @Override
1054 public V getOrDefault(Object key, V defaultValue) {
1055 Node<K,V> e;
1056 return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
1057 }
1058
1059 @Override
1060 public V putIfAbsent(K key, V value) {
1061 return putVal(hash(key), key, value, true, true);
1062 }
1063
1064 @Override
1065 public boolean remove(Object key, Object value) {
1066 return removeNode(hash(key), key, value, true, true) != null;
1067 }
1068
1069 @Override
1070 public boolean replace(K key, V oldValue, V newValue) {
1071 Node<K,V> e; V v;
1072 if ((e = getNode(hash(key), key)) != null &&
1073 ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1074 e.value = newValue;
1075 afterNodeAccess(e);
1076 return true;
1077 }
1078 return false;
1079 }
1080
1081 @Override
1082 public V replace(K key, V value) {
1083 Node<K,V> e;
1084 if ((e = getNode(hash(key), key)) != null) {
1085 V oldValue = e.value;
1086 e.value = value;
1087 afterNodeAccess(e);
1088 return oldValue;
1089 }
1090 return null;
1091 }
1092
1093 /**
1094 * {@inheritDoc}
1095 *
1096 * <p>This method will, on a best-effort basis, throw a
1097 * {@link ConcurrentModificationException} if it is detected that the
1098 * mapping function modifies this map during computation.
1099 *
1100 * @throws ConcurrentModificationException if it is detected that the
1101 * mapping function modified this map
1102 */
1103 @Override
1104 public V computeIfAbsent(K key,
1105 Function<? super K, ? extends V> mappingFunction) {
1106 if (mappingFunction == null)
1107 throw new NullPointerException();
1108 int hash = hash(key);
1109 Node<K,V>[] tab; Node<K,V> first; int n, i;
1110 int binCount = 0;
1111 TreeNode<K,V> t = null;
1112 Node<K,V> old = null;
1113 if (size > threshold || (tab = table) == null ||
1114 (n = tab.length) == 0)
1115 n = (tab = resize()).length;
1116 if ((first = tab[i = (n - 1) & hash]) != null) {
1117 if (first instanceof TreeNode)
1118 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1119 else {
1120 Node<K,V> e = first; K k;
1121 do {
1122 if (e.hash == hash &&
1123 ((k = e.key) == key || (key != null && key.equals(k)))) {
1124 old = e;
1125 break;
1126 }
1127 ++binCount;
1128 } while ((e = e.next) != null);
1129 }
1130 V oldValue;
1131 if (old != null && (oldValue = old.value) != null) {
1132 afterNodeAccess(old);
1133 return oldValue;
1134 }
1135 }
1136 int mc = modCount;
1137 V v = mappingFunction.apply(key);
1138 if (mc != modCount) { throw new ConcurrentModificationException(); }
1139 if (v == null) {
1140 return null;
1141 } else if (old != null) {
1142 old.value = v;
1143 afterNodeAccess(old);
1144 return v;
1145 }
1146 else if (t != null)
1147 t.putTreeVal(this, tab, hash, key, v);
1148 else {
1149 tab[i] = newNode(hash, key, v, first);
1150 if (binCount >= TREEIFY_THRESHOLD - 1)
1151 treeifyBin(tab, hash);
1152 }
1153 modCount = mc + 1;
1154 ++size;
1155 afterNodeInsertion(true);
1156 return v;
1157 }
1158
1159 /**
1160 * {@inheritDoc}
1161 *
1162 * <p>This method will, on a best-effort basis, throw a
1163 * {@link ConcurrentModificationException} if it is detected that the
1164 * remapping function modifies this map during computation.
1165 *
1166 * @throws ConcurrentModificationException if it is detected that the
1167 * remapping function modified this map
1168 */
1169 @Override
1170 public V computeIfPresent(K key,
1171 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1172 if (remappingFunction == null)
1173 throw new NullPointerException();
1174 Node<K,V> e; V oldValue;
1175 int hash = hash(key);
1176 if ((e = getNode(hash, key)) != null &&
1177 (oldValue = e.value) != null) {
1178 int mc = modCount;
1179 V v = remappingFunction.apply(key, oldValue);
1180 if (mc != modCount) { throw new ConcurrentModificationException(); }
1181 if (v != null) {
1182 e.value = v;
1183 afterNodeAccess(e);
1184 return v;
1185 }
1186 else
1187 removeNode(hash, key, null, false, true);
1188 }
1189 return null;
1190 }
1191
1192 /**
1193 * {@inheritDoc}
1194 *
1195 * <p>This method will, on a best-effort basis, throw a
1196 * {@link ConcurrentModificationException} if it is detected that the
1197 * remapping function modifies this map during computation.
1198 *
1199 * @throws ConcurrentModificationException if it is detected that the
1200 * remapping function modified this map
1201 */
1202 @Override
1203 public V compute(K key,
1204 BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1205 if (remappingFunction == null)
1206 throw new NullPointerException();
1207 int hash = hash(key);
1208 Node<K,V>[] tab; Node<K,V> first; int n, i;
1209 int binCount = 0;
1210 TreeNode<K,V> t = null;
1211 Node<K,V> old = null;
1212 if (size > threshold || (tab = table) == null ||
1213 (n = tab.length) == 0)
1214 n = (tab = resize()).length;
1215 if ((first = tab[i = (n - 1) & hash]) != null) {
1216 if (first instanceof TreeNode)
1217 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1218 else {
1219 Node<K,V> e = first; K k;
1220 do {
1221 if (e.hash == hash &&
1222 ((k = e.key) == key || (key != null && key.equals(k)))) {
1223 old = e;
1224 break;
1225 }
1226 ++binCount;
1227 } while ((e = e.next) != null);
1228 }
1229 }
1230 V oldValue = (old == null) ? null : old.value;
1231 int mc = modCount;
1232 V v = remappingFunction.apply(key, oldValue);
1233 if (mc != modCount) { throw new ConcurrentModificationException(); }
1234 if (old != null) {
1235 if (v != null) {
1236 old.value = v;
1237 afterNodeAccess(old);
1238 }
1239 else
1240 removeNode(hash, key, null, false, true);
1241 }
1242 else if (v != null) {
1243 if (t != null)
1244 t.putTreeVal(this, tab, hash, key, v);
1245 else {
1246 tab[i] = newNode(hash, key, v, first);
1247 if (binCount >= TREEIFY_THRESHOLD - 1)
1248 treeifyBin(tab, hash);
1249 }
1250 modCount = mc + 1;
1251 ++size;
1252 afterNodeInsertion(true);
1253 }
1254 return v;
1255 }
1256
1257 /**
1258 * {@inheritDoc}
1259 *
1260 * <p>This method will, on a best-effort basis, throw a
1261 * {@link ConcurrentModificationException} if it is detected that the
1262 * remapping function modifies this map during computation.
1263 *
1264 * @throws ConcurrentModificationException if it is detected that the
1265 * remapping function modified this map
1266 */
1267 @Override
1268 public V merge(K key, V value,
1269 BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1270 if (value == null)
1271 throw new NullPointerException();
1272 if (remappingFunction == null)
1273 throw new NullPointerException();
1274 int hash = hash(key);
1275 Node<K,V>[] tab; Node<K,V> first; int n, i;
1276 int binCount = 0;
1277 TreeNode<K,V> t = null;
1278 Node<K,V> old = null;
1279 if (size > threshold || (tab = table) == null ||
1280 (n = tab.length) == 0)
1281 n = (tab = resize()).length;
1282 if ((first = tab[i = (n - 1) & hash]) != null) {
1283 if (first instanceof TreeNode)
1284 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1285 else {
1286 Node<K,V> e = first; K k;
1287 do {
1288 if (e.hash == hash &&
1289 ((k = e.key) == key || (key != null && key.equals(k)))) {
1290 old = e;
1291 break;
1292 }
1293 ++binCount;
1294 } while ((e = e.next) != null);
1295 }
1296 }
1297 if (old != null) {
1298 V v;
1299 if (old.value != null) {
1300 int mc = modCount;
1301 v = remappingFunction.apply(old.value, value);
1302 if (mc != modCount) {
1303 throw new ConcurrentModificationException();
1304 }
1305 } else {
1306 v = value;
1307 }
1308 if (v != null) {
1309 old.value = v;
1310 afterNodeAccess(old);
1311 }
1312 else
1313 removeNode(hash, key, null, false, true);
1314 return v;
1315 }
1316 if (value != null) {
1317 if (t != null)
1318 t.putTreeVal(this, tab, hash, key, value);
1319 else {
1320 tab[i] = newNode(hash, key, value, first);
1321 if (binCount >= TREEIFY_THRESHOLD - 1)
1322 treeifyBin(tab, hash);
1323 }
1324 ++modCount;
1325 ++size;
1326 afterNodeInsertion(true);
1327 }
1328 return value;
1329 }
1330
1331 @Override
1332 public void forEach(BiConsumer<? super K, ? super V> action) {
1333 Node<K,V>[] tab;
1334 if (action == null)
1335 throw new NullPointerException();
1336 if (size > 0 && (tab = table) != null) {
1337 int mc = modCount;
1338 for (Node<K,V> e : tab) {
1339 for (; e != null; e = e.next)
1340 action.accept(e.key, e.value);
1341 }
1342 if (modCount != mc)
1343 throw new ConcurrentModificationException();
1344 }
1345 }
1346
1347 @Override
1348 public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1349 Node<K,V>[] tab;
1350 if (function == null)
1351 throw new NullPointerException();
1352 if (size > 0 && (tab = table) != null) {
1353 int mc = modCount;
1354 for (Node<K,V> e : tab) {
1355 for (; e != null; e = e.next) {
1356 e.value = function.apply(e.key, e.value);
1357 }
1358 }
1359 if (modCount != mc)
1360 throw new ConcurrentModificationException();
1361 }
1362 }
1363
1364 /* ------------------------------------------------------------ */
1365 // Cloning and serialization
1366
1367 /**
1368 * Returns a shallow copy of this {@code HashMap} instance: the keys and
1369 * values themselves are not cloned.
1370 *
1371 * @return a shallow copy of this map
1372 */
1373 @SuppressWarnings("unchecked")
1374 @Override
1375 public Object clone() {
1376 HashMap<K,V> result;
1377 try {
1378 result = (HashMap<K,V>)super.clone();
1379 } catch (CloneNotSupportedException e) {
1380 // this shouldn't happen, since we are Cloneable
1381 throw new InternalError(e);
1382 }
1383 result.reinitialize();
1384 result.putMapEntries(this, false);
1385 return result;
1386 }
1387
1388 // These methods are also used when serializing HashSets
1389 final float loadFactor() { return loadFactor; }
1390 final int capacity() {
1391 return (table != null) ? table.length :
1392 (threshold > 0) ? threshold :
1393 DEFAULT_INITIAL_CAPACITY;
1394 }
1395
1396 /**
1397 * Saves this map to a stream (that is, serializes it).
1398 *
1399 * @param s the stream
1400 * @throws IOException if an I/O error occurs
1401 * @serialData The <i>capacity</i> of the HashMap (the length of the
1402 * bucket array) is emitted (int), followed by the
1403 * <i>size</i> (an int, the number of key-value
1404 * mappings), followed by the key (Object) and value (Object)
1405 * for each key-value mapping. The key-value mappings are
1406 * emitted in no particular order.
1407 */
1408 private void writeObject(java.io.ObjectOutputStream s)
1409 throws IOException {
1410 int buckets = capacity();
1411 // Write out the threshold, loadfactor, and any hidden stuff
1412 s.defaultWriteObject();
1413 s.writeInt(buckets);
1414 s.writeInt(size);
1415 internalWriteEntries(s);
1416 }
1417
1418 /**
1419 * Reconstitutes this map from a stream (that is, deserializes it).
1420 * @param s the stream
1421 * @throws ClassNotFoundException if the class of a serialized object
1422 * could not be found
1423 * @throws IOException if an I/O error occurs
1424 */
1425 private void readObject(java.io.ObjectInputStream s)
1426 throws IOException, ClassNotFoundException {
1427 // Read in the threshold (ignored), loadfactor, and any hidden stuff
1428 s.defaultReadObject();
1429 reinitialize();
1430 if (loadFactor <= 0 || Float.isNaN(loadFactor))
1431 throw new InvalidObjectException("Illegal load factor: " +
1432 loadFactor);
1433 s.readInt(); // Read and ignore number of buckets
1434 int mappings = s.readInt(); // Read number of mappings (size)
1435 if (mappings < 0)
1436 throw new InvalidObjectException("Illegal mappings count: " +
1437 mappings);
1438 else if (mappings > 0) { // (if zero, use defaults)
1439 // Size the table using given load factor only if within
1440 // range of 0.25...4.0
1441 float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
1442 float fc = (float)mappings / lf + 1.0f;
1443 int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
1444 DEFAULT_INITIAL_CAPACITY :
1445 (fc >= MAXIMUM_CAPACITY) ?
1446 MAXIMUM_CAPACITY :
1447 tableSizeFor((int)fc));
1448 float ft = (float)cap * lf;
1449 threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1450 (int)ft : Integer.MAX_VALUE);
1451 @SuppressWarnings({"rawtypes","unchecked"})
1452 Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
1453 table = tab;
1454
1455 // Read the keys and values, and put the mappings in the HashMap
1456 for (int i = 0; i < mappings; i++) {
1457 @SuppressWarnings("unchecked")
1458 K key = (K) s.readObject();
1459 @SuppressWarnings("unchecked")
1460 V value = (V) s.readObject();
1461 putVal(hash(key), key, value, false, false);
1462 }
1463 }
1464 }
1465
1466 /* ------------------------------------------------------------ */
1467 // iterators
1468
1469 abstract class HashIterator {
1470 Node<K,V> next; // next entry to return
1471 Node<K,V> current; // current entry
1472 int expectedModCount; // for fast-fail
1473 int index; // current slot
1474
1475 HashIterator() {
1476 expectedModCount = modCount;
1477 Node<K,V>[] t = table;
1478 current = next = null;
1479 index = 0;
1480 if (t != null && size > 0) { // advance to first entry
1481 do {} while (index < t.length && (next = t[index++]) == null);
1482 }
1483 }
1484
1485 public final boolean hasNext() {
1486 return next != null;
1487 }
1488
1489 final Node<K,V> nextNode() {
1490 Node<K,V>[] t;
1491 Node<K,V> e = next;
1492 if (modCount != expectedModCount)
1493 throw new ConcurrentModificationException();
1494 if (e == null)
1495 throw new NoSuchElementException();
1496 if ((next = (current = e).next) == null && (t = table) != null) {
1497 do {} while (index < t.length && (next = t[index++]) == null);
1498 }
1499 return e;
1500 }
1501
1502 public final void remove() {
1503 Node<K,V> p = current;
1504 if (p == null)
1505 throw new IllegalStateException();
1506 if (modCount != expectedModCount)
1507 throw new ConcurrentModificationException();
1508 current = null;
1509 removeNode(p.hash, p.key, null, false, false);
1510 expectedModCount = modCount;
1511 }
1512 }
1513
1514 final class KeyIterator extends HashIterator
1515 implements Iterator<K> {
1516 public final K next() { return nextNode().key; }
1517 }
1518
1519 final class ValueIterator extends HashIterator
1520 implements Iterator<V> {
1521 public final V next() { return nextNode().value; }
1522 }
1523
1524 final class EntryIterator extends HashIterator
1525 implements Iterator<Map.Entry<K,V>> {
1526 public final Map.Entry<K,V> next() { return nextNode(); }
1527 }
1528
1529 /* ------------------------------------------------------------ */
1530 // spliterators
1531
1532 static class HashMapSpliterator<K,V> {
1533 final HashMap<K,V> map;
1534 Node<K,V> current; // current node
1535 int index; // current index, modified on advance/split
1536 int fence; // one past last index
1537 int est; // size estimate
1538 int expectedModCount; // for comodification checks
1539
1540 HashMapSpliterator(HashMap<K,V> m, int origin,
1541 int fence, int est,
1542 int expectedModCount) {
1543 this.map = m;
1544 this.index = origin;
1545 this.fence = fence;
1546 this.est = est;
1547 this.expectedModCount = expectedModCount;
1548 }
1549
1550 final int getFence() { // initialize fence and size on first use
1551 int hi;
1552 if ((hi = fence) < 0) {
1553 HashMap<K,V> m = map;
1554 est = m.size;
1555 expectedModCount = m.modCount;
1556 Node<K,V>[] tab = m.table;
1557 hi = fence = (tab == null) ? 0 : tab.length;
1558 }
1559 return hi;
1560 }
1561
1562 public final long estimateSize() {
1563 getFence(); // force init
1564 return (long) est;
1565 }
1566 }
1567
1568 static final class KeySpliterator<K,V>
1569 extends HashMapSpliterator<K,V>
1570 implements Spliterator<K> {
1571 KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1572 int expectedModCount) {
1573 super(m, origin, fence, est, expectedModCount);
1574 }
1575
1576 public KeySpliterator<K,V> trySplit() {
1577 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1578 return (lo >= mid || current != null) ? null :
1579 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1580 expectedModCount);
1581 }
1582
1583 public void forEachRemaining(Consumer<? super K> action) {
1584 int i, hi, mc;
1585 if (action == null)
1586 throw new NullPointerException();
1587 HashMap<K,V> m = map;
1588 Node<K,V>[] tab = m.table;
1589 if ((hi = fence) < 0) {
1590 mc = expectedModCount = m.modCount;
1591 hi = fence = (tab == null) ? 0 : tab.length;
1592 }
1593 else
1594 mc = expectedModCount;
1595 if (tab != null && tab.length >= hi &&
1596 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1597 Node<K,V> p = current;
1598 current = null;
1599 do {
1600 if (p == null)
1601 p = tab[i++];
1602 else {
1603 action.accept(p.key);
1604 p = p.next;
1605 }
1606 } while (p != null || i < hi);
1607 if (m.modCount != mc)
1608 throw new ConcurrentModificationException();
1609 }
1610 }
1611
1612 public boolean tryAdvance(Consumer<? super K> action) {
1613 int hi;
1614 if (action == null)
1615 throw new NullPointerException();
1616 Node<K,V>[] tab = map.table;
1617 if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1618 while (current != null || index < hi) {
1619 if (current == null)
1620 current = tab[index++];
1621 else {
1622 K k = current.key;
1623 current = current.next;
1624 action.accept(k);
1625 if (map.modCount != expectedModCount)
1626 throw new ConcurrentModificationException();
1627 return true;
1628 }
1629 }
1630 }
1631 return false;
1632 }
1633
1634 public int characteristics() {
1635 return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1636 Spliterator.DISTINCT;
1637 }
1638 }
1639
1640 static final class ValueSpliterator<K,V>
1641 extends HashMapSpliterator<K,V>
1642 implements Spliterator<V> {
1643 ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
1644 int expectedModCount) {
1645 super(m, origin, fence, est, expectedModCount);
1646 }
1647
1648 public ValueSpliterator<K,V> trySplit() {
1649 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1650 return (lo >= mid || current != null) ? null :
1651 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1652 expectedModCount);
1653 }
1654
1655 public void forEachRemaining(Consumer<? super V> action) {
1656 int i, hi, mc;
1657 if (action == null)
1658 throw new NullPointerException();
1659 HashMap<K,V> m = map;
1660 Node<K,V>[] tab = m.table;
1661 if ((hi = fence) < 0) {
1662 mc = expectedModCount = m.modCount;
1663 hi = fence = (tab == null) ? 0 : tab.length;
1664 }
1665 else
1666 mc = expectedModCount;
1667 if (tab != null && tab.length >= hi &&
1668 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1669 Node<K,V> p = current;
1670 current = null;
1671 do {
1672 if (p == null)
1673 p = tab[i++];
1674 else {
1675 action.accept(p.value);
1676 p = p.next;
1677 }
1678 } while (p != null || i < hi);
1679 if (m.modCount != mc)
1680 throw new ConcurrentModificationException();
1681 }
1682 }
1683
1684 public boolean tryAdvance(Consumer<? super V> action) {
1685 int hi;
1686 if (action == null)
1687 throw new NullPointerException();
1688 Node<K,V>[] tab = map.table;
1689 if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1690 while (current != null || index < hi) {
1691 if (current == null)
1692 current = tab[index++];
1693 else {
1694 V v = current.value;
1695 current = current.next;
1696 action.accept(v);
1697 if (map.modCount != expectedModCount)
1698 throw new ConcurrentModificationException();
1699 return true;
1700 }
1701 }
1702 }
1703 return false;
1704 }
1705
1706 public int characteristics() {
1707 return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
1708 }
1709 }
1710
1711 static final class EntrySpliterator<K,V>
1712 extends HashMapSpliterator<K,V>
1713 implements Spliterator<Map.Entry<K,V>> {
1714 EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1715 int expectedModCount) {
1716 super(m, origin, fence, est, expectedModCount);
1717 }
1718
1719 public EntrySpliterator<K,V> trySplit() {
1720 int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1721 return (lo >= mid || current != null) ? null :
1722 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1723 expectedModCount);
1724 }
1725
1726 public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
1727 int i, hi, mc;
1728 if (action == null)
1729 throw new NullPointerException();
1730 HashMap<K,V> m = map;
1731 Node<K,V>[] tab = m.table;
1732 if ((hi = fence) < 0) {
1733 mc = expectedModCount = m.modCount;
1734 hi = fence = (tab == null) ? 0 : tab.length;
1735 }
1736 else
1737 mc = expectedModCount;
1738 if (tab != null && tab.length >= hi &&
1739 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1740 Node<K,V> p = current;
1741 current = null;
1742 do {
1743 if (p == null)
1744 p = tab[i++];
1745 else {
1746 action.accept(p);
1747 p = p.next;
1748 }
1749 } while (p != null || i < hi);
1750 if (m.modCount != mc)
1751 throw new ConcurrentModificationException();
1752 }
1753 }
1754
1755 public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1756 int hi;
1757 if (action == null)
1758 throw new NullPointerException();
1759 Node<K,V>[] tab = map.table;
1760 if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1761 while (current != null || index < hi) {
1762 if (current == null)
1763 current = tab[index++];
1764 else {
1765 Node<K,V> e = current;
1766 current = current.next;
1767 action.accept(e);
1768 if (map.modCount != expectedModCount)
1769 throw new ConcurrentModificationException();
1770 return true;
1771 }
1772 }
1773 }
1774 return false;
1775 }
1776
1777 public int characteristics() {
1778 return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1779 Spliterator.DISTINCT;
1780 }
1781 }
1782
1783 /* ------------------------------------------------------------ */
1784 // LinkedHashMap support
1785
1786
1787 /*
1788 * The following package-protected methods are designed to be
1789 * overridden by LinkedHashMap, but not by any other subclass.
1790 * Nearly all other internal methods are also package-protected
1791 * but are declared final, so can be used by LinkedHashMap, view
1792 * classes, and HashSet.
1793 */
1794
1795 // Create a regular (non-tree) node
1796 Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
1797 return new Node<>(hash, key, value, next);
1798 }
1799
1800 // For conversion from TreeNodes to plain nodes
1801 Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
1802 return new Node<>(p.hash, p.key, p.value, next);
1803 }
1804
1805 // Create a tree bin node
1806 TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
1807 return new TreeNode<>(hash, key, value, next);
1808 }
1809
1810 // For treeifyBin
1811 TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
1812 return new TreeNode<>(p.hash, p.key, p.value, next);
1813 }
1814
1815 /**
1816 * Reset to initial default state. Called by clone and readObject.
1817 */
1818 void reinitialize() {
1819 table = null;
1820 entrySet = null;
1821 keySet = null;
1822 values = null;
1823 modCount = 0;
1824 threshold = 0;
1825 size = 0;
1826 }
1827
1828 // Callbacks to allow LinkedHashMap post-actions
1829 void afterNodeAccess(Node<K,V> p) { }
1830 void afterNodeInsertion(boolean evict) { }
1831 void afterNodeRemoval(Node<K,V> p) { }
1832
1833 // Called only from writeObject, to ensure compatible ordering.
1834 void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1835 Node<K,V>[] tab;
1836 if (size > 0 && (tab = table) != null) {
1837 for (Node<K,V> e : tab) {
1838 for (; e != null; e = e.next) {
1839 s.writeObject(e.key);
1840 s.writeObject(e.value);
1841 }
1842 }
1843 }
1844 }
1845
1846 /* ------------------------------------------------------------ */
1847 // Tree bins
1848
1849 /**
1850 * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
1851 * extends Node) so can be used as extension of either regular or
1852 * linked node.
1853 */
1854 static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
1855 TreeNode<K,V> parent; // red-black tree links
1856 TreeNode<K,V> left;
1857 TreeNode<K,V> right;
1858 TreeNode<K,V> prev; // needed to unlink next upon deletion
1859 boolean red;
1860 TreeNode(int hash, K key, V val, Node<K,V> next) {
1861 super(hash, key, val, next);
1862 }
1863
1864 /**
1865 * Returns root of tree containing this node.
1866 */
1867 final TreeNode<K,V> root() {
1868 for (TreeNode<K,V> r = this, p;;) {
1869 if ((p = r.parent) == null)
1870 return r;
1871 r = p;
1872 }
1873 }
1874
1875 /**
1876 * Ensures that the given root is the first node of its bin.
1877 */
1878 static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
1879 int n;
1880 if (root != null && tab != null && (n = tab.length) > 0) {
1881 int index = (n - 1) & root.hash;
1882 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
1883 if (root != first) {
1884 Node<K,V> rn;
1885 tab[index] = root;
1886 TreeNode<K,V> rp = root.prev;
1887 if ((rn = root.next) != null)
1888 ((TreeNode<K,V>)rn).prev = rp;
1889 if (rp != null)
1890 rp.next = rn;
1891 if (first != null)
1892 first.prev = root;
1893 root.next = first;
1894 root.prev = null;
1895 }
1896 assert checkInvariants(root);
1897 }
1898 }
1899
1900 /**
1901 * Finds the node starting at root p with the given hash and key.
1902 * The kc argument caches comparableClassFor(key) upon first use
1903 * comparing keys.
1904 */
1905 final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
1906 TreeNode<K,V> p = this;
1907 do {
1908 int ph, dir; K pk;
1909 TreeNode<K,V> pl = p.left, pr = p.right, q;
1910 if ((ph = p.hash) > h)
1911 p = pl;
1912 else if (ph < h)
1913 p = pr;
1914 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1915 return p;
1916 else if (pl == null)
1917 p = pr;
1918 else if (pr == null)
1919 p = pl;
1920 else if ((kc != null ||
1921 (kc = comparableClassFor(k)) != null) &&
1922 (dir = compareComparables(kc, k, pk)) != 0)
1923 p = (dir < 0) ? pl : pr;
1924 else if ((q = pr.find(h, k, kc)) != null)
1925 return q;
1926 else
1927 p = pl;
1928 } while (p != null);
1929 return null;
1930 }
1931
1932 /**
1933 * Calls find for root node.
1934 */
1935 final TreeNode<K,V> getTreeNode(int h, Object k) {
1936 return ((parent != null) ? root() : this).find(h, k, null);
1937 }
1938
1939 /**
1940 * Tie-breaking utility for ordering insertions when equal
1941 * hashCodes and non-comparable. We don't require a total
1942 * order, just a consistent insertion rule to maintain
1943 * equivalence across rebalancings. Tie-breaking further than
1944 * necessary simplifies testing a bit.
1945 */
1946 static int tieBreakOrder(Object a, Object b) {
1947 int d;
1948 if (a == null || b == null ||
1949 (d = a.getClass().getName().
1950 compareTo(b.getClass().getName())) == 0)
1951 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1952 -1 : 1);
1953 return d;
1954 }
1955
1956 /**
1957 * Forms tree of the nodes linked from this node.
1958 */
1959 final void treeify(Node<K,V>[] tab) {
1960 TreeNode<K,V> root = null;
1961 for (TreeNode<K,V> x = this, next; x != null; x = next) {
1962 next = (TreeNode<K,V>)x.next;
1963 x.left = x.right = null;
1964 if (root == null) {
1965 x.parent = null;
1966 x.red = false;
1967 root = x;
1968 }
1969 else {
1970 K k = x.key;
1971 int h = x.hash;
1972 Class<?> kc = null;
1973 for (TreeNode<K,V> p = root;;) {
1974 int dir, ph;
1975 K pk = p.key;
1976 if ((ph = p.hash) > h)
1977 dir = -1;
1978 else if (ph < h)
1979 dir = 1;
1980 else if ((kc == null &&
1981 (kc = comparableClassFor(k)) == null) ||
1982 (dir = compareComparables(kc, k, pk)) == 0)
1983 dir = tieBreakOrder(k, pk);
1984
1985 TreeNode<K,V> xp = p;
1986 if ((p = (dir <= 0) ? p.left : p.right) == null) {
1987 x.parent = xp;
1988 if (dir <= 0)
1989 xp.left = x;
1990 else
1991 xp.right = x;
1992 root = balanceInsertion(root, x);
1993 break;
1994 }
1995 }
1996 }
1997 }
1998 moveRootToFront(tab, root);
1999 }
2000
2001 /**
2002 * Returns a list of non-TreeNodes replacing those linked from
2003 * this node.
2004 */
2005 final Node<K,V> untreeify(HashMap<K,V> map) {
2006 Node<K,V> hd = null, tl = null;
2007 for (Node<K,V> q = this; q != null; q = q.next) {
2008 Node<K,V> p = map.replacementNode(q, null);
2009 if (tl == null)
2010 hd = p;
2011 else
2012 tl.next = p;
2013 tl = p;
2014 }
2015 return hd;
2016 }
2017
2018 /**
2019 * Tree version of putVal.
2020 */
2021 final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
2022 int h, K k, V v) {
2023 Class<?> kc = null;
2024 boolean searched = false;
2025 TreeNode<K,V> root = (parent != null) ? root() : this;
2026 for (TreeNode<K,V> p = root;;) {
2027 int dir, ph; K pk;
2028 if ((ph = p.hash) > h)
2029 dir = -1;
2030 else if (ph < h)
2031 dir = 1;
2032 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
2033 return p;
2034 else if ((kc == null &&
2035 (kc = comparableClassFor(k)) == null) ||
2036 (dir = compareComparables(kc, k, pk)) == 0) {
2037 if (!searched) {
2038 TreeNode<K,V> q, ch;
2039 searched = true;
2040 if (((ch = p.left) != null &&
2041 (q = ch.find(h, k, kc)) != null) ||
2042 ((ch = p.right) != null &&
2043 (q = ch.find(h, k, kc)) != null))
2044 return q;
2045 }
2046 dir = tieBreakOrder(k, pk);
2047 }
2048
2049 TreeNode<K,V> xp = p;
2050 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2051 Node<K,V> xpn = xp.next;
2052 TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
2053 if (dir <= 0)
2054 xp.left = x;
2055 else
2056 xp.right = x;
2057 xp.next = x;
2058 x.parent = x.prev = xp;
2059 if (xpn != null)
2060 ((TreeNode<K,V>)xpn).prev = x;
2061 moveRootToFront(tab, balanceInsertion(root, x));
2062 return null;
2063 }
2064 }
2065 }
2066
2067 /**
2068 * Removes the given node, that must be present before this call.
2069 * This is messier than typical red-black deletion code because we
2070 * cannot swap the contents of an interior node with a leaf
2071 * successor that is pinned by "next" pointers that are accessible
2072 * independently during traversal. So instead we swap the tree
2073 * linkages. If the current tree appears to have too few nodes,
2074 * the bin is converted back to a plain bin. (The test triggers
2075 * somewhere between 2 and 6 nodes, depending on tree structure).
2076 */
2077 final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
2078 boolean movable) {
2079 int n;
2080 if (tab == null || (n = tab.length) == 0)
2081 return;
2082 int index = (n - 1) & hash;
2083 TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
2084 TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
2085 if (pred == null)
2086 tab[index] = first = succ;
2087 else
2088 pred.next = succ;
2089 if (succ != null)
2090 succ.prev = pred;
2091 if (first == null)
2092 return;
2093 if (root.parent != null)
2094 root = root.root();
2095 if (root == null
2096 || (movable
2097 && (root.right == null
2098 || (rl = root.left) == null
2099 || rl.left == null))) {
2100 tab[index] = first.untreeify(map); // too small
2101 return;
2102 }
2103 TreeNode<K,V> p = this, pl = left, pr = right, replacement;
2104 if (pl != null && pr != null) {
2105 TreeNode<K,V> s = pr, sl;
2106 while ((sl = s.left) != null) // find successor
2107 s = sl;
2108 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2109 TreeNode<K,V> sr = s.right;
2110 TreeNode<K,V> pp = p.parent;
2111 if (s == pr) { // p was s's direct parent
2112 p.parent = s;
2113 s.right = p;
2114 }
2115 else {
2116 TreeNode<K,V> sp = s.parent;
2117 if ((p.parent = sp) != null) {
2118 if (s == sp.left)
2119 sp.left = p;
2120 else
2121 sp.right = p;
2122 }
2123 if ((s.right = pr) != null)
2124 pr.parent = s;
2125 }
2126 p.left = null;
2127 if ((p.right = sr) != null)
2128 sr.parent = p;
2129 if ((s.left = pl) != null)
2130 pl.parent = s;
2131 if ((s.parent = pp) == null)
2132 root = s;
2133 else if (p == pp.left)
2134 pp.left = s;
2135 else
2136 pp.right = s;
2137 if (sr != null)
2138 replacement = sr;
2139 else
2140 replacement = p;
2141 }
2142 else if (pl != null)
2143 replacement = pl;
2144 else if (pr != null)
2145 replacement = pr;
2146 else
2147 replacement = p;
2148 if (replacement != p) {
2149 TreeNode<K,V> pp = replacement.parent = p.parent;
2150 if (pp == null)
2151 root = replacement;
2152 else if (p == pp.left)
2153 pp.left = replacement;
2154 else
2155 pp.right = replacement;
2156 p.left = p.right = p.parent = null;
2157 }
2158
2159 TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
2160
2161 if (replacement == p) { // detach
2162 TreeNode<K,V> pp = p.parent;
2163 p.parent = null;
2164 if (pp != null) {
2165 if (p == pp.left)
2166 pp.left = null;
2167 else if (p == pp.right)
2168 pp.right = null;
2169 }
2170 }
2171 if (movable)
2172 moveRootToFront(tab, r);
2173 }
2174
2175 /**
2176 * Splits nodes in a tree bin into lower and upper tree bins,
2177 * or untreeifies if now too small. Called only from resize;
2178 * see above discussion about split bits and indices.
2179 *
2180 * @param map the map
2181 * @param tab the table for recording bin heads
2182 * @param index the index of the table being split
2183 * @param bit the bit of hash to split on
2184 */
2185 final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
2186 TreeNode<K,V> b = this;
2187 // Relink into lo and hi lists, preserving order
2188 TreeNode<K,V> loHead = null, loTail = null;
2189 TreeNode<K,V> hiHead = null, hiTail = null;
2190 int lc = 0, hc = 0;
2191 for (TreeNode<K,V> e = b, next; e != null; e = next) {
2192 next = (TreeNode<K,V>)e.next;
2193 e.next = null;
2194 if ((e.hash & bit) == 0) {
2195 if ((e.prev = loTail) == null)
2196 loHead = e;
2197 else
2198 loTail.next = e;
2199 loTail = e;
2200 ++lc;
2201 }
2202 else {
2203 if ((e.prev = hiTail) == null)
2204 hiHead = e;
2205 else
2206 hiTail.next = e;
2207 hiTail = e;
2208 ++hc;
2209 }
2210 }
2211
2212 if (loHead != null) {
2213 if (lc <= UNTREEIFY_THRESHOLD)
2214 tab[index] = loHead.untreeify(map);
2215 else {
2216 tab[index] = loHead;
2217 if (hiHead != null) // (else is already treeified)
2218 loHead.treeify(tab);
2219 }
2220 }
2221 if (hiHead != null) {
2222 if (hc <= UNTREEIFY_THRESHOLD)
2223 tab[index + bit] = hiHead.untreeify(map);
2224 else {
2225 tab[index + bit] = hiHead;
2226 if (loHead != null)
2227 hiHead.treeify(tab);
2228 }
2229 }
2230 }
2231
2232 /* ------------------------------------------------------------ */
2233 // Red-black tree methods, all adapted from CLR
2234
2235 static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2236 TreeNode<K,V> p) {
2237 TreeNode<K,V> r, pp, rl;
2238 if (p != null && (r = p.right) != null) {
2239 if ((rl = p.right = r.left) != null)
2240 rl.parent = p;
2241 if ((pp = r.parent = p.parent) == null)
2242 (root = r).red = false;
2243 else if (pp.left == p)
2244 pp.left = r;
2245 else
2246 pp.right = r;
2247 r.left = p;
2248 p.parent = r;
2249 }
2250 return root;
2251 }
2252
2253 static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2254 TreeNode<K,V> p) {
2255 TreeNode<K,V> l, pp, lr;
2256 if (p != null && (l = p.left) != null) {
2257 if ((lr = p.left = l.right) != null)
2258 lr.parent = p;
2259 if ((pp = l.parent = p.parent) == null)
2260 (root = l).red = false;
2261 else if (pp.right == p)
2262 pp.right = l;
2263 else
2264 pp.left = l;
2265 l.right = p;
2266 p.parent = l;
2267 }
2268 return root;
2269 }
2270
2271 static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2272 TreeNode<K,V> x) {
2273 x.red = true;
2274 for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2275 if ((xp = x.parent) == null) {
2276 x.red = false;
2277 return x;
2278 }
2279 else if (!xp.red || (xpp = xp.parent) == null)
2280 return root;
2281 if (xp == (xppl = xpp.left)) {
2282 if ((xppr = xpp.right) != null && xppr.red) {
2283 xppr.red = false;
2284 xp.red = false;
2285 xpp.red = true;
2286 x = xpp;
2287 }
2288 else {
2289 if (x == xp.right) {
2290 root = rotateLeft(root, x = xp);
2291 xpp = (xp = x.parent) == null ? null : xp.parent;
2292 }
2293 if (xp != null) {
2294 xp.red = false;
2295 if (xpp != null) {
2296 xpp.red = true;
2297 root = rotateRight(root, xpp);
2298 }
2299 }
2300 }
2301 }
2302 else {
2303 if (xppl != null && xppl.red) {
2304 xppl.red = false;
2305 xp.red = false;
2306 xpp.red = true;
2307 x = xpp;
2308 }
2309 else {
2310 if (x == xp.left) {
2311 root = rotateRight(root, x = xp);
2312 xpp = (xp = x.parent) == null ? null : xp.parent;
2313 }
2314 if (xp != null) {
2315 xp.red = false;
2316 if (xpp != null) {
2317 xpp.red = true;
2318 root = rotateLeft(root, xpp);
2319 }
2320 }
2321 }
2322 }
2323 }
2324 }
2325
2326 static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2327 TreeNode<K,V> x) {
2328 for (TreeNode<K,V> xp, xpl, xpr;;) {
2329 if (x == null || x == root)
2330 return root;
2331 else if ((xp = x.parent) == null) {
2332 x.red = false;
2333 return x;
2334 }
2335 else if (x.red) {
2336 x.red = false;
2337 return root;
2338 }
2339 else if ((xpl = xp.left) == x) {
2340 if ((xpr = xp.right) != null && xpr.red) {
2341 xpr.red = false;
2342 xp.red = true;
2343 root = rotateLeft(root, xp);
2344 xpr = (xp = x.parent) == null ? null : xp.right;
2345 }
2346 if (xpr == null)
2347 x = xp;
2348 else {
2349 TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2350 if ((sr == null || !sr.red) &&
2351 (sl == null || !sl.red)) {
2352 xpr.red = true;
2353 x = xp;
2354 }
2355 else {
2356 if (sr == null || !sr.red) {
2357 if (sl != null)
2358 sl.red = false;
2359 xpr.red = true;
2360 root = rotateRight(root, xpr);
2361 xpr = (xp = x.parent) == null ?
2362 null : xp.right;
2363 }
2364 if (xpr != null) {
2365 xpr.red = (xp == null) ? false : xp.red;
2366 if ((sr = xpr.right) != null)
2367 sr.red = false;
2368 }
2369 if (xp != null) {
2370 xp.red = false;
2371 root = rotateLeft(root, xp);
2372 }
2373 x = root;
2374 }
2375 }
2376 }
2377 else { // symmetric
2378 if (xpl != null && xpl.red) {
2379 xpl.red = false;
2380 xp.red = true;
2381 root = rotateRight(root, xp);
2382 xpl = (xp = x.parent) == null ? null : xp.left;
2383 }
2384 if (xpl == null)
2385 x = xp;
2386 else {
2387 TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2388 if ((sl == null || !sl.red) &&
2389 (sr == null || !sr.red)) {
2390 xpl.red = true;
2391 x = xp;
2392 }
2393 else {
2394 if (sl == null || !sl.red) {
2395 if (sr != null)
2396 sr.red = false;
2397 xpl.red = true;
2398 root = rotateLeft(root, xpl);
2399 xpl = (xp = x.parent) == null ?
2400 null : xp.left;
2401 }
2402 if (xpl != null) {
2403 xpl.red = (xp == null) ? false : xp.red;
2404 if ((sl = xpl.left) != null)
2405 sl.red = false;
2406 }
2407 if (xp != null) {
2408 xp.red = false;
2409 root = rotateRight(root, xp);
2410 }
2411 x = root;
2412 }
2413 }
2414 }
2415 }
2416 }
2417
2418 /**
2419 * Recursive invariant check
2420 */
2421 static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2422 TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2423 tb = t.prev, tn = (TreeNode<K,V>)t.next;
2424 if (tb != null && tb.next != t)
2425 return false;
2426 if (tn != null && tn.prev != t)
2427 return false;
2428 if (tp != null && t != tp.left && t != tp.right)
2429 return false;
2430 if (tl != null && (tl.parent != t || tl.hash > t.hash))
2431 return false;
2432 if (tr != null && (tr.parent != t || tr.hash < t.hash))
2433 return false;
2434 if (t.red && tl != null && tl.red && tr != null && tr.red)
2435 return false;
2436 if (tl != null && !checkInvariants(tl))
2437 return false;
2438 if (tr != null && !checkInvariants(tr))
2439 return false;
2440 return true;
2441 }
2442 }
2443
2444 }