ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.109 by jsr166, Wed Jun 1 16:08:04 2016 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 + *
5 + * This code is free software; you can redistribute it and/or modify it
6 + * under the terms of the GNU General Public License version 2 only, as
7 + * published by the Free Software Foundation.  Oracle designates this
8 + * particular file as subject to the "Classpath" exception as provided
9 + * by Oracle in the LICENSE file that accompanied this code.
10 + *
11 + * This code is distributed in the hope that it will be useful, but WITHOUT
12 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 + * version 2 for more details (a copy is included in the LICENSE file that
15 + * accompanied this code).
16 + *
17 + * You should have received a copy of the GNU General Public License version
18 + * 2 along with this work; if not, write to the Free Software Foundation,
19 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 + *
21 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 + * or visit www.oracle.com if you need additional information or have any
23 + * questions.
24 + */
25 +
26   package java.util;
27  
28 < import java.util.*;
28 > import java.util.function.Consumer;
29  
30   /**
31 < * An unbounded (resizable) priority queue based on a priority
32 < * heap.The take operation returns the least element with respect to
33 < * the given ordering. (If more than one element is tied for least
34 < * value, one of them is arbitrarily chosen to be returned -- no
35 < * guarantees are made for ordering across ties.) Ordering follows the
36 < * java.util.Collection conventions: Either the elements must be
37 < * Comparable, or a Comparator must be supplied. Comparison failures
38 < * throw ClassCastExceptions during insertions and extractions.
39 < **/
40 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
41 <    public PriorityQueue(int initialCapacity) {}
42 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
31 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 > * The elements of the priority queue are ordered according to their
33 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 > * provided at queue construction time, depending on which constructor is
35 > * used.  A priority queue does not permit {@code null} elements.
36 > * A priority queue relying on natural ordering also does not permit
37 > * insertion of non-comparable objects (doing so may result in
38 > * {@code ClassCastException}).
39 > *
40 > * <p>The <em>head</em> of this queue is the <em>least</em> element
41 > * with respect to the specified ordering.  If multiple elements are
42 > * tied for least value, the head is one of those elements -- ties are
43 > * broken arbitrarily.  The queue retrieval operations {@code poll},
44 > * {@code remove}, {@code peek}, and {@code element} access the
45 > * element at the head of the queue.
46 > *
47 > * <p>A priority queue is unbounded, but has an internal
48 > * <i>capacity</i> governing the size of an array used to store the
49 > * elements on the queue.  It is always at least as large as the queue
50 > * size.  As elements are added to a priority queue, its capacity
51 > * grows automatically.  The details of the growth policy are not
52 > * specified.
53 > *
54 > * <p>This class and its iterator implement all of the
55 > * <em>optional</em> methods of the {@link Collection} and {@link
56 > * Iterator} interfaces.  The Iterator provided in method {@link
57 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
58 > * the priority queue in any particular order. If you need ordered
59 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
60 > *
61 > * <p><strong>Note that this implementation is not synchronized.</strong>
62 > * Multiple threads should not access a {@code PriorityQueue}
63 > * instance concurrently if any of the threads modifies the queue.
64 > * Instead, use the thread-safe {@link
65 > * java.util.concurrent.PriorityBlockingQueue} class.
66 > *
67 > * <p>Implementation note: this implementation provides
68 > * O(log(n)) time for the enqueuing and dequeuing methods
69 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
70 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
71 > * methods; and constant time for the retrieval methods
72 > * ({@code peek}, {@code element}, and {@code size}).
73 > *
74 > * <p>This class is a member of the
75 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
76 > * Java Collections Framework</a>.
77 > *
78 > * @since 1.5
79 > * @author Josh Bloch, Doug Lea
80 > * @param <E> the type of elements held in this queue
81 > */
82 > public class PriorityQueue<E> extends AbstractQueue<E>
83 >    implements java.io.Serializable {
84  
85 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
85 >    private static final long serialVersionUID = -7720805057305804111L;
86  
87 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
87 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
88  
89 <    public boolean add(E x) {
90 <        return false;
89 >    /**
90 >     * Priority queue represented as a balanced binary heap: the two
91 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
92 >     * priority queue is ordered by comparator, or by the elements'
93 >     * natural ordering, if comparator is null: For each node n in the
94 >     * heap and each descendant d of n, n <= d.  The element with the
95 >     * lowest value is in queue[0], assuming the queue is nonempty.
96 >     */
97 >    transient Object[] queue; // non-private to simplify nested class access
98 >
99 >    /**
100 >     * The number of elements in the priority queue.
101 >     */
102 >    int size;
103 >
104 >    /**
105 >     * The comparator, or null if priority queue uses elements'
106 >     * natural ordering.
107 >     */
108 >    private final Comparator<? super E> comparator;
109 >
110 >    /**
111 >     * The number of times this priority queue has been
112 >     * <i>structurally modified</i>.  See AbstractList for gory details.
113 >     */
114 >    transient int modCount;     // non-private to simplify nested class access
115 >
116 >    /**
117 >     * Creates a {@code PriorityQueue} with the default initial
118 >     * capacity (11) that orders its elements according to their
119 >     * {@linkplain Comparable natural ordering}.
120 >     */
121 >    public PriorityQueue() {
122 >        this(DEFAULT_INITIAL_CAPACITY, null);
123      }
124 <    public boolean offer(E x) {
125 <        return false;
124 >
125 >    /**
126 >     * Creates a {@code PriorityQueue} with the specified initial
127 >     * capacity that orders its elements according to their
128 >     * {@linkplain Comparable natural ordering}.
129 >     *
130 >     * @param initialCapacity the initial capacity for this priority queue
131 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
132 >     *         than 1
133 >     */
134 >    public PriorityQueue(int initialCapacity) {
135 >        this(initialCapacity, null);
136      }
137 <    public boolean remove(Object x) {
138 <        return false;
137 >
138 >    /**
139 >     * Creates a {@code PriorityQueue} with the default initial capacity and
140 >     * whose elements are ordered according to the specified comparator.
141 >     *
142 >     * @param  comparator the comparator that will be used to order this
143 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
144 >     *         natural ordering} of the elements will be used.
145 >     * @since 1.8
146 >     */
147 >    public PriorityQueue(Comparator<? super E> comparator) {
148 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
149      }
150  
151 <    public E remove() {
152 <        return null;
151 >    /**
152 >     * Creates a {@code PriorityQueue} with the specified initial capacity
153 >     * that orders its elements according to the specified comparator.
154 >     *
155 >     * @param  initialCapacity the initial capacity for this priority queue
156 >     * @param  comparator the comparator that will be used to order this
157 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
158 >     *         natural ordering} of the elements will be used.
159 >     * @throws IllegalArgumentException if {@code initialCapacity} is
160 >     *         less than 1
161 >     */
162 >    public PriorityQueue(int initialCapacity,
163 >                         Comparator<? super E> comparator) {
164 >        // Note: This restriction of at least one is not actually needed,
165 >        // but continues for 1.5 compatibility
166 >        if (initialCapacity < 1)
167 >            throw new IllegalArgumentException();
168 >        this.queue = new Object[initialCapacity];
169 >        this.comparator = comparator;
170      }
171 <    public Iterator<E> iterator() {
172 <      return null;
171 >
172 >    /**
173 >     * Creates a {@code PriorityQueue} containing the elements in the
174 >     * specified collection.  If the specified collection is an instance of
175 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
176 >     * priority queue will be ordered according to the same ordering.
177 >     * Otherwise, this priority queue will be ordered according to the
178 >     * {@linkplain Comparable natural ordering} of its elements.
179 >     *
180 >     * @param  c the collection whose elements are to be placed
181 >     *         into this priority queue
182 >     * @throws ClassCastException if elements of the specified collection
183 >     *         cannot be compared to one another according to the priority
184 >     *         queue's ordering
185 >     * @throws NullPointerException if the specified collection or any
186 >     *         of its elements are null
187 >     */
188 >    @SuppressWarnings("unchecked")
189 >    public PriorityQueue(Collection<? extends E> c) {
190 >        if (c instanceof SortedSet<?>) {
191 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
192 >            this.comparator = (Comparator<? super E>) ss.comparator();
193 >            initElementsFromCollection(ss);
194 >        }
195 >        else if (c instanceof PriorityQueue<?>) {
196 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
197 >            this.comparator = (Comparator<? super E>) pq.comparator();
198 >            initFromPriorityQueue(pq);
199 >        }
200 >        else {
201 >            this.comparator = null;
202 >            initFromCollection(c);
203 >        }
204      }
205  
206 <    public E element() {
207 <        return null;
206 >    /**
207 >     * Creates a {@code PriorityQueue} containing the elements in the
208 >     * specified priority queue.  This priority queue will be
209 >     * ordered according to the same ordering as the given priority
210 >     * queue.
211 >     *
212 >     * @param  c the priority queue whose elements are to be placed
213 >     *         into this priority queue
214 >     * @throws ClassCastException if elements of {@code c} cannot be
215 >     *         compared to one another according to {@code c}'s
216 >     *         ordering
217 >     * @throws NullPointerException if the specified priority queue or any
218 >     *         of its elements are null
219 >     */
220 >    @SuppressWarnings("unchecked")
221 >    public PriorityQueue(PriorityQueue<? extends E> c) {
222 >        this.comparator = (Comparator<? super E>) c.comparator();
223 >        initFromPriorityQueue(c);
224      }
225 <    public E poll() {
226 <        return null;
225 >
226 >    /**
227 >     * Creates a {@code PriorityQueue} containing the elements in the
228 >     * specified sorted set.   This priority queue will be ordered
229 >     * according to the same ordering as the given sorted set.
230 >     *
231 >     * @param  c the sorted set whose elements are to be placed
232 >     *         into this priority queue
233 >     * @throws ClassCastException if elements of the specified sorted
234 >     *         set cannot be compared to one another according to the
235 >     *         sorted set's ordering
236 >     * @throws NullPointerException if the specified sorted set or any
237 >     *         of its elements are null
238 >     */
239 >    @SuppressWarnings("unchecked")
240 >    public PriorityQueue(SortedSet<? extends E> c) {
241 >        this.comparator = (Comparator<? super E>) c.comparator();
242 >        initElementsFromCollection(c);
243 >    }
244 >
245 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
246 >        if (c.getClass() == PriorityQueue.class) {
247 >            this.queue = c.toArray();
248 >            this.size = c.size();
249 >        } else {
250 >            initFromCollection(c);
251 >        }
252 >    }
253 >
254 >    private void initElementsFromCollection(Collection<? extends E> c) {
255 >        Object[] a = c.toArray();
256 >        // If c.toArray incorrectly doesn't return Object[], copy it.
257 >        if (a.getClass() != Object[].class)
258 >            a = Arrays.copyOf(a, a.length, Object[].class);
259 >        int len = a.length;
260 >        if (len == 1 || this.comparator != null)
261 >            for (Object e : a)
262 >                if (e == null)
263 >                    throw new NullPointerException();
264 >        this.queue = a;
265 >        this.size = a.length;
266 >    }
267 >
268 >    /**
269 >     * Initializes queue array with elements from the given Collection.
270 >     *
271 >     * @param c the collection
272 >     */
273 >    private void initFromCollection(Collection<? extends E> c) {
274 >        initElementsFromCollection(c);
275 >        heapify();
276 >    }
277 >
278 >    /**
279 >     * The maximum size of array to allocate.
280 >     * Some VMs reserve some header words in an array.
281 >     * Attempts to allocate larger arrays may result in
282 >     * OutOfMemoryError: Requested array size exceeds VM limit
283 >     */
284 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
285 >
286 >    /**
287 >     * Increases the capacity of the array.
288 >     *
289 >     * @param minCapacity the desired minimum capacity
290 >     */
291 >    private void grow(int minCapacity) {
292 >        int oldCapacity = queue.length;
293 >        // Double size if small; else grow by 50%
294 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
295 >                                         (oldCapacity + 2) :
296 >                                         (oldCapacity >> 1));
297 >        // overflow-conscious code
298 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
299 >            newCapacity = hugeCapacity(minCapacity);
300 >        queue = Arrays.copyOf(queue, newCapacity);
301 >    }
302 >
303 >    private static int hugeCapacity(int minCapacity) {
304 >        if (minCapacity < 0) // overflow
305 >            throw new OutOfMemoryError();
306 >        return (minCapacity > MAX_ARRAY_SIZE) ?
307 >            Integer.MAX_VALUE :
308 >            MAX_ARRAY_SIZE;
309 >    }
310 >
311 >    /**
312 >     * Inserts the specified element into this priority queue.
313 >     *
314 >     * @return {@code true} (as specified by {@link Collection#add})
315 >     * @throws ClassCastException if the specified element cannot be
316 >     *         compared with elements currently in this priority queue
317 >     *         according to the priority queue's ordering
318 >     * @throws NullPointerException if the specified element is null
319 >     */
320 >    public boolean add(E e) {
321 >        return offer(e);
322 >    }
323 >
324 >    /**
325 >     * Inserts the specified element into this priority queue.
326 >     *
327 >     * @return {@code true} (as specified by {@link Queue#offer})
328 >     * @throws ClassCastException if the specified element cannot be
329 >     *         compared with elements currently in this priority queue
330 >     *         according to the priority queue's ordering
331 >     * @throws NullPointerException if the specified element is null
332 >     */
333 >    public boolean offer(E e) {
334 >        if (e == null)
335 >            throw new NullPointerException();
336 >        modCount++;
337 >        int i = size;
338 >        if (i >= queue.length)
339 >            grow(i + 1);
340 >        siftUp(i, e);
341 >        size = i + 1;
342 >        return true;
343      }
344 +
345 +    @SuppressWarnings("unchecked")
346      public E peek() {
347 <        return null;
347 >        return (size == 0) ? null : (E) queue[0];
348 >    }
349 >
350 >    private int indexOf(Object o) {
351 >        if (o != null) {
352 >            for (int i = 0; i < size; i++)
353 >                if (o.equals(queue[i]))
354 >                    return i;
355 >        }
356 >        return -1;
357 >    }
358 >
359 >    /**
360 >     * Removes a single instance of the specified element from this queue,
361 >     * if it is present.  More formally, removes an element {@code e} such
362 >     * that {@code o.equals(e)}, if this queue contains one or more such
363 >     * elements.  Returns {@code true} if and only if this queue contained
364 >     * the specified element (or equivalently, if this queue changed as a
365 >     * result of the call).
366 >     *
367 >     * @param o element to be removed from this queue, if present
368 >     * @return {@code true} if this queue changed as a result of the call
369 >     */
370 >    public boolean remove(Object o) {
371 >        int i = indexOf(o);
372 >        if (i == -1)
373 >            return false;
374 >        else {
375 >            removeAt(i);
376 >            return true;
377 >        }
378      }
379  
380 <    public boolean isEmpty() {
380 >    /**
381 >     * Version of remove using reference equality, not equals.
382 >     * Needed by iterator.remove.
383 >     *
384 >     * @param o element to be removed from this queue, if present
385 >     * @return {@code true} if removed
386 >     */
387 >    boolean removeEq(Object o) {
388 >        for (int i = 0; i < size; i++) {
389 >            if (o == queue[i]) {
390 >                removeAt(i);
391 >                return true;
392 >            }
393 >        }
394          return false;
395      }
396 <    public int size() {
397 <        return 0;
396 >
397 >    /**
398 >     * Returns {@code true} if this queue contains the specified element.
399 >     * More formally, returns {@code true} if and only if this queue contains
400 >     * at least one element {@code e} such that {@code o.equals(e)}.
401 >     *
402 >     * @param o object to be checked for containment in this queue
403 >     * @return {@code true} if this queue contains the specified element
404 >     */
405 >    public boolean contains(Object o) {
406 >        return indexOf(o) >= 0;
407      }
408 +
409 +    /**
410 +     * Returns an array containing all of the elements in this queue.
411 +     * The elements are in no particular order.
412 +     *
413 +     * <p>The returned array will be "safe" in that no references to it are
414 +     * maintained by this queue.  (In other words, this method must allocate
415 +     * a new array).  The caller is thus free to modify the returned array.
416 +     *
417 +     * <p>This method acts as bridge between array-based and collection-based
418 +     * APIs.
419 +     *
420 +     * @return an array containing all of the elements in this queue
421 +     */
422      public Object[] toArray() {
423 <        return null;
423 >        return Arrays.copyOf(queue, size);
424 >    }
425 >
426 >    /**
427 >     * Returns an array containing all of the elements in this queue; the
428 >     * runtime type of the returned array is that of the specified array.
429 >     * The returned array elements are in no particular order.
430 >     * If the queue fits in the specified array, it is returned therein.
431 >     * Otherwise, a new array is allocated with the runtime type of the
432 >     * specified array and the size of this queue.
433 >     *
434 >     * <p>If the queue fits in the specified array with room to spare
435 >     * (i.e., the array has more elements than the queue), the element in
436 >     * the array immediately following the end of the collection is set to
437 >     * {@code null}.
438 >     *
439 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
440 >     * array-based and collection-based APIs.  Further, this method allows
441 >     * precise control over the runtime type of the output array, and may,
442 >     * under certain circumstances, be used to save allocation costs.
443 >     *
444 >     * <p>Suppose {@code x} is a queue known to contain only strings.
445 >     * The following code can be used to dump the queue into a newly
446 >     * allocated array of {@code String}:
447 >     *
448 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
449 >     *
450 >     * Note that {@code toArray(new Object[0])} is identical in function to
451 >     * {@code toArray()}.
452 >     *
453 >     * @param a the array into which the elements of the queue are to
454 >     *          be stored, if it is big enough; otherwise, a new array of the
455 >     *          same runtime type is allocated for this purpose.
456 >     * @return an array containing all of the elements in this queue
457 >     * @throws ArrayStoreException if the runtime type of the specified array
458 >     *         is not a supertype of the runtime type of every element in
459 >     *         this queue
460 >     * @throws NullPointerException if the specified array is null
461 >     */
462 >    @SuppressWarnings("unchecked")
463 >    public <T> T[] toArray(T[] a) {
464 >        final int size = this.size;
465 >        if (a.length < size)
466 >            // Make a new array of a's runtime type, but my contents:
467 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
468 >        System.arraycopy(queue, 0, a, 0, size);
469 >        if (a.length > size)
470 >            a[size] = null;
471 >        return a;
472 >    }
473 >
474 >    /**
475 >     * Returns an iterator over the elements in this queue. The iterator
476 >     * does not return the elements in any particular order.
477 >     *
478 >     * @return an iterator over the elements in this queue
479 >     */
480 >    public Iterator<E> iterator() {
481 >        return new Itr();
482 >    }
483 >
484 >    private final class Itr implements Iterator<E> {
485 >        /**
486 >         * Index (into queue array) of element to be returned by
487 >         * subsequent call to next.
488 >         */
489 >        private int cursor;
490 >
491 >        /**
492 >         * Index of element returned by most recent call to next,
493 >         * unless that element came from the forgetMeNot list.
494 >         * Set to -1 if element is deleted by a call to remove.
495 >         */
496 >        private int lastRet = -1;
497 >
498 >        /**
499 >         * A queue of elements that were moved from the unvisited portion of
500 >         * the heap into the visited portion as a result of "unlucky" element
501 >         * removals during the iteration.  (Unlucky element removals are those
502 >         * that require a siftup instead of a siftdown.)  We must visit all of
503 >         * the elements in this list to complete the iteration.  We do this
504 >         * after we've completed the "normal" iteration.
505 >         *
506 >         * We expect that most iterations, even those involving removals,
507 >         * will not need to store elements in this field.
508 >         */
509 >        private ArrayDeque<E> forgetMeNot;
510 >
511 >        /**
512 >         * Element returned by the most recent call to next iff that
513 >         * element was drawn from the forgetMeNot list.
514 >         */
515 >        private E lastRetElt;
516 >
517 >        /**
518 >         * The modCount value that the iterator believes that the backing
519 >         * Queue should have.  If this expectation is violated, the iterator
520 >         * has detected concurrent modification.
521 >         */
522 >        private int expectedModCount = modCount;
523 >
524 >        public boolean hasNext() {
525 >            return cursor < size ||
526 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
527 >        }
528 >
529 >        @SuppressWarnings("unchecked")
530 >        public E next() {
531 >            if (expectedModCount != modCount)
532 >                throw new ConcurrentModificationException();
533 >            if (cursor < size)
534 >                return (E) queue[lastRet = cursor++];
535 >            if (forgetMeNot != null) {
536 >                lastRet = -1;
537 >                lastRetElt = forgetMeNot.poll();
538 >                if (lastRetElt != null)
539 >                    return lastRetElt;
540 >            }
541 >            throw new NoSuchElementException();
542 >        }
543 >
544 >        public void remove() {
545 >            if (expectedModCount != modCount)
546 >                throw new ConcurrentModificationException();
547 >            if (lastRet != -1) {
548 >                E moved = PriorityQueue.this.removeAt(lastRet);
549 >                lastRet = -1;
550 >                if (moved == null)
551 >                    cursor--;
552 >                else {
553 >                    if (forgetMeNot == null)
554 >                        forgetMeNot = new ArrayDeque<>();
555 >                    forgetMeNot.add(moved);
556 >                }
557 >            } else if (lastRetElt != null) {
558 >                PriorityQueue.this.removeEq(lastRetElt);
559 >                lastRetElt = null;
560 >            } else {
561 >                throw new IllegalStateException();
562 >            }
563 >            expectedModCount = modCount;
564 >        }
565      }
566  
567 <    public <T> T[] toArray(T[] array) {
567 >    public int size() {
568 >        return size;
569 >    }
570 >
571 >    /**
572 >     * Removes all of the elements from this priority queue.
573 >     * The queue will be empty after this call returns.
574 >     */
575 >    public void clear() {
576 >        modCount++;
577 >        for (int i = 0; i < size; i++)
578 >            queue[i] = null;
579 >        size = 0;
580 >    }
581 >
582 >    @SuppressWarnings("unchecked")
583 >    public E poll() {
584 >        if (size == 0)
585 >            return null;
586 >        int s = --size;
587 >        modCount++;
588 >        E result = (E) queue[0];
589 >        E x = (E) queue[s];
590 >        queue[s] = null;
591 >        if (s != 0)
592 >            siftDown(0, x);
593 >        return result;
594 >    }
595 >
596 >    /**
597 >     * Removes the ith element from queue.
598 >     *
599 >     * Normally this method leaves the elements at up to i-1,
600 >     * inclusive, untouched.  Under these circumstances, it returns
601 >     * null.  Occasionally, in order to maintain the heap invariant,
602 >     * it must swap a later element of the list with one earlier than
603 >     * i.  Under these circumstances, this method returns the element
604 >     * that was previously at the end of the list and is now at some
605 >     * position before i. This fact is used by iterator.remove so as to
606 >     * avoid missing traversing elements.
607 >     */
608 >    @SuppressWarnings("unchecked")
609 >    E removeAt(int i) {
610 >        // assert i >= 0 && i < size;
611 >        modCount++;
612 >        int s = --size;
613 >        if (s == i) // removed last element
614 >            queue[i] = null;
615 >        else {
616 >            E moved = (E) queue[s];
617 >            queue[s] = null;
618 >            siftDown(i, moved);
619 >            if (queue[i] == moved) {
620 >                siftUp(i, moved);
621 >                if (queue[i] != moved)
622 >                    return moved;
623 >            }
624 >        }
625          return null;
626      }
627  
628 +    /**
629 +     * Inserts item x at position k, maintaining heap invariant by
630 +     * promoting x up the tree until it is greater than or equal to
631 +     * its parent, or is the root.
632 +     *
633 +     * To simplify and speed up coercions and comparisons. the
634 +     * Comparable and Comparator versions are separated into different
635 +     * methods that are otherwise identical. (Similarly for siftDown.)
636 +     *
637 +     * @param k the position to fill
638 +     * @param x the item to insert
639 +     */
640 +    private void siftUp(int k, E x) {
641 +        if (comparator != null)
642 +            siftUpUsingComparator(k, x);
643 +        else
644 +            siftUpComparable(k, x);
645 +    }
646 +
647 +    @SuppressWarnings("unchecked")
648 +    private void siftUpComparable(int k, E x) {
649 +        Comparable<? super E> key = (Comparable<? super E>) x;
650 +        while (k > 0) {
651 +            int parent = (k - 1) >>> 1;
652 +            Object e = queue[parent];
653 +            if (key.compareTo((E) e) >= 0)
654 +                break;
655 +            queue[k] = e;
656 +            k = parent;
657 +        }
658 +        queue[k] = key;
659 +    }
660 +
661 +    @SuppressWarnings("unchecked")
662 +    private void siftUpUsingComparator(int k, E x) {
663 +        while (k > 0) {
664 +            int parent = (k - 1) >>> 1;
665 +            Object e = queue[parent];
666 +            if (comparator.compare(x, (E) e) >= 0)
667 +                break;
668 +            queue[k] = e;
669 +            k = parent;
670 +        }
671 +        queue[k] = x;
672 +    }
673 +
674 +    /**
675 +     * Inserts item x at position k, maintaining heap invariant by
676 +     * demoting x down the tree repeatedly until it is less than or
677 +     * equal to its children or is a leaf.
678 +     *
679 +     * @param k the position to fill
680 +     * @param x the item to insert
681 +     */
682 +    private void siftDown(int k, E x) {
683 +        if (comparator != null)
684 +            siftDownUsingComparator(k, x);
685 +        else
686 +            siftDownComparable(k, x);
687 +    }
688 +
689 +    @SuppressWarnings("unchecked")
690 +    private void siftDownComparable(int k, E x) {
691 +        Comparable<? super E> key = (Comparable<? super E>)x;
692 +        int half = size >>> 1;        // loop while a non-leaf
693 +        while (k < half) {
694 +            int child = (k << 1) + 1; // assume left child is least
695 +            Object c = queue[child];
696 +            int right = child + 1;
697 +            if (right < size &&
698 +                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
699 +                c = queue[child = right];
700 +            if (key.compareTo((E) c) <= 0)
701 +                break;
702 +            queue[k] = c;
703 +            k = child;
704 +        }
705 +        queue[k] = key;
706 +    }
707 +
708 +    @SuppressWarnings("unchecked")
709 +    private void siftDownUsingComparator(int k, E x) {
710 +        int half = size >>> 1;
711 +        while (k < half) {
712 +            int child = (k << 1) + 1;
713 +            Object c = queue[child];
714 +            int right = child + 1;
715 +            if (right < size &&
716 +                comparator.compare((E) c, (E) queue[right]) > 0)
717 +                c = queue[child = right];
718 +            if (comparator.compare(x, (E) c) <= 0)
719 +                break;
720 +            queue[k] = c;
721 +            k = child;
722 +        }
723 +        queue[k] = x;
724 +    }
725 +
726 +    /**
727 +     * Establishes the heap invariant (described above) in the entire tree,
728 +     * assuming nothing about the order of the elements prior to the call.
729 +     */
730 +    @SuppressWarnings("unchecked")
731 +    private void heapify() {
732 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
733 +            siftDown(i, (E) queue[i]);
734 +    }
735 +
736 +    /**
737 +     * Returns the comparator used to order the elements in this
738 +     * queue, or {@code null} if this queue is sorted according to
739 +     * the {@linkplain Comparable natural ordering} of its elements.
740 +     *
741 +     * @return the comparator used to order this queue, or
742 +     *         {@code null} if this queue is sorted according to the
743 +     *         natural ordering of its elements
744 +     */
745 +    public Comparator<? super E> comparator() {
746 +        return comparator;
747 +    }
748 +
749 +    /**
750 +     * Saves this queue to a stream (that is, serializes it).
751 +     *
752 +     * @serialData The length of the array backing the instance is
753 +     *             emitted (int), followed by all of its elements
754 +     *             (each an {@code Object}) in the proper order.
755 +     * @param s the stream
756 +     * @throws java.io.IOException if an I/O error occurs
757 +     */
758 +    private void writeObject(java.io.ObjectOutputStream s)
759 +        throws java.io.IOException {
760 +        // Write out element count, and any hidden stuff
761 +        s.defaultWriteObject();
762 +
763 +        // Write out array length, for compatibility with 1.5 version
764 +        s.writeInt(Math.max(2, size + 1));
765 +
766 +        // Write out all elements in the "proper order".
767 +        for (int i = 0; i < size; i++)
768 +            s.writeObject(queue[i]);
769 +    }
770 +
771 +    /**
772 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
773 +     * (that is, deserializes it).
774 +     *
775 +     * @param s the stream
776 +     * @throws ClassNotFoundException if the class of a serialized object
777 +     *         could not be found
778 +     * @throws java.io.IOException if an I/O error occurs
779 +     */
780 +    private void readObject(java.io.ObjectInputStream s)
781 +        throws java.io.IOException, ClassNotFoundException {
782 +        // Read in size, and any hidden stuff
783 +        s.defaultReadObject();
784 +
785 +        // Read in (and discard) array length
786 +        s.readInt();
787 +
788 +        queue = new Object[size];
789 +
790 +        // Read in all elements.
791 +        for (int i = 0; i < size; i++)
792 +            queue[i] = s.readObject();
793 +
794 +        // Elements are guaranteed to be in "proper order", but the
795 +        // spec has never explained what that might be.
796 +        heapify();
797 +    }
798 +
799 +    /**
800 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
801 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
802 +     * queue.
803 +     *
804 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
805 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
806 +     * Overriding implementations should document the reporting of additional
807 +     * characteristic values.
808 +     *
809 +     * @return a {@code Spliterator} over the elements in this queue
810 +     * @since 1.8
811 +     */
812 +    public final Spliterator<E> spliterator() {
813 +        return new PriorityQueueSpliterator<>(this, 0, -1, 0);
814 +    }
815 +
816 +    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
817 +        /*
818 +         * This is very similar to ArrayList Spliterator, except for
819 +         * extra null checks.
820 +         */
821 +        private final PriorityQueue<E> pq;
822 +        private int index;            // current index, modified on advance/split
823 +        private int fence;            // -1 until first use
824 +        private int expectedModCount; // initialized when fence set
825 +
826 +        /** Creates new spliterator covering the given range. */
827 +        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
828 +                                 int expectedModCount) {
829 +            this.pq = pq;
830 +            this.index = origin;
831 +            this.fence = fence;
832 +            this.expectedModCount = expectedModCount;
833 +        }
834 +
835 +        private int getFence() { // initialize fence to size on first use
836 +            int hi;
837 +            if ((hi = fence) < 0) {
838 +                expectedModCount = pq.modCount;
839 +                hi = fence = pq.size;
840 +            }
841 +            return hi;
842 +        }
843 +
844 +        public PriorityQueueSpliterator<E> trySplit() {
845 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 +            return (lo >= mid) ? null :
847 +                new PriorityQueueSpliterator<>(pq, lo, index = mid,
848 +                                               expectedModCount);
849 +        }
850 +
851 +        @SuppressWarnings("unchecked")
852 +        public void forEachRemaining(Consumer<? super E> action) {
853 +            int i, hi, mc; // hoist accesses and checks from loop
854 +            PriorityQueue<E> q; Object[] a;
855 +            if (action == null)
856 +                throw new NullPointerException();
857 +            if ((q = pq) != null && (a = q.queue) != null) {
858 +                if ((hi = fence) < 0) {
859 +                    mc = q.modCount;
860 +                    hi = q.size;
861 +                }
862 +                else
863 +                    mc = expectedModCount;
864 +                if ((i = index) >= 0 && (index = hi) <= a.length) {
865 +                    for (E e;; ++i) {
866 +                        if (i < hi) {
867 +                            if ((e = (E) a[i]) == null) // must be CME
868 +                                break;
869 +                            action.accept(e);
870 +                        }
871 +                        else if (q.modCount != mc)
872 +                            break;
873 +                        else
874 +                            return;
875 +                    }
876 +                }
877 +            }
878 +            throw new ConcurrentModificationException();
879 +        }
880 +
881 +        public boolean tryAdvance(Consumer<? super E> action) {
882 +            if (action == null)
883 +                throw new NullPointerException();
884 +            int hi = getFence(), lo = index;
885 +            if (lo >= 0 && lo < hi) {
886 +                index = lo + 1;
887 +                @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
888 +                if (e == null)
889 +                    throw new ConcurrentModificationException();
890 +                action.accept(e);
891 +                if (pq.modCount != expectedModCount)
892 +                    throw new ConcurrentModificationException();
893 +                return true;
894 +            }
895 +            return false;
896 +        }
897 +
898 +        public long estimateSize() {
899 +            return (long) (getFence() - index);
900 +        }
901 +
902 +        public int characteristics() {
903 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
904 +        }
905 +    }
906   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines