ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.10 by tim, Sat Jul 26 13:17:51 2003 UTC

# Line 1 | Line 1
1 < package java.util;
2 <
3 < import java.util.*;
1 > package java.util;
2  
3   /**
4 < * An unbounded (resizable) priority queue based on a priority
5 < * heap.The take operation returns the least element with respect to
6 < * the given ordering. (If more than one element is tied for least
7 < * value, one of them is arbitrarily chosen to be returned -- no
8 < * guarantees are made for ordering across ties.) Ordering follows the
9 < * java.util.Collection conventions: Either the elements must be
10 < * Comparable, or a Comparator must be supplied. Comparison failures
11 < * throw ClassCastExceptions during insertions and extractions.
12 < **/
13 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
14 <    public PriorityQueue(int initialCapacity) {}
15 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
4 > * An unbounded priority queue based on a priority heap.  This queue orders
5 > * elements according to an order specified at construction time, which is
6 > * specified in the same manner as {@link TreeSet} and {@link TreeMap}: elements are ordered
7 > * either according to their <i>natural order</i> (see {@link Comparable}), or
8 > * according to a {@link Comparator}, depending on which constructor is used.
9 > * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
10 > * minimal element with respect to the specified ordering.  If multiple
11 > * elements are tied for least value, no guarantees are made as to
12 > * which of these elements is returned.
13 > *
14 > * <p>A priority queue has a <i>capacity</i>.  The capacity is the
15 > * size of the array used internally to store the elements on the
16 > * queue.  It is always at least as large as the queue size.  As
17 > * elements are added to a priority queue, its capacity grows
18 > * automatically.  The details of the growth policy are not specified.
19 > *
20 > *<p>Implementation note: this implementation provides O(log(n)) time
21 > *for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
22 > *<tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
23 > *<tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
24 > *constant time for the retrieval methods (<tt>peek</tt>,
25 > *<tt>element</tt>, and <tt>size</tt>).
26 > *
27 > * <p>This class is a member of the
28 > * <a href="{@docRoot}/../guide/collections/index.html">
29 > * Java Collections Framework</a>.
30 > * @since 1.5
31 > * @author Josh Bloch
32 > */
33 > public class PriorityQueue<E> extends AbstractQueue<E>
34 >                              implements Queue<E>,
35 >                                         java.io.Serializable {
36 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
37  
38 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
38 >    /**
39 >     * Priority queue represented as a balanced binary heap: the two children
40 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
41 >     * ordered by comparator, or by the elements' natural ordering, if
42 >     * comparator is null:  For each node n in the heap and each descendant d
43 >     * of n, n <= d.
44 >     *
45 >     * The element with the lowest value is in queue[1], assuming the queue is
46 >     * nonempty.  (A one-based array is used in preference to the traditional
47 >     * zero-based array to simplify parent and child calculations.)
48 >     *
49 >     * queue.length must be >= 2, even if size == 0.
50 >     */
51 >    private transient E[] queue;
52  
53 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
53 >    /**
54 >     * The number of elements in the priority queue.
55 >     */
56 >    private int size = 0;
57  
58 <    public boolean add(E x) {
59 <        return false;
60 <    }
61 <    public boolean offer(E x) {
62 <        return false;
63 <    }
64 <    public boolean remove(Object x) {
65 <        return false;
58 >    /**
59 >     * The comparator, or null if priority queue uses elements'
60 >     * natural ordering.
61 >     */
62 >    private final Comparator<E> comparator;
63 >
64 >    /**
65 >     * The number of times this priority queue has been
66 >     * <i>structurally modified</i>.  See AbstractList for gory details.
67 >     */
68 >    private transient int modCount = 0;
69 >
70 >    /**
71 >     * Create a new priority queue with the default initial capacity
72 >     * (11) that orders its elements according to their natural
73 >     * ordering (using <tt>Comparable</tt>.)
74 >     */
75 >    public PriorityQueue() {
76 >        this(DEFAULT_INITIAL_CAPACITY);
77      }
78  
79 <    public E remove() {
80 <        return null;
79 >    /**
80 >     * Create a new priority queue with the specified initial capacity
81 >     * that orders its elements according to their natural ordering
82 >     * (using <tt>Comparable</tt>.)
83 >     *
84 >     * @param initialCapacity the initial capacity for this priority queue.
85 >     */
86 >    public PriorityQueue(int initialCapacity) {
87 >        this(initialCapacity, null);
88      }
89 <    public Iterator<E> iterator() {
90 <      return null;
89 >
90 >    /**
91 >     * Create a new priority queue with the specified initial capacity (11)
92 >     * that orders its elements according to the specified comparator.
93 >     *
94 >     * @param initialCapacity the initial capacity for this priority queue.
95 >     * @param comparator the comparator used to order this priority queue.
96 >     */
97 >    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
98 >        if (initialCapacity < 1)
99 >            initialCapacity = 1;
100 >        queue = (E[]) new Object[initialCapacity + 1];
101 >        this.comparator = comparator;
102      }
103  
104 <    public E element() {
105 <        return null;
104 >    /**
105 >     * Create a new priority queue containing the elements in the specified
106 >     * collection.  The priority queue has an initial capacity of 110% of the
107 >     * size of the specified collection. If the specified collection
108 >     * implements the {@link Sorted} interface, the priority queue will be
109 >     * sorted according to the same comparator, or according to its elements'
110 >     * natural order if the collection is sorted according to its elements'
111 >     * natural order.  If the specified collection does not implement
112 >     * <tt>Sorted</tt>, the priority queue is ordered according to
113 >     * its elements' natural order.
114 >     *
115 >     * @param initialElements the collection whose elements are to be placed
116 >     *        into this priority queue.
117 >     * @throws ClassCastException if elements of the specified collection
118 >     *         cannot be compared to one another according to the priority
119 >     *         queue's ordering.
120 >     * @throws NullPointerException if the specified collection or an
121 >     *         element of the specified collection is <tt>null</tt>.
122 >     */
123 >    public PriorityQueue(Collection<E> initialElements) {
124 >        int sz = initialElements.size();
125 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
126 >                                            Integer.MAX_VALUE - 1);
127 >        if (initialCapacity < 1)
128 >            initialCapacity = 1;
129 >        queue = (E[]) new Object[initialCapacity + 1];
130 >
131 >
132 >        if (initialElements instanceof Sorted) {
133 >            comparator = ((Sorted)initialElements).comparator();
134 >            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
135 >                queue[++size] = i.next();
136 >        } else {
137 >            comparator = null;
138 >            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
139 >                add(i.next());
140 >        }
141      }
142 +
143 +    // Queue Methods
144 +
145 +    /**
146 +     * Remove and return the minimal element from this priority queue
147 +     * if it contains one or more elements, otherwise return
148 +     * <tt>null</tt>.  The term <i>minimal</i> is defined according to
149 +     * this priority queue's order.
150 +     *
151 +     * @return the minimal element from this priority queue if it contains
152 +     *         one or more elements, otherwise <tt>null</tt>.
153 +     */
154      public E poll() {
155 <        return null;
155 >        if (size == 0)
156 >            return null;
157 >        return remove(1);
158      }
159 +
160 +    /**
161 +     * Return, but do not remove, the minimal element from the
162 +     * priority queue, or return <tt>null</tt> if the queue is empty.
163 +     * The term <i>minimal</i> is defined according to this priority
164 +     * queue's order.  This method returns the same object reference
165 +     * that would be returned by by the <tt>poll</tt> method.  The two
166 +     * methods differ in that this method does not remove the element
167 +     * from the priority queue.
168 +     *
169 +     * @return the minimal element from this priority queue if it contains
170 +     *         one or more elements, otherwise <tt>null</tt>.
171 +     */
172      public E peek() {
173 <        return null;
173 >        return queue[1];
174      }
175  
176 <    public boolean isEmpty() {
176 >    // Collection Methods
177 >
178 >    /**
179 >     * Removes a single instance of the specified element from this priority
180 >     * queue, if it is present.  Returns true if this collection contained the
181 >     * specified element (or equivalently, if this collection changed as a
182 >     * result of the call).
183 >     *
184 >     * @param element the element to be removed from this collection,
185 >     * if present.
186 >     * @return <tt>true</tt> if this collection changed as a result of the
187 >     *         call
188 >     * @throws ClassCastException if the specified element cannot be compared
189 >     *            with elements currently in the priority queue according
190 >     *            to the priority queue's ordering.
191 >     * @throws NullPointerException if the specified element is null.
192 >     */
193 >    public boolean remove(Object element) {
194 >        if (element == null)
195 >            throw new NullPointerException();
196 >
197 >        if (comparator == null) {
198 >            for (int i = 1; i <= size; i++) {
199 >                if (((Comparable)queue[i]).compareTo(element) == 0) {
200 >                    remove(i);
201 >                    return true;
202 >                }
203 >            }
204 >        } else {
205 >            for (int i = 1; i <= size; i++) {
206 >                if (comparator.compare(queue[i], (E) element) == 0) {
207 >                    remove(i);
208 >                    return true;
209 >                }
210 >            }
211 >        }
212          return false;
213      }
214 +
215 +    /**
216 +     * Returns an iterator over the elements in this priority queue.  The
217 +     * elements of the priority queue will be returned by this iterator in the
218 +     * order specified by the queue, which is to say the order they would be
219 +     * returned by repeated calls to <tt>poll</tt>.
220 +     *
221 +     * @return an <tt>Iterator</tt> over the elements in this priority queue.
222 +     */
223 +    public Iterator<E> iterator() {
224 +        return new Itr();
225 +    }
226 +
227 +    private class Itr implements Iterator<E> {
228 +        /**
229 +         * Index (into queue array) of element to be returned by
230 +         * subsequent call to next.
231 +         */
232 +        private int cursor = 1;
233 +
234 +        /**
235 +         * Index of element returned by most recent call to next or
236 +         * previous.  Reset to 0 if this element is deleted by a call
237 +         * to remove.
238 +         */
239 +        private int lastRet = 0;
240 +
241 +        /**
242 +         * The modCount value that the iterator believes that the backing
243 +         * List should have.  If this expectation is violated, the iterator
244 +         * has detected concurrent modification.
245 +         */
246 +        private int expectedModCount = modCount;
247 +
248 +        public boolean hasNext() {
249 +            return cursor <= size;
250 +        }
251 +
252 +        public E next() {
253 +            checkForComodification();
254 +            if (cursor > size)
255 +                throw new NoSuchElementException();
256 +            E result = queue[cursor];
257 +            lastRet = cursor++;
258 +            return result;
259 +        }
260 +
261 +        public void remove() {
262 +            if (lastRet == 0)
263 +                throw new IllegalStateException();
264 +            checkForComodification();
265 +
266 +            PriorityQueue.this.remove(lastRet);
267 +            if (lastRet < cursor)
268 +                cursor--;
269 +            lastRet = 0;
270 +            expectedModCount = modCount;
271 +        }
272 +
273 +        final void checkForComodification() {
274 +            if (modCount != expectedModCount)
275 +                throw new ConcurrentModificationException();
276 +        }
277 +    }
278 +
279 +    /**
280 +     * Returns the number of elements in this priority queue.
281 +     *
282 +     * @return the number of elements in this priority queue.
283 +     */
284      public int size() {
285 <        return 0;
285 >        return size;
286 >    }
287 >
288 >    /**
289 >     * Add the specified element to this priority queue.
290 >     *
291 >     * @param element the element to add.
292 >     * @return true
293 >     * @throws ClassCastException if the specified element cannot be compared
294 >     *            with elements currently in the priority queue according
295 >     *            to the priority queue's ordering.
296 >     * @throws NullPointerException if the specified element is null.
297 >     */
298 >    public boolean offer(E element) {
299 >        if (element == null)
300 >            throw new NullPointerException();
301 >        modCount++;
302 >        ++size;
303 >
304 >        // Grow backing store if necessary
305 >        while (size >= queue.length) {
306 >            E[] newQueue = (E[]) new Object[2 * queue.length];
307 >            System.arraycopy(queue, 0, newQueue, 0, queue.length);
308 >            queue = newQueue;
309 >        }
310 >
311 >        queue[size] = element;
312 >        fixUp(size);
313 >        return true;
314 >    }
315 >
316 >    /**
317 >     * Remove all elements from the priority queue.
318 >     */
319 >    public void clear() {
320 >        modCount++;
321 >
322 >        // Null out element references to prevent memory leak
323 >        for (int i=1; i<=size; i++)
324 >            queue[i] = null;
325 >
326 >        size = 0;
327 >    }
328 >
329 >    /**
330 >     * Removes and returns the ith element from queue.  Recall
331 >     * that queue is one-based, so 1 <= i <= size.
332 >     *
333 >     * XXX: Could further special-case i==size, but is it worth it?
334 >     * XXX: Could special-case i==0, but is it worth it?
335 >     */
336 >    private E remove(int i) {
337 >        assert i <= size;
338 >        modCount++;
339 >
340 >        E result = queue[i];
341 >        queue[i] = queue[size];
342 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
343 >        if (i <= size)
344 >            fixDown(i);
345 >        return result;
346 >    }
347 >
348 >    /**
349 >     * Establishes the heap invariant (described above) assuming the heap
350 >     * satisfies the invariant except possibly for the leaf-node indexed by k
351 >     * (which may have a nextExecutionTime less than its parent's).
352 >     *
353 >     * This method functions by "promoting" queue[k] up the hierarchy
354 >     * (by swapping it with its parent) repeatedly until queue[k]
355 >     * is greater than or equal to its parent.
356 >     */
357 >    private void fixUp(int k) {
358 >        if (comparator == null) {
359 >            while (k > 1) {
360 >                int j = k >> 1;
361 >                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
362 >                    break;
363 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
364 >                k = j;
365 >            }
366 >        } else {
367 >            while (k > 1) {
368 >                int j = k >> 1;
369 >                if (comparator.compare(queue[j], queue[k]) <= 0)
370 >                    break;
371 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
372 >                k = j;
373 >            }
374 >        }
375      }
376 <    public Object[] toArray() {
377 <        return null;
376 >
377 >    /**
378 >     * Establishes the heap invariant (described above) in the subtree
379 >     * rooted at k, which is assumed to satisfy the heap invariant except
380 >     * possibly for node k itself (which may be greater than its children).
381 >     *
382 >     * This method functions by "demoting" queue[k] down the hierarchy
383 >     * (by swapping it with its smaller child) repeatedly until queue[k]
384 >     * is less than or equal to its children.
385 >     */
386 >    private void fixDown(int k) {
387 >        int j;
388 >        if (comparator == null) {
389 >            while ((j = k << 1) <= size) {
390 >                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
391 >                    j++; // j indexes smallest kid
392 >                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
393 >                    break;
394 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
395 >                k = j;
396 >            }
397 >        } else {
398 >            while ((j = k << 1) <= size) {
399 >                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
400 >                    j++; // j indexes smallest kid
401 >                if (comparator.compare(queue[k], queue[j]) <= 0)
402 >                    break;
403 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
404 >                k = j;
405 >            }
406 >        }
407 >    }
408 >
409 >    /**
410 >     * Returns the comparator associated with this priority queue, or
411 >     * <tt>null</tt> if it uses its elements' natural ordering.
412 >     *
413 >     * @return the comparator associated with this priority queue, or
414 >     *         <tt>null</tt> if it uses its elements' natural ordering.
415 >     */
416 >    public Comparator comparator() {
417 >        return comparator;
418      }
419  
420 <    public <T> T[] toArray(T[] array) {
421 <        return null;
420 >    /**
421 >     * Save the state of the instance to a stream (that
422 >     * is, serialize it).
423 >     *
424 >     * @serialData The length of the array backing the instance is
425 >     * emitted (int), followed by all of its elements (each an
426 >     * <tt>Object</tt>) in the proper order.
427 >     * @param s the stream
428 >     */
429 >    private synchronized void writeObject(java.io.ObjectOutputStream s)
430 >        throws java.io.IOException{
431 >        // Write out element count, and any hidden stuff
432 >        s.defaultWriteObject();
433 >
434 >        // Write out array length
435 >        s.writeInt(queue.length);
436 >
437 >        // Write out all elements in the proper order.
438 >        for (int i=0; i<size; i++)
439 >            s.writeObject(queue[i]);
440 >    }
441 >
442 >    /**
443 >     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
444 >     * deserialize it).
445 >     * @param s the stream
446 >     */
447 >    private synchronized void readObject(java.io.ObjectInputStream s)
448 >        throws java.io.IOException, ClassNotFoundException {
449 >        // Read in size, and any hidden stuff
450 >        s.defaultReadObject();
451 >
452 >        // Read in array length and allocate array
453 >        int arrayLength = s.readInt();
454 >        queue = (E[]) new Object[arrayLength];
455 >
456 >        // Read in all elements in the proper order.
457 >        for (int i=0; i<size; i++)
458 >            queue[i] = (E)s.readObject();
459      }
460  
461   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines