ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.133 by jsr166, Thu Oct 10 16:53:08 2019 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
3 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 + *
5 + * This code is free software; you can redistribute it and/or modify it
6 + * under the terms of the GNU General Public License version 2 only, as
7 + * published by the Free Software Foundation.  Oracle designates this
8 + * particular file as subject to the "Classpath" exception as provided
9 + * by Oracle in the LICENSE file that accompanied this code.
10 + *
11 + * This code is distributed in the hope that it will be useful, but WITHOUT
12 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 + * version 2 for more details (a copy is included in the LICENSE file that
15 + * accompanied this code).
16 + *
17 + * You should have received a copy of the GNU General Public License version
18 + * 2 along with this work; if not, write to the Free Software Foundation,
19 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 + *
21 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 + * or visit www.oracle.com if you need additional information or have any
23 + * questions.
24 + */
25 +
26   package java.util;
27  
28 < import java.util.*;
28 > import java.util.function.Consumer;
29 > import java.util.function.Predicate;
30 > // OPENJDK import jdk.internal.access.SharedSecrets;
31 > import jdk.internal.util.ArraysSupport;
32  
33   /**
34 < * An unbounded (resizable) priority queue based on a priority
35 < * heap.The take operation returns the least element with respect to
36 < * the given ordering. (If more than one element is tied for least
37 < * value, one of them is arbitrarily chosen to be returned -- no
38 < * guarantees are made for ordering across ties.) Ordering follows the
39 < * java.util.Collection conventions: Either the elements must be
40 < * Comparable, or a Comparator must be supplied. Comparison failures
41 < * throw ClassCastExceptions during insertions and extractions.
42 < **/
43 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
44 <    public PriorityQueue(int initialCapacity) {}
45 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
46 <
47 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
48 <
49 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
50 <
51 <    public boolean add(E x) {
52 <        return false;
34 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
35 > * The elements of the priority queue are ordered according to their
36 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
37 > * provided at queue construction time, depending on which constructor is
38 > * used.  A priority queue does not permit {@code null} elements.
39 > * A priority queue relying on natural ordering also does not permit
40 > * insertion of non-comparable objects (doing so may result in
41 > * {@code ClassCastException}).
42 > *
43 > * <p>The <em>head</em> of this queue is the <em>least</em> element
44 > * with respect to the specified ordering.  If multiple elements are
45 > * tied for least value, the head is one of those elements -- ties are
46 > * broken arbitrarily.  The queue retrieval operations {@code poll},
47 > * {@code remove}, {@code peek}, and {@code element} access the
48 > * element at the head of the queue.
49 > *
50 > * <p>A priority queue is unbounded, but has an internal
51 > * <i>capacity</i> governing the size of an array used to store the
52 > * elements on the queue.  It is always at least as large as the queue
53 > * size.  As elements are added to a priority queue, its capacity
54 > * grows automatically.  The details of the growth policy are not
55 > * specified.
56 > *
57 > * <p>This class and its iterator implement all of the
58 > * <em>optional</em> methods of the {@link Collection} and {@link
59 > * Iterator} interfaces.  The Iterator provided in method {@link
60 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
61 > * are <em>not</em> guaranteed to traverse the elements of
62 > * the priority queue in any particular order. If you need ordered
63 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
64 > *
65 > * <p><strong>Note that this implementation is not synchronized.</strong>
66 > * Multiple threads should not access a {@code PriorityQueue}
67 > * instance concurrently if any of the threads modifies the queue.
68 > * Instead, use the thread-safe {@link
69 > * java.util.concurrent.PriorityBlockingQueue} class.
70 > *
71 > * <p>Implementation note: this implementation provides
72 > * O(log(n)) time for the enqueuing and dequeuing methods
73 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
74 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
75 > * methods; and constant time for the retrieval methods
76 > * ({@code peek}, {@code element}, and {@code size}).
77 > *
78 > * <p>This class is a member of the
79 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
80 > * Java Collections Framework</a>.
81 > *
82 > * @since 1.5
83 > * @author Josh Bloch, Doug Lea
84 > * @param <E> the type of elements held in this queue
85 > */
86 > @SuppressWarnings("unchecked")
87 > public class PriorityQueue<E> extends AbstractQueue<E>
88 >    implements java.io.Serializable {
89 >
90 >    // OPENJDK @java.io.Serial
91 >    private static final long serialVersionUID = -7720805057305804111L;
92 >
93 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
94 >
95 >    /**
96 >     * Priority queue represented as a balanced binary heap: the two
97 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
98 >     * priority queue is ordered by comparator, or by the elements'
99 >     * natural ordering, if comparator is null: For each node n in the
100 >     * heap and each descendant d of n, n <= d.  The element with the
101 >     * lowest value is in queue[0], assuming the queue is nonempty.
102 >     */
103 >    transient Object[] queue; // non-private to simplify nested class access
104 >
105 >    /**
106 >     * The number of elements in the priority queue.
107 >     */
108 >    int size;
109 >
110 >    /**
111 >     * The comparator, or null if priority queue uses elements'
112 >     * natural ordering.
113 >     */
114 >    @SuppressWarnings("serial") // Conditionally serializable
115 >    private final Comparator<? super E> comparator;
116 >
117 >    /**
118 >     * The number of times this priority queue has been
119 >     * <i>structurally modified</i>.  See AbstractList for gory details.
120 >     */
121 >    transient int modCount;     // non-private to simplify nested class access
122 >
123 >    /**
124 >     * Creates a {@code PriorityQueue} with the default initial
125 >     * capacity (11) that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127 >     */
128 >    public PriorityQueue() {
129 >        this(DEFAULT_INITIAL_CAPACITY, null);
130      }
131 <    public boolean offer(E x) {
132 <        return false;
131 >
132 >    /**
133 >     * Creates a {@code PriorityQueue} with the specified initial
134 >     * capacity that orders its elements according to their
135 >     * {@linkplain Comparable natural ordering}.
136 >     *
137 >     * @param initialCapacity the initial capacity for this priority queue
138 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
139 >     *         than 1
140 >     */
141 >    public PriorityQueue(int initialCapacity) {
142 >        this(initialCapacity, null);
143      }
144 <    public boolean remove(Object x) {
145 <        return false;
144 >
145 >    /**
146 >     * Creates a {@code PriorityQueue} with the default initial capacity and
147 >     * whose elements are ordered according to the specified comparator.
148 >     *
149 >     * @param  comparator the comparator that will be used to order this
150 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
151 >     *         natural ordering} of the elements will be used.
152 >     * @since 1.8
153 >     */
154 >    public PriorityQueue(Comparator<? super E> comparator) {
155 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
156      }
157  
158 <    public E remove() {
159 <        return null;
158 >    /**
159 >     * Creates a {@code PriorityQueue} with the specified initial capacity
160 >     * that orders its elements according to the specified comparator.
161 >     *
162 >     * @param  initialCapacity the initial capacity for this priority queue
163 >     * @param  comparator the comparator that will be used to order this
164 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
165 >     *         natural ordering} of the elements will be used.
166 >     * @throws IllegalArgumentException if {@code initialCapacity} is
167 >     *         less than 1
168 >     */
169 >    public PriorityQueue(int initialCapacity,
170 >                         Comparator<? super E> comparator) {
171 >        // Note: This restriction of at least one is not actually needed,
172 >        // but continues for 1.5 compatibility
173 >        if (initialCapacity < 1)
174 >            throw new IllegalArgumentException();
175 >        this.queue = new Object[initialCapacity];
176 >        this.comparator = comparator;
177      }
178 <    public Iterator<E> iterator() {
179 <      return null;
178 >
179 >    /**
180 >     * Creates a {@code PriorityQueue} containing the elements in the
181 >     * specified collection.  If the specified collection is an instance of
182 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
183 >     * priority queue will be ordered according to the same ordering.
184 >     * Otherwise, this priority queue will be ordered according to the
185 >     * {@linkplain Comparable natural ordering} of its elements.
186 >     *
187 >     * @param  c the collection whose elements are to be placed
188 >     *         into this priority queue
189 >     * @throws ClassCastException if elements of the specified collection
190 >     *         cannot be compared to one another according to the priority
191 >     *         queue's ordering
192 >     * @throws NullPointerException if the specified collection or any
193 >     *         of its elements are null
194 >     */
195 >    public PriorityQueue(Collection<? extends E> c) {
196 >        if (c instanceof SortedSet<?>) {
197 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
198 >            this.comparator = (Comparator<? super E>) ss.comparator();
199 >            initElementsFromCollection(ss);
200 >        }
201 >        else if (c instanceof PriorityQueue<?>) {
202 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
203 >            this.comparator = (Comparator<? super E>) pq.comparator();
204 >            initFromPriorityQueue(pq);
205 >        }
206 >        else {
207 >            this.comparator = null;
208 >            initFromCollection(c);
209 >        }
210      }
211  
212 <    public E element() {
213 <        return null;
212 >    /**
213 >     * Creates a {@code PriorityQueue} containing the elements in the
214 >     * specified priority queue.  This priority queue will be
215 >     * ordered according to the same ordering as the given priority
216 >     * queue.
217 >     *
218 >     * @param  c the priority queue whose elements are to be placed
219 >     *         into this priority queue
220 >     * @throws ClassCastException if elements of {@code c} cannot be
221 >     *         compared to one another according to {@code c}'s
222 >     *         ordering
223 >     * @throws NullPointerException if the specified priority queue or any
224 >     *         of its elements are null
225 >     */
226 >    public PriorityQueue(PriorityQueue<? extends E> c) {
227 >        this.comparator = (Comparator<? super E>) c.comparator();
228 >        initFromPriorityQueue(c);
229      }
230 <    public E poll() {
231 <        return null;
230 >
231 >    /**
232 >     * Creates a {@code PriorityQueue} containing the elements in the
233 >     * specified sorted set.   This priority queue will be ordered
234 >     * according to the same ordering as the given sorted set.
235 >     *
236 >     * @param  c the sorted set whose elements are to be placed
237 >     *         into this priority queue
238 >     * @throws ClassCastException if elements of the specified sorted
239 >     *         set cannot be compared to one another according to the
240 >     *         sorted set's ordering
241 >     * @throws NullPointerException if the specified sorted set or any
242 >     *         of its elements are null
243 >     */
244 >    public PriorityQueue(SortedSet<? extends E> c) {
245 >        this.comparator = (Comparator<? super E>) c.comparator();
246 >        initElementsFromCollection(c);
247 >    }
248 >
249 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
250 >    private static Object[] ensureNonEmpty(Object[] es) {
251 >        return (es.length > 0) ? es : new Object[1];
252 >    }
253 >
254 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
255 >        if (c.getClass() == PriorityQueue.class) {
256 >            this.queue = ensureNonEmpty(c.toArray());
257 >            this.size = c.size();
258 >        } else {
259 >            initFromCollection(c);
260 >        }
261 >    }
262 >
263 >    private void initElementsFromCollection(Collection<? extends E> c) {
264 >        Object[] es = c.toArray();
265 >        int len = es.length;
266 >        // If c.toArray incorrectly doesn't return Object[], copy it.
267 >        if (es.getClass() != Object[].class)
268 >            es = Arrays.copyOf(es, len, Object[].class);
269 >        if (len == 1 || this.comparator != null)
270 >            for (Object e : es)
271 >                if (e == null)
272 >                    throw new NullPointerException();
273 >        this.queue = ensureNonEmpty(es);
274 >        this.size = len;
275 >    }
276 >
277 >    /**
278 >     * Initializes queue array with elements from the given Collection.
279 >     *
280 >     * @param c the collection
281 >     */
282 >    private void initFromCollection(Collection<? extends E> c) {
283 >        initElementsFromCollection(c);
284 >        heapify();
285 >    }
286 >
287 >    /**
288 >     * Increases the capacity of the array.
289 >     *
290 >     * @param minCapacity the desired minimum capacity
291 >     */
292 >    private void grow(int minCapacity) {
293 >        int oldCapacity = queue.length;
294 >        // Double size if small; else grow by 50%
295 >        int newCapacity = ArraysSupport.newLength(oldCapacity,
296 >                minCapacity - oldCapacity, /* minimum growth */
297 >                oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
298 >                                           /* preferred growth */);
299 >        queue = Arrays.copyOf(queue, newCapacity);
300 >    }
301 >
302 >    /**
303 >     * Inserts the specified element into this priority queue.
304 >     *
305 >     * @return {@code true} (as specified by {@link Collection#add})
306 >     * @throws ClassCastException if the specified element cannot be
307 >     *         compared with elements currently in this priority queue
308 >     *         according to the priority queue's ordering
309 >     * @throws NullPointerException if the specified element is null
310 >     */
311 >    public boolean add(E e) {
312 >        return offer(e);
313      }
314 +
315 +    /**
316 +     * Inserts the specified element into this priority queue.
317 +     *
318 +     * @return {@code true} (as specified by {@link Queue#offer})
319 +     * @throws ClassCastException if the specified element cannot be
320 +     *         compared with elements currently in this priority queue
321 +     *         according to the priority queue's ordering
322 +     * @throws NullPointerException if the specified element is null
323 +     */
324 +    public boolean offer(E e) {
325 +        if (e == null)
326 +            throw new NullPointerException();
327 +        modCount++;
328 +        int i = size;
329 +        if (i >= queue.length)
330 +            grow(i + 1);
331 +        siftUp(i, e);
332 +        size = i + 1;
333 +        return true;
334 +    }
335 +
336      public E peek() {
337 <        return null;
337 >        return (E) queue[0];
338      }
339  
340 <    public boolean isEmpty() {
341 <        return false;
340 >    private int indexOf(Object o) {
341 >        if (o != null) {
342 >            final Object[] es = queue;
343 >            for (int i = 0, n = size; i < n; i++)
344 >                if (o.equals(es[i]))
345 >                    return i;
346 >        }
347 >        return -1;
348      }
349 <    public int size() {
350 <        return 0;
349 >
350 >    /**
351 >     * Removes a single instance of the specified element from this queue,
352 >     * if it is present.  More formally, removes an element {@code e} such
353 >     * that {@code o.equals(e)}, if this queue contains one or more such
354 >     * elements.  Returns {@code true} if and only if this queue contained
355 >     * the specified element (or equivalently, if this queue changed as a
356 >     * result of the call).
357 >     *
358 >     * @param o element to be removed from this queue, if present
359 >     * @return {@code true} if this queue changed as a result of the call
360 >     */
361 >    public boolean remove(Object o) {
362 >        int i = indexOf(o);
363 >        if (i == -1)
364 >            return false;
365 >        else {
366 >            removeAt(i);
367 >            return true;
368 >        }
369 >    }
370 >
371 >    /**
372 >     * Identity-based version for use in Itr.remove.
373 >     *
374 >     * @param o element to be removed from this queue, if present
375 >     */
376 >    void removeEq(Object o) {
377 >        final Object[] es = queue;
378 >        for (int i = 0, n = size; i < n; i++) {
379 >            if (o == es[i]) {
380 >                removeAt(i);
381 >                break;
382 >            }
383 >        }
384      }
385 +
386 +    /**
387 +     * Returns {@code true} if this queue contains the specified element.
388 +     * More formally, returns {@code true} if and only if this queue contains
389 +     * at least one element {@code e} such that {@code o.equals(e)}.
390 +     *
391 +     * @param o object to be checked for containment in this queue
392 +     * @return {@code true} if this queue contains the specified element
393 +     */
394 +    public boolean contains(Object o) {
395 +        return indexOf(o) >= 0;
396 +    }
397 +
398 +    /**
399 +     * Returns an array containing all of the elements in this queue.
400 +     * The elements are in no particular order.
401 +     *
402 +     * <p>The returned array will be "safe" in that no references to it are
403 +     * maintained by this queue.  (In other words, this method must allocate
404 +     * a new array).  The caller is thus free to modify the returned array.
405 +     *
406 +     * <p>This method acts as bridge between array-based and collection-based
407 +     * APIs.
408 +     *
409 +     * @return an array containing all of the elements in this queue
410 +     */
411      public Object[] toArray() {
412 <        return null;
412 >        return Arrays.copyOf(queue, size);
413 >    }
414 >
415 >    /**
416 >     * Returns an array containing all of the elements in this queue; the
417 >     * runtime type of the returned array is that of the specified array.
418 >     * The returned array elements are in no particular order.
419 >     * If the queue fits in the specified array, it is returned therein.
420 >     * Otherwise, a new array is allocated with the runtime type of the
421 >     * specified array and the size of this queue.
422 >     *
423 >     * <p>If the queue fits in the specified array with room to spare
424 >     * (i.e., the array has more elements than the queue), the element in
425 >     * the array immediately following the end of the collection is set to
426 >     * {@code null}.
427 >     *
428 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
429 >     * array-based and collection-based APIs.  Further, this method allows
430 >     * precise control over the runtime type of the output array, and may,
431 >     * under certain circumstances, be used to save allocation costs.
432 >     *
433 >     * <p>Suppose {@code x} is a queue known to contain only strings.
434 >     * The following code can be used to dump the queue into a newly
435 >     * allocated array of {@code String}:
436 >     *
437 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
438 >     *
439 >     * Note that {@code toArray(new Object[0])} is identical in function to
440 >     * {@code toArray()}.
441 >     *
442 >     * @param a the array into which the elements of the queue are to
443 >     *          be stored, if it is big enough; otherwise, a new array of the
444 >     *          same runtime type is allocated for this purpose.
445 >     * @return an array containing all of the elements in this queue
446 >     * @throws ArrayStoreException if the runtime type of the specified array
447 >     *         is not a supertype of the runtime type of every element in
448 >     *         this queue
449 >     * @throws NullPointerException if the specified array is null
450 >     */
451 >    public <T> T[] toArray(T[] a) {
452 >        final int size = this.size;
453 >        if (a.length < size)
454 >            // Make a new array of a's runtime type, but my contents:
455 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
456 >        System.arraycopy(queue, 0, a, 0, size);
457 >        if (a.length > size)
458 >            a[size] = null;
459 >        return a;
460 >    }
461 >
462 >    /**
463 >     * Returns an iterator over the elements in this queue. The iterator
464 >     * does not return the elements in any particular order.
465 >     *
466 >     * @return an iterator over the elements in this queue
467 >     */
468 >    public Iterator<E> iterator() {
469 >        return new Itr();
470 >    }
471 >
472 >    private final class Itr implements Iterator<E> {
473 >        /**
474 >         * Index (into queue array) of element to be returned by
475 >         * subsequent call to next.
476 >         */
477 >        private int cursor;
478 >
479 >        /**
480 >         * Index of element returned by most recent call to next,
481 >         * unless that element came from the forgetMeNot list.
482 >         * Set to -1 if element is deleted by a call to remove.
483 >         */
484 >        private int lastRet = -1;
485 >
486 >        /**
487 >         * A queue of elements that were moved from the unvisited portion of
488 >         * the heap into the visited portion as a result of "unlucky" element
489 >         * removals during the iteration.  (Unlucky element removals are those
490 >         * that require a siftup instead of a siftdown.)  We must visit all of
491 >         * the elements in this list to complete the iteration.  We do this
492 >         * after we've completed the "normal" iteration.
493 >         *
494 >         * We expect that most iterations, even those involving removals,
495 >         * will not need to store elements in this field.
496 >         */
497 >        private ArrayDeque<E> forgetMeNot;
498 >
499 >        /**
500 >         * Element returned by the most recent call to next iff that
501 >         * element was drawn from the forgetMeNot list.
502 >         */
503 >        private E lastRetElt;
504 >
505 >        /**
506 >         * The modCount value that the iterator believes that the backing
507 >         * Queue should have.  If this expectation is violated, the iterator
508 >         * has detected concurrent modification.
509 >         */
510 >        private int expectedModCount = modCount;
511 >
512 >        Itr() {}                        // prevent access constructor creation
513 >
514 >        public boolean hasNext() {
515 >            return cursor < size ||
516 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
517 >        }
518 >
519 >        public E next() {
520 >            if (expectedModCount != modCount)
521 >                throw new ConcurrentModificationException();
522 >            if (cursor < size)
523 >                return (E) queue[lastRet = cursor++];
524 >            if (forgetMeNot != null) {
525 >                lastRet = -1;
526 >                lastRetElt = forgetMeNot.poll();
527 >                if (lastRetElt != null)
528 >                    return lastRetElt;
529 >            }
530 >            throw new NoSuchElementException();
531 >        }
532 >
533 >        public void remove() {
534 >            if (expectedModCount != modCount)
535 >                throw new ConcurrentModificationException();
536 >            if (lastRet != -1) {
537 >                E moved = PriorityQueue.this.removeAt(lastRet);
538 >                lastRet = -1;
539 >                if (moved == null)
540 >                    cursor--;
541 >                else {
542 >                    if (forgetMeNot == null)
543 >                        forgetMeNot = new ArrayDeque<>();
544 >                    forgetMeNot.add(moved);
545 >                }
546 >            } else if (lastRetElt != null) {
547 >                PriorityQueue.this.removeEq(lastRetElt);
548 >                lastRetElt = null;
549 >            } else {
550 >                throw new IllegalStateException();
551 >            }
552 >            expectedModCount = modCount;
553 >        }
554 >    }
555 >
556 >    public int size() {
557 >        return size;
558 >    }
559 >
560 >    /**
561 >     * Removes all of the elements from this priority queue.
562 >     * The queue will be empty after this call returns.
563 >     */
564 >    public void clear() {
565 >        modCount++;
566 >        final Object[] es = queue;
567 >        for (int i = 0, n = size; i < n; i++)
568 >            es[i] = null;
569 >        size = 0;
570 >    }
571 >
572 >    public E poll() {
573 >        final Object[] es;
574 >        final E result;
575 >
576 >        if ((result = (E) ((es = queue)[0])) != null) {
577 >            modCount++;
578 >            final int n;
579 >            final E x = (E) es[(n = --size)];
580 >            es[n] = null;
581 >            if (n > 0) {
582 >                final Comparator<? super E> cmp;
583 >                if ((cmp = comparator) == null)
584 >                    siftDownComparable(0, x, es, n);
585 >                else
586 >                    siftDownUsingComparator(0, x, es, n, cmp);
587 >            }
588 >        }
589 >        return result;
590      }
591  
592 <    public <T> T[] toArray(T[] array) {
592 >    /**
593 >     * Removes the ith element from queue.
594 >     *
595 >     * Normally this method leaves the elements at up to i-1,
596 >     * inclusive, untouched.  Under these circumstances, it returns
597 >     * null.  Occasionally, in order to maintain the heap invariant,
598 >     * it must swap a later element of the list with one earlier than
599 >     * i.  Under these circumstances, this method returns the element
600 >     * that was previously at the end of the list and is now at some
601 >     * position before i. This fact is used by iterator.remove so as to
602 >     * avoid missing traversing elements.
603 >     */
604 >    E removeAt(int i) {
605 >        // assert i >= 0 && i < size;
606 >        final Object[] es = queue;
607 >        modCount++;
608 >        int s = --size;
609 >        if (s == i) // removed last element
610 >            es[i] = null;
611 >        else {
612 >            E moved = (E) es[s];
613 >            es[s] = null;
614 >            siftDown(i, moved);
615 >            if (es[i] == moved) {
616 >                siftUp(i, moved);
617 >                if (es[i] != moved)
618 >                    return moved;
619 >            }
620 >        }
621          return null;
622      }
623  
624 +    /**
625 +     * Inserts item x at position k, maintaining heap invariant by
626 +     * promoting x up the tree until it is greater than or equal to
627 +     * its parent, or is the root.
628 +     *
629 +     * To simplify and speed up coercions and comparisons, the
630 +     * Comparable and Comparator versions are separated into different
631 +     * methods that are otherwise identical. (Similarly for siftDown.)
632 +     *
633 +     * @param k the position to fill
634 +     * @param x the item to insert
635 +     */
636 +    private void siftUp(int k, E x) {
637 +        if (comparator != null)
638 +            siftUpUsingComparator(k, x, queue, comparator);
639 +        else
640 +            siftUpComparable(k, x, queue);
641 +    }
642 +
643 +    private static <T> void siftUpComparable(int k, T x, Object[] es) {
644 +        Comparable<? super T> key = (Comparable<? super T>) x;
645 +        while (k > 0) {
646 +            int parent = (k - 1) >>> 1;
647 +            Object e = es[parent];
648 +            if (key.compareTo((T) e) >= 0)
649 +                break;
650 +            es[k] = e;
651 +            k = parent;
652 +        }
653 +        es[k] = key;
654 +    }
655 +
656 +    private static <T> void siftUpUsingComparator(
657 +        int k, T x, Object[] es, Comparator<? super T> cmp) {
658 +        while (k > 0) {
659 +            int parent = (k - 1) >>> 1;
660 +            Object e = es[parent];
661 +            if (cmp.compare(x, (T) e) >= 0)
662 +                break;
663 +            es[k] = e;
664 +            k = parent;
665 +        }
666 +        es[k] = x;
667 +    }
668 +
669 +    /**
670 +     * Inserts item x at position k, maintaining heap invariant by
671 +     * demoting x down the tree repeatedly until it is less than or
672 +     * equal to its children or is a leaf.
673 +     *
674 +     * @param k the position to fill
675 +     * @param x the item to insert
676 +     */
677 +    private void siftDown(int k, E x) {
678 +        if (comparator != null)
679 +            siftDownUsingComparator(k, x, queue, size, comparator);
680 +        else
681 +            siftDownComparable(k, x, queue, size);
682 +    }
683 +
684 +    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
685 +        // assert n > 0;
686 +        Comparable<? super T> key = (Comparable<? super T>)x;
687 +        int half = n >>> 1;           // loop while a non-leaf
688 +        while (k < half) {
689 +            int child = (k << 1) + 1; // assume left child is least
690 +            Object c = es[child];
691 +            int right = child + 1;
692 +            if (right < n &&
693 +                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
694 +                c = es[child = right];
695 +            if (key.compareTo((T) c) <= 0)
696 +                break;
697 +            es[k] = c;
698 +            k = child;
699 +        }
700 +        es[k] = key;
701 +    }
702 +
703 +    private static <T> void siftDownUsingComparator(
704 +        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
705 +        // assert n > 0;
706 +        int half = n >>> 1;
707 +        while (k < half) {
708 +            int child = (k << 1) + 1;
709 +            Object c = es[child];
710 +            int right = child + 1;
711 +            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
712 +                c = es[child = right];
713 +            if (cmp.compare(x, (T) c) <= 0)
714 +                break;
715 +            es[k] = c;
716 +            k = child;
717 +        }
718 +        es[k] = x;
719 +    }
720 +
721 +    /**
722 +     * Establishes the heap invariant (described above) in the entire tree,
723 +     * assuming nothing about the order of the elements prior to the call.
724 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
725 +     */
726 +    private void heapify() {
727 +        final Object[] es = queue;
728 +        int n = size, i = (n >>> 1) - 1;
729 +        final Comparator<? super E> cmp;
730 +        if ((cmp = comparator) == null)
731 +            for (; i >= 0; i--)
732 +                siftDownComparable(i, (E) es[i], es, n);
733 +        else
734 +            for (; i >= 0; i--)
735 +                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
736 +    }
737 +
738 +    /**
739 +     * Returns the comparator used to order the elements in this
740 +     * queue, or {@code null} if this queue is sorted according to
741 +     * the {@linkplain Comparable natural ordering} of its elements.
742 +     *
743 +     * @return the comparator used to order this queue, or
744 +     *         {@code null} if this queue is sorted according to the
745 +     *         natural ordering of its elements
746 +     */
747 +    public Comparator<? super E> comparator() {
748 +        return comparator;
749 +    }
750 +
751 +    /**
752 +     * Saves this queue to a stream (that is, serializes it).
753 +     *
754 +     * @param s the stream
755 +     * @throws java.io.IOException if an I/O error occurs
756 +     * @serialData The length of the array backing the instance is
757 +     *             emitted (int), followed by all of its elements
758 +     *             (each an {@code Object}) in the proper order.
759 +     */
760 +    // OPENJDK @java.io.Serial
761 +    private void writeObject(java.io.ObjectOutputStream s)
762 +        throws java.io.IOException {
763 +        // Write out element count, and any hidden stuff
764 +        s.defaultWriteObject();
765 +
766 +        // Write out array length, for compatibility with 1.5 version
767 +        s.writeInt(Math.max(2, size + 1));
768 +
769 +        // Write out all elements in the "proper order".
770 +        final Object[] es = queue;
771 +        for (int i = 0, n = size; i < n; i++)
772 +            s.writeObject(es[i]);
773 +    }
774 +
775 +    /**
776 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
777 +     * (that is, deserializes it).
778 +     *
779 +     * @param s the stream
780 +     * @throws ClassNotFoundException if the class of a serialized object
781 +     *         could not be found
782 +     * @throws java.io.IOException if an I/O error occurs
783 +     */
784 +    // OPENJDK @java.io.Serial
785 +    private void readObject(java.io.ObjectInputStream s)
786 +        throws java.io.IOException, ClassNotFoundException {
787 +        // Read in size, and any hidden stuff
788 +        s.defaultReadObject();
789 +
790 +        // Read in (and discard) array length
791 +        s.readInt();
792 +
793 +        jsr166.Platform.checkArray(s, Object[].class, size);
794 +        final Object[] es = queue = new Object[Math.max(size, 1)];
795 +
796 +        // Read in all elements.
797 +        for (int i = 0, n = size; i < n; i++)
798 +            es[i] = s.readObject();
799 +
800 +        // Elements are guaranteed to be in "proper order", but the
801 +        // spec has never explained what that might be.
802 +        heapify();
803 +    }
804 +
805 +    /**
806 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
807 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
808 +     * queue. The spliterator does not traverse elements in any particular order
809 +     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
810 +     *
811 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
812 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
813 +     * Overriding implementations should document the reporting of additional
814 +     * characteristic values.
815 +     *
816 +     * @return a {@code Spliterator} over the elements in this queue
817 +     * @since 1.8
818 +     */
819 +    public final Spliterator<E> spliterator() {
820 +        return new PriorityQueueSpliterator(0, -1, 0);
821 +    }
822 +
823 +    final class PriorityQueueSpliterator implements Spliterator<E> {
824 +        private int index;            // current index, modified on advance/split
825 +        private int fence;            // -1 until first use
826 +        private int expectedModCount; // initialized when fence set
827 +
828 +        /** Creates new spliterator covering the given range. */
829 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
830 +            this.index = origin;
831 +            this.fence = fence;
832 +            this.expectedModCount = expectedModCount;
833 +        }
834 +
835 +        private int getFence() { // initialize fence to size on first use
836 +            int hi;
837 +            if ((hi = fence) < 0) {
838 +                expectedModCount = modCount;
839 +                hi = fence = size;
840 +            }
841 +            return hi;
842 +        }
843 +
844 +        public PriorityQueueSpliterator trySplit() {
845 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 +            return (lo >= mid) ? null :
847 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
848 +        }
849 +
850 +        public void forEachRemaining(Consumer<? super E> action) {
851 +            if (action == null)
852 +                throw new NullPointerException();
853 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
854 +            final Object[] es = queue;
855 +            int i, hi; E e;
856 +            for (i = index, index = hi = fence; i < hi; i++) {
857 +                if ((e = (E) es[i]) == null)
858 +                    break;      // must be CME
859 +                action.accept(e);
860 +            }
861 +            if (modCount != expectedModCount)
862 +                throw new ConcurrentModificationException();
863 +        }
864 +
865 +        public boolean tryAdvance(Consumer<? super E> action) {
866 +            if (action == null)
867 +                throw new NullPointerException();
868 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
869 +            int i;
870 +            if ((i = index) < fence) {
871 +                index = i + 1;
872 +                E e;
873 +                if ((e = (E) queue[i]) == null
874 +                    || modCount != expectedModCount)
875 +                    throw new ConcurrentModificationException();
876 +                action.accept(e);
877 +                return true;
878 +            }
879 +            return false;
880 +        }
881 +
882 +        public long estimateSize() {
883 +            return getFence() - index;
884 +        }
885 +
886 +        public int characteristics() {
887 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
888 +        }
889 +    }
890 +
891 +    /**
892 +     * @throws NullPointerException {@inheritDoc}
893 +     */
894 +    public boolean removeIf(Predicate<? super E> filter) {
895 +        Objects.requireNonNull(filter);
896 +        return bulkRemove(filter);
897 +    }
898 +
899 +    /**
900 +     * @throws NullPointerException {@inheritDoc}
901 +     */
902 +    public boolean removeAll(Collection<?> c) {
903 +        Objects.requireNonNull(c);
904 +        return bulkRemove(e -> c.contains(e));
905 +    }
906 +
907 +    /**
908 +     * @throws NullPointerException {@inheritDoc}
909 +     */
910 +    public boolean retainAll(Collection<?> c) {
911 +        Objects.requireNonNull(c);
912 +        return bulkRemove(e -> !c.contains(e));
913 +    }
914 +
915 +    // A tiny bit set implementation
916 +
917 +    private static long[] nBits(int n) {
918 +        return new long[((n - 1) >> 6) + 1];
919 +    }
920 +    private static void setBit(long[] bits, int i) {
921 +        bits[i >> 6] |= 1L << i;
922 +    }
923 +    private static boolean isClear(long[] bits, int i) {
924 +        return (bits[i >> 6] & (1L << i)) == 0;
925 +    }
926 +
927 +    /** Implementation of bulk remove methods. */
928 +    private boolean bulkRemove(Predicate<? super E> filter) {
929 +        final int expectedModCount = ++modCount;
930 +        final Object[] es = queue;
931 +        final int end = size;
932 +        int i;
933 +        // Optimize for initial run of survivors
934 +        for (i = 0; i < end && !filter.test((E) es[i]); i++)
935 +            ;
936 +        if (i >= end) {
937 +            if (modCount != expectedModCount)
938 +                throw new ConcurrentModificationException();
939 +            return false;
940 +        }
941 +        // Tolerate predicates that reentrantly access the collection for
942 +        // read (but writers still get CME), so traverse once to find
943 +        // elements to delete, a second pass to physically expunge.
944 +        final int beg = i;
945 +        final long[] deathRow = nBits(end - beg);
946 +        deathRow[0] = 1L;   // set bit 0
947 +        for (i = beg + 1; i < end; i++)
948 +            if (filter.test((E) es[i]))
949 +                setBit(deathRow, i - beg);
950 +        if (modCount != expectedModCount)
951 +            throw new ConcurrentModificationException();
952 +        int w = beg;
953 +        for (i = beg; i < end; i++)
954 +            if (isClear(deathRow, i - beg))
955 +                es[w++] = es[i];
956 +        for (i = size = w; i < end; i++)
957 +            es[i] = null;
958 +        heapify();
959 +        return true;
960 +    }
961 +
962 +    /**
963 +     * @throws NullPointerException {@inheritDoc}
964 +     */
965 +    public void forEach(Consumer<? super E> action) {
966 +        Objects.requireNonNull(action);
967 +        final int expectedModCount = modCount;
968 +        final Object[] es = queue;
969 +        for (int i = 0, n = size; i < n; i++)
970 +            action.accept((E) es[i]);
971 +        if (expectedModCount != modCount)
972 +            throw new ConcurrentModificationException();
973 +    }
974   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines