ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
Revision: 1.5
Committed: Tue May 27 18:20:06 2003 UTC (20 years, 11 months ago) by dl
Branch: MAIN
CVS Tags: JSR166_PRELIMINARY_TEST_RELEASE_1, JSR166_PRERELEASE_0_1
Changes since 1.4: +87 -49 lines
Log Message:
re-checkin initial implementations

File Contents

# User Rev Content
1 tim 1.2 package java.util;
2 tim 1.1
3     /**
4 tim 1.2 * An unbounded priority queue based on a priority heap. This queue orders
5     * elements according to the order specified at creation time. This order is
6     * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
7     * either according to their <i>natural order</i> (see {@link Comparable}), or
8     * according to a {@link Comparator}, depending on which constructor is used.
9     * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
10     * minimal element with respect to the specified ordering. If multiple
11     * these elements are tied for least value, no guarantees are made as to
12     * which of elements is returned.
13     *
14     * <p>Each priority queue has a <i>capacity</i>. The capacity is the size of
15     * the array used to store the elements on the queue. It is always at least
16     * as large as the queue size. As elements are added to a priority list,
17     * its capacity grows automatically. The details of the growth policy are not
18     * specified.
19     *
20     *<p>Implementation note: this implementation provides O(log(n)) time for
21     * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
22     * methods; linear time for the <tt>remove(Object)</tt> and
23     * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
24     * <tt>element</tt>, and <tt>size</tt> methods.
25     *
26     * <p>This class is a member of the
27     * <a href="{@docRoot}/../guide/collections/index.html">
28     * Java Collections Framework</a>.
29     */
30     public class PriorityQueue<E> extends AbstractQueue<E>
31     implements Queue<E>
32     {
33     private static final int DEFAULT_INITIAL_CAPACITY = 11;
34 tim 1.1
35 tim 1.2 /**
36     * Priority queue represented as a balanced binary heap: the two children
37     * of queue[n] are queue[2*n] and queue[2*n + 1]. The priority queue is
38     * ordered by comparator, or by the elements' natural ordering, if
39     * comparator is null: For each node n in the heap, and each descendant
40     * of n, d, n <= d.
41     *
42     * The element with the lowest value is in queue[1] (assuming the queue is
43     * nonempty). A one-based array is used in preference to the traditional
44     * zero-based array to simplify parent and child calculations.
45     *
46     * queue.length must be >= 2, even if size == 0.
47     */
48 dl 1.5 private transient E[] queue;
49 tim 1.1
50 tim 1.2 /**
51     * The number of elements in the priority queue.
52     */
53     private int size = 0;
54 tim 1.1
55 tim 1.2 /**
56     * The comparator, or null if priority queue uses elements'
57     * natural ordering.
58     */
59     private final Comparator<E> comparator;
60    
61     /**
62     * The number of times this priority queue has been
63     * <i>structurally modified</i>. See AbstractList for gory details.
64     */
65 dl 1.5 private transient int modCount = 0;
66 tim 1.2
67     /**
68     * Create a new priority queue with the default initial capacity (11)
69     * that orders its elements according to their natural ordering.
70     */
71     public PriorityQueue() {
72     this(DEFAULT_INITIAL_CAPACITY);
73 tim 1.1 }
74 tim 1.2
75     /**
76     * Create a new priority queue with the specified initial capacity
77     * that orders its elements according to their natural ordering.
78     *
79     * @param initialCapacity the initial capacity for this priority queue.
80     */
81     public PriorityQueue(int initialCapacity) {
82     this(initialCapacity, null);
83 tim 1.1 }
84 tim 1.2
85     /**
86     * Create a new priority queue with the specified initial capacity (11)
87     * that orders its elements according to the specified comparator.
88     *
89     * @param initialCapacity the initial capacity for this priority queue.
90     * @param comparator the comparator used to order this priority queue.
91     */
92     public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
93     if (initialCapacity < 1)
94     initialCapacity = 1;
95     queue = new E[initialCapacity + 1];
96     this.comparator = comparator;
97 tim 1.1 }
98    
99 tim 1.2 /**
100     * Create a new priority queue containing the elements in the specified
101     * collection. The priority queue has an initial capacity of 110% of the
102     * size of the specified collection. If the specified collection
103     * implements the {@link Sorted} interface, the priority queue will be
104     * sorted according to the same comparator, or according to its elements'
105     * natural order if the collection is sorted according to its elements'
106     * natural order. If the specified collection does not implement the
107     * <tt>Sorted</tt> interface, the priority queue is ordered according to
108     * its elements' natural order.
109     *
110     * @param initialElements the collection whose elements are to be placed
111     * into this priority queue.
112     * @throws ClassCastException if elements of the specified collection
113     * cannot be compared to one another according to the priority
114     * queue's ordering.
115     * @throws NullPointerException if the specified collection or an
116     * element of the specified collection is <tt>null</tt>.
117     */
118     public PriorityQueue(Collection<E> initialElements) {
119     int sz = initialElements.size();
120     int initialCapacity = (int)Math.min((sz * 110L) / 100,
121     Integer.MAX_VALUE - 1);
122     if (initialCapacity < 1)
123     initialCapacity = 1;
124     queue = new E[initialCapacity + 1];
125    
126 dl 1.5 /* Commented out to compile with generics compiler
127    
128 tim 1.2 if (initialElements instanceof Sorted) {
129     comparator = ((Sorted)initialElements).comparator();
130     for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
131     queue[++size] = i.next();
132     } else {
133 dl 1.5 */
134     {
135 tim 1.2 comparator = null;
136     for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
137     add(i.next());
138     }
139 tim 1.1 }
140    
141 tim 1.2 // Queue Methods
142    
143     /**
144     * Remove and return the minimal element from this priority queue if
145     * it contains one or more elements, otherwise <tt>null</tt>. The term
146     * <i>minimal</i> is defined according to this priority queue's order.
147     *
148     * @return the minimal element from this priority queue if it contains
149     * one or more elements, otherwise <tt>null</tt>.
150     */
151 tim 1.1 public E poll() {
152 tim 1.2 if (size == 0)
153     return null;
154     return remove(1);
155 tim 1.1 }
156 tim 1.2
157     /**
158     * Return, but do not remove, the minimal element from the priority queue,
159     * or <tt>null</tt> if the queue is empty. The term <i>minimal</i> is
160     * defined according to this priority queue's order. This method returns
161     * the same object reference that would be returned by by the
162 dl 1.5 * <tt>poll</tt> method. The two methods differ in that this method
163 tim 1.2 * does not remove the element from the priority queue.
164     *
165     * @return the minimal element from this priority queue if it contains
166     * one or more elements, otherwise <tt>null</tt>.
167     */
168 tim 1.1 public E peek() {
169 tim 1.2 return queue[1];
170 tim 1.1 }
171    
172 tim 1.2 // Collection Methods
173    
174     /**
175     * Removes a single instance of the specified element from this priority
176     * queue, if it is present. Returns true if this collection contained the
177     * specified element (or equivalently, if this collection changed as a
178     * result of the call).
179     *
180     * @param o element to be removed from this collection, if present.
181     * @return <tt>true</tt> if this collection changed as a result of the
182     * call
183     * @throws ClassCastException if the specified element cannot be compared
184 dl 1.5 * with elements currently in the priority queue according
185 tim 1.2 * to the priority queue's ordering.
186     * @throws NullPointerException if the specified element is null.
187     */
188     public boolean remove(Object element) {
189     if (element == null)
190     throw new NullPointerException();
191    
192     if (comparator == null) {
193     for (int i = 1; i <= size; i++) {
194     if (((Comparable)queue[i]).compareTo(element) == 0) {
195     remove(i);
196     return true;
197     }
198     }
199     } else {
200     for (int i = 1; i <= size; i++) {
201     if (comparator.compare(queue[i], (E) element) == 0) {
202     remove(i);
203     return true;
204     }
205     }
206     }
207 tim 1.1 return false;
208     }
209 tim 1.2
210     /**
211     * Returns an iterator over the elements in this priority queue. The
212 dl 1.5 * first element returned by this iterator is the same element that
213 tim 1.2 * would be returned by a call to <tt>peek</tt>.
214 dl 1.5 *
215 tim 1.2 * @return an <tt>Iterator</tt> over the elements in this priority queue.
216     */
217     public Iterator<E> iterator() {
218 dl 1.5 return new Itr();
219 tim 1.2 }
220    
221     private class Itr implements Iterator<E> {
222 dl 1.5 /**
223     * Index (into queue array) of element to be returned by
224 tim 1.2 * subsequent call to next.
225 dl 1.5 */
226     int cursor = 1;
227 tim 1.2
228 dl 1.5 /**
229     * Index of element returned by most recent call to next or
230     * previous. Reset to 0 if this element is deleted by a call
231     * to remove.
232     */
233     int lastRet = 0;
234    
235     /**
236     * The modCount value that the iterator believes that the backing
237     * List should have. If this expectation is violated, the iterator
238     * has detected concurrent modification.
239     */
240     int expectedModCount = modCount;
241    
242     public boolean hasNext() {
243     return cursor <= size;
244     }
245 tim 1.2
246 dl 1.5 public E next() {
247 tim 1.2 checkForComodification();
248     if (cursor > size)
249 dl 1.5 throw new NoSuchElementException();
250 tim 1.2 E result = queue[cursor];
251     lastRet = cursor++;
252     return result;
253 dl 1.5 }
254 tim 1.2
255 dl 1.5 public void remove() {
256     if (lastRet == 0)
257     throw new IllegalStateException();
258 tim 1.2 checkForComodification();
259    
260     PriorityQueue.this.remove(lastRet);
261     if (lastRet < cursor)
262     cursor--;
263     lastRet = 0;
264     expectedModCount = modCount;
265 dl 1.5 }
266 tim 1.2
267 dl 1.5 final void checkForComodification() {
268     if (modCount != expectedModCount)
269     throw new ConcurrentModificationException();
270     }
271 tim 1.2 }
272    
273     /**
274     * Returns the number of elements in this priority queue.
275 dl 1.5 *
276 tim 1.2 * @return the number of elements in this priority queue.
277     */
278 tim 1.1 public int size() {
279 tim 1.2 return size;
280 tim 1.1 }
281 tim 1.2
282     /**
283     * Add the specified element to this priority queue.
284     *
285     * @param element the element to add.
286     * @return true
287     * @throws ClassCastException if the specified element cannot be compared
288 dl 1.5 * with elements currently in the priority queue according
289 tim 1.2 * to the priority queue's ordering.
290     * @throws NullPointerException if the specified element is null.
291     */
292     public boolean offer(E element) {
293     if (element == null)
294     throw new NullPointerException();
295     modCount++;
296    
297     // Grow backing store if necessary
298     if (++size == queue.length) {
299     E[] newQueue = new E[2 * queue.length];
300     System.arraycopy(queue, 0, newQueue, 0, size);
301     queue = newQueue;
302     }
303    
304     queue[size] = element;
305     fixUp(size);
306     return true;
307 tim 1.1 }
308    
309 tim 1.2 /**
310     * Remove all elements from the priority queue.
311     */
312     public void clear() {
313     modCount++;
314    
315     // Null out element references to prevent memory leak
316     for (int i=1; i<=size; i++)
317     queue[i] = null;
318    
319     size = 0;
320     }
321    
322     /**
323     * Removes and returns the ith element from queue. Recall
324     * that queue is one-based, so 1 <= i <= size.
325     *
326     * XXX: Could further special-case i==size, but is it worth it?
327     * XXX: Could special-case i==0, but is it worth it?
328     */
329     private E remove(int i) {
330     assert i <= size;
331     modCount++;
332    
333     E result = queue[i];
334     queue[i] = queue[size];
335     queue[size--] = null; // Drop extra ref to prevent memory leak
336     if (i <= size)
337     fixDown(i);
338     return result;
339 tim 1.1 }
340    
341 tim 1.2 /**
342     * Establishes the heap invariant (described above) assuming the heap
343     * satisfies the invariant except possibly for the leaf-node indexed by k
344     * (which may have a nextExecutionTime less than its parent's).
345     *
346     * This method functions by "promoting" queue[k] up the hierarchy
347     * (by swapping it with its parent) repeatedly until queue[k]
348     * is greater than or equal to its parent.
349     */
350     private void fixUp(int k) {
351     if (comparator == null) {
352     while (k > 1) {
353     int j = k >> 1;
354     if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
355     break;
356     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
357     k = j;
358     }
359     } else {
360     while (k > 1) {
361     int j = k >> 1;
362     if (comparator.compare(queue[j], queue[k]) <= 0)
363     break;
364     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
365     k = j;
366     }
367     }
368     }
369    
370     /**
371     * Establishes the heap invariant (described above) in the subtree
372     * rooted at k, which is assumed to satisfy the heap invariant except
373     * possibly for node k itself (which may be greater than its children).
374     *
375     * This method functions by "demoting" queue[k] down the hierarchy
376     * (by swapping it with its smaller child) repeatedly until queue[k]
377     * is less than or equal to its children.
378     */
379     private void fixDown(int k) {
380     int j;
381     if (comparator == null) {
382     while ((j = k << 1) <= size) {
383     if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
384     j++; // j indexes smallest kid
385     if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
386     break;
387     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
388     k = j;
389     }
390     } else {
391     while ((j = k << 1) <= size) {
392     if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
393     j++; // j indexes smallest kid
394     if (comparator.compare(queue[k], queue[j]) <= 0)
395     break;
396     E tmp = queue[j]; queue[j] = queue[k]; queue[k] = tmp;
397     k = j;
398     }
399     }
400     }
401    
402     /**
403     * Returns the comparator associated with this priority queue, or
404     * <tt>null</tt> if it uses its elements' natural ordering.
405     *
406     * @return the comparator associated with this priority queue, or
407 dl 1.5 * <tt>null</tt> if it uses its elements' natural ordering.
408 tim 1.2 */
409 dl 1.5 Comparator comparator() {
410 tim 1.2 return comparator;
411     }
412 dl 1.5
413     /**
414     * Save the state of the instance to a stream (that
415     * is, serialize it).
416     *
417     * @serialData The length of the array backing the instance is
418     * emitted (int), followed by all of its elements (each an
419     * <tt>Object</tt>) in the proper order.
420     */
421     private synchronized void writeObject(java.io.ObjectOutputStream s)
422     throws java.io.IOException{
423     // Write out element count, and any hidden stuff
424     s.defaultWriteObject();
425    
426     // Write out array length
427     s.writeInt(queue.length);
428    
429     // Write out all elements in the proper order.
430     for (int i=0; i<size; i++)
431     s.writeObject(queue[i]);
432     }
433    
434     /**
435     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
436     * deserialize it).
437     */
438     private synchronized void readObject(java.io.ObjectInputStream s)
439     throws java.io.IOException, ClassNotFoundException {
440     // Read in size, and any hidden stuff
441     s.defaultReadObject();
442    
443     // Read in array length and allocate array
444     int arrayLength = s.readInt();
445     queue = new E[arrayLength];
446    
447     // Read in all elements in the proper order.
448     for (int i=0; i<size; i++)
449     queue[i] = (E)s.readObject();
450     }
451    
452 tim 1.1 }