ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.125 by jsr166, Sun May 6 21:07:41 2018 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 + *
5 + * This code is free software; you can redistribute it and/or modify it
6 + * under the terms of the GNU General Public License version 2 only, as
7 + * published by the Free Software Foundation.  Oracle designates this
8 + * particular file as subject to the "Classpath" exception as provided
9 + * by Oracle in the LICENSE file that accompanied this code.
10 + *
11 + * This code is distributed in the hope that it will be useful, but WITHOUT
12 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 + * version 2 for more details (a copy is included in the LICENSE file that
15 + * accompanied this code).
16 + *
17 + * You should have received a copy of the GNU General Public License version
18 + * 2 along with this work; if not, write to the Free Software Foundation,
19 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 + *
21 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 + * or visit www.oracle.com if you need additional information or have any
23 + * questions.
24 + */
25 +
26   package java.util;
27  
28 < import java.util.*;
28 > import java.util.function.Consumer;
29 > import jdk.internal.misc.SharedSecrets;
30  
31   /**
32 < * An unbounded (resizable) priority queue based on a priority
33 < * heap.The take operation returns the least element with respect to
34 < * the given ordering. (If more than one element is tied for least
35 < * value, one of them is arbitrarily chosen to be returned -- no
36 < * guarantees are made for ordering across ties.) Ordering follows the
37 < * java.util.Collection conventions: Either the elements must be
38 < * Comparable, or a Comparator must be supplied. Comparison failures
39 < * throw ClassCastExceptions during insertions and extractions.
40 < **/
41 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
42 <    public PriorityQueue(int initialCapacity) {}
43 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
44 <
45 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
46 <
47 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
48 <
49 <    public boolean add(E x) {
50 <        return false;
32 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 > * The elements of the priority queue are ordered according to their
34 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 > * provided at queue construction time, depending on which constructor is
36 > * used.  A priority queue does not permit {@code null} elements.
37 > * A priority queue relying on natural ordering also does not permit
38 > * insertion of non-comparable objects (doing so may result in
39 > * {@code ClassCastException}).
40 > *
41 > * <p>The <em>head</em> of this queue is the <em>least</em> element
42 > * with respect to the specified ordering.  If multiple elements are
43 > * tied for least value, the head is one of those elements -- ties are
44 > * broken arbitrarily.  The queue retrieval operations {@code poll},
45 > * {@code remove}, {@code peek}, and {@code element} access the
46 > * element at the head of the queue.
47 > *
48 > * <p>A priority queue is unbounded, but has an internal
49 > * <i>capacity</i> governing the size of an array used to store the
50 > * elements on the queue.  It is always at least as large as the queue
51 > * size.  As elements are added to a priority queue, its capacity
52 > * grows automatically.  The details of the growth policy are not
53 > * specified.
54 > *
55 > * <p>This class and its iterator implement all of the
56 > * <em>optional</em> methods of the {@link Collection} and {@link
57 > * Iterator} interfaces.  The Iterator provided in method {@link
58 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 > * are <em>not</em> guaranteed to traverse the elements of
60 > * the priority queue in any particular order. If you need ordered
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 > *
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67 > * java.util.concurrent.PriorityBlockingQueue} class.
68 > *
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueuing and dequeuing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75 > *
76 > * <p>This class is a member of the
77 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78 > * Java Collections Framework</a>.
79 > *
80 > * @since 1.5
81 > * @author Josh Bloch, Doug Lea
82 > * @param <E> the type of elements held in this queue
83 > */
84 > @SuppressWarnings("unchecked")
85 > public class PriorityQueue<E> extends AbstractQueue<E>
86 >    implements java.io.Serializable {
87 >
88 >    private static final long serialVersionUID = -7720805057305804111L;
89 >
90 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
91 >
92 >    /**
93 >     * Priority queue represented as a balanced binary heap: the two
94 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
95 >     * priority queue is ordered by comparator, or by the elements'
96 >     * natural ordering, if comparator is null: For each node n in the
97 >     * heap and each descendant d of n, n <= d.  The element with the
98 >     * lowest value is in queue[0], assuming the queue is nonempty.
99 >     */
100 >    transient Object[] queue; // non-private to simplify nested class access
101 >
102 >    /**
103 >     * The number of elements in the priority queue.
104 >     */
105 >    int size;
106 >
107 >    /**
108 >     * The comparator, or null if priority queue uses elements'
109 >     * natural ordering.
110 >     */
111 >    private final Comparator<? super E> comparator;
112 >
113 >    /**
114 >     * The number of times this priority queue has been
115 >     * <i>structurally modified</i>.  See AbstractList for gory details.
116 >     */
117 >    transient int modCount;     // non-private to simplify nested class access
118 >
119 >    /**
120 >     * Creates a {@code PriorityQueue} with the default initial
121 >     * capacity (11) that orders its elements according to their
122 >     * {@linkplain Comparable natural ordering}.
123 >     */
124 >    public PriorityQueue() {
125 >        this(DEFAULT_INITIAL_CAPACITY, null);
126      }
127 <    public boolean offer(E x) {
128 <        return false;
127 >
128 >    /**
129 >     * Creates a {@code PriorityQueue} with the specified initial
130 >     * capacity that orders its elements according to their
131 >     * {@linkplain Comparable natural ordering}.
132 >     *
133 >     * @param initialCapacity the initial capacity for this priority queue
134 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
135 >     *         than 1
136 >     */
137 >    public PriorityQueue(int initialCapacity) {
138 >        this(initialCapacity, null);
139      }
140 <    public boolean remove(Object x) {
141 <        return false;
140 >
141 >    /**
142 >     * Creates a {@code PriorityQueue} with the default initial capacity and
143 >     * whose elements are ordered according to the specified comparator.
144 >     *
145 >     * @param  comparator the comparator that will be used to order this
146 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
147 >     *         natural ordering} of the elements will be used.
148 >     * @since 1.8
149 >     */
150 >    public PriorityQueue(Comparator<? super E> comparator) {
151 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
152      }
153  
154 <    public E remove() {
155 <        return null;
154 >    /**
155 >     * Creates a {@code PriorityQueue} with the specified initial capacity
156 >     * that orders its elements according to the specified comparator.
157 >     *
158 >     * @param  initialCapacity the initial capacity for this priority queue
159 >     * @param  comparator the comparator that will be used to order this
160 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
161 >     *         natural ordering} of the elements will be used.
162 >     * @throws IllegalArgumentException if {@code initialCapacity} is
163 >     *         less than 1
164 >     */
165 >    public PriorityQueue(int initialCapacity,
166 >                         Comparator<? super E> comparator) {
167 >        // Note: This restriction of at least one is not actually needed,
168 >        // but continues for 1.5 compatibility
169 >        if (initialCapacity < 1)
170 >            throw new IllegalArgumentException();
171 >        this.queue = new Object[initialCapacity];
172 >        this.comparator = comparator;
173      }
174 <    public Iterator<E> iterator() {
175 <      return null;
174 >
175 >    /**
176 >     * Creates a {@code PriorityQueue} containing the elements in the
177 >     * specified collection.  If the specified collection is an instance of
178 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
179 >     * priority queue will be ordered according to the same ordering.
180 >     * Otherwise, this priority queue will be ordered according to the
181 >     * {@linkplain Comparable natural ordering} of its elements.
182 >     *
183 >     * @param  c the collection whose elements are to be placed
184 >     *         into this priority queue
185 >     * @throws ClassCastException if elements of the specified collection
186 >     *         cannot be compared to one another according to the priority
187 >     *         queue's ordering
188 >     * @throws NullPointerException if the specified collection or any
189 >     *         of its elements are null
190 >     */
191 >    public PriorityQueue(Collection<? extends E> c) {
192 >        if (c instanceof SortedSet<?>) {
193 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 >            this.comparator = (Comparator<? super E>) ss.comparator();
195 >            initElementsFromCollection(ss);
196 >        }
197 >        else if (c instanceof PriorityQueue<?>) {
198 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 >            this.comparator = (Comparator<? super E>) pq.comparator();
200 >            initFromPriorityQueue(pq);
201 >        }
202 >        else {
203 >            this.comparator = null;
204 >            initFromCollection(c);
205 >        }
206      }
207  
208 <    public E element() {
209 <        return null;
208 >    /**
209 >     * Creates a {@code PriorityQueue} containing the elements in the
210 >     * specified priority queue.  This priority queue will be
211 >     * ordered according to the same ordering as the given priority
212 >     * queue.
213 >     *
214 >     * @param  c the priority queue whose elements are to be placed
215 >     *         into this priority queue
216 >     * @throws ClassCastException if elements of {@code c} cannot be
217 >     *         compared to one another according to {@code c}'s
218 >     *         ordering
219 >     * @throws NullPointerException if the specified priority queue or any
220 >     *         of its elements are null
221 >     */
222 >    public PriorityQueue(PriorityQueue<? extends E> c) {
223 >        this.comparator = (Comparator<? super E>) c.comparator();
224 >        initFromPriorityQueue(c);
225      }
226 <    public E poll() {
227 <        return null;
226 >
227 >    /**
228 >     * Creates a {@code PriorityQueue} containing the elements in the
229 >     * specified sorted set.   This priority queue will be ordered
230 >     * according to the same ordering as the given sorted set.
231 >     *
232 >     * @param  c the sorted set whose elements are to be placed
233 >     *         into this priority queue
234 >     * @throws ClassCastException if elements of the specified sorted
235 >     *         set cannot be compared to one another according to the
236 >     *         sorted set's ordering
237 >     * @throws NullPointerException if the specified sorted set or any
238 >     *         of its elements are null
239 >     */
240 >    public PriorityQueue(SortedSet<? extends E> c) {
241 >        this.comparator = (Comparator<? super E>) c.comparator();
242 >        initElementsFromCollection(c);
243 >    }
244 >
245 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
246 >    private static Object[] ensureNonEmpty(Object[] es) {
247 >        return (es.length > 0) ? es : new Object[1];
248 >    }
249 >
250 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
251 >        if (c.getClass() == PriorityQueue.class) {
252 >            this.queue = ensureNonEmpty(c.toArray());
253 >            this.size = c.size();
254 >        } else {
255 >            initFromCollection(c);
256 >        }
257      }
258 +
259 +    private void initElementsFromCollection(Collection<? extends E> c) {
260 +        Object[] es = c.toArray();
261 +        int len = es.length;
262 +        // If c.toArray incorrectly doesn't return Object[], copy it.
263 +        if (es.getClass() != Object[].class)
264 +            es = Arrays.copyOf(es, len, Object[].class);
265 +        if (len == 1 || this.comparator != null)
266 +            for (Object e : es)
267 +                if (e == null)
268 +                    throw new NullPointerException();
269 +        this.queue = ensureNonEmpty(es);
270 +        this.size = len;
271 +    }
272 +
273 +    /**
274 +     * Initializes queue array with elements from the given Collection.
275 +     *
276 +     * @param c the collection
277 +     */
278 +    private void initFromCollection(Collection<? extends E> c) {
279 +        initElementsFromCollection(c);
280 +        heapify();
281 +    }
282 +
283 +    /**
284 +     * The maximum size of array to allocate.
285 +     * Some VMs reserve some header words in an array.
286 +     * Attempts to allocate larger arrays may result in
287 +     * OutOfMemoryError: Requested array size exceeds VM limit
288 +     */
289 +    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
290 +
291 +    /**
292 +     * Increases the capacity of the array.
293 +     *
294 +     * @param minCapacity the desired minimum capacity
295 +     */
296 +    private void grow(int minCapacity) {
297 +        int oldCapacity = queue.length;
298 +        // Double size if small; else grow by 50%
299 +        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
300 +                                         (oldCapacity + 2) :
301 +                                         (oldCapacity >> 1));
302 +        // overflow-conscious code
303 +        if (newCapacity - MAX_ARRAY_SIZE > 0)
304 +            newCapacity = hugeCapacity(minCapacity);
305 +        queue = Arrays.copyOf(queue, newCapacity);
306 +    }
307 +
308 +    private static int hugeCapacity(int minCapacity) {
309 +        if (minCapacity < 0) // overflow
310 +            throw new OutOfMemoryError();
311 +        return (minCapacity > MAX_ARRAY_SIZE) ?
312 +            Integer.MAX_VALUE :
313 +            MAX_ARRAY_SIZE;
314 +    }
315 +
316 +    /**
317 +     * Inserts the specified element into this priority queue.
318 +     *
319 +     * @return {@code true} (as specified by {@link Collection#add})
320 +     * @throws ClassCastException if the specified element cannot be
321 +     *         compared with elements currently in this priority queue
322 +     *         according to the priority queue's ordering
323 +     * @throws NullPointerException if the specified element is null
324 +     */
325 +    public boolean add(E e) {
326 +        return offer(e);
327 +    }
328 +
329 +    /**
330 +     * Inserts the specified element into this priority queue.
331 +     *
332 +     * @return {@code true} (as specified by {@link Queue#offer})
333 +     * @throws ClassCastException if the specified element cannot be
334 +     *         compared with elements currently in this priority queue
335 +     *         according to the priority queue's ordering
336 +     * @throws NullPointerException if the specified element is null
337 +     */
338 +    public boolean offer(E e) {
339 +        if (e == null)
340 +            throw new NullPointerException();
341 +        modCount++;
342 +        int i = size;
343 +        if (i >= queue.length)
344 +            grow(i + 1);
345 +        siftUp(i, e);
346 +        size = i + 1;
347 +        return true;
348 +    }
349 +
350      public E peek() {
351 <        return null;
351 >        return (E) queue[0];
352      }
353  
354 <    public boolean isEmpty() {
355 <        return false;
354 >    private int indexOf(Object o) {
355 >        if (o != null) {
356 >            final Object[] es = queue;
357 >            for (int i = 0, n = size; i < n; i++)
358 >                if (o.equals(es[i]))
359 >                    return i;
360 >        }
361 >        return -1;
362      }
363 <    public int size() {
364 <        return 0;
363 >
364 >    /**
365 >     * Removes a single instance of the specified element from this queue,
366 >     * if it is present.  More formally, removes an element {@code e} such
367 >     * that {@code o.equals(e)}, if this queue contains one or more such
368 >     * elements.  Returns {@code true} if and only if this queue contained
369 >     * the specified element (or equivalently, if this queue changed as a
370 >     * result of the call).
371 >     *
372 >     * @param o element to be removed from this queue, if present
373 >     * @return {@code true} if this queue changed as a result of the call
374 >     */
375 >    public boolean remove(Object o) {
376 >        int i = indexOf(o);
377 >        if (i == -1)
378 >            return false;
379 >        else {
380 >            removeAt(i);
381 >            return true;
382 >        }
383 >    }
384 >
385 >    /**
386 >     * Identity-based version for use in Itr.remove.
387 >     *
388 >     * @param o element to be removed from this queue, if present
389 >     */
390 >    void removeEq(Object o) {
391 >        final Object[] es = queue;
392 >        for (int i = 0, n = size; i < n; i++) {
393 >            if (o == es[i]) {
394 >                removeAt(i);
395 >                break;
396 >            }
397 >        }
398      }
399 +
400 +    /**
401 +     * Returns {@code true} if this queue contains the specified element.
402 +     * More formally, returns {@code true} if and only if this queue contains
403 +     * at least one element {@code e} such that {@code o.equals(e)}.
404 +     *
405 +     * @param o object to be checked for containment in this queue
406 +     * @return {@code true} if this queue contains the specified element
407 +     */
408 +    public boolean contains(Object o) {
409 +        return indexOf(o) >= 0;
410 +    }
411 +
412 +    /**
413 +     * Returns an array containing all of the elements in this queue.
414 +     * The elements are in no particular order.
415 +     *
416 +     * <p>The returned array will be "safe" in that no references to it are
417 +     * maintained by this queue.  (In other words, this method must allocate
418 +     * a new array).  The caller is thus free to modify the returned array.
419 +     *
420 +     * <p>This method acts as bridge between array-based and collection-based
421 +     * APIs.
422 +     *
423 +     * @return an array containing all of the elements in this queue
424 +     */
425      public Object[] toArray() {
426 <        return null;
426 >        return Arrays.copyOf(queue, size);
427 >    }
428 >
429 >    /**
430 >     * Returns an array containing all of the elements in this queue; the
431 >     * runtime type of the returned array is that of the specified array.
432 >     * The returned array elements are in no particular order.
433 >     * If the queue fits in the specified array, it is returned therein.
434 >     * Otherwise, a new array is allocated with the runtime type of the
435 >     * specified array and the size of this queue.
436 >     *
437 >     * <p>If the queue fits in the specified array with room to spare
438 >     * (i.e., the array has more elements than the queue), the element in
439 >     * the array immediately following the end of the collection is set to
440 >     * {@code null}.
441 >     *
442 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
443 >     * array-based and collection-based APIs.  Further, this method allows
444 >     * precise control over the runtime type of the output array, and may,
445 >     * under certain circumstances, be used to save allocation costs.
446 >     *
447 >     * <p>Suppose {@code x} is a queue known to contain only strings.
448 >     * The following code can be used to dump the queue into a newly
449 >     * allocated array of {@code String}:
450 >     *
451 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
452 >     *
453 >     * Note that {@code toArray(new Object[0])} is identical in function to
454 >     * {@code toArray()}.
455 >     *
456 >     * @param a the array into which the elements of the queue are to
457 >     *          be stored, if it is big enough; otherwise, a new array of the
458 >     *          same runtime type is allocated for this purpose.
459 >     * @return an array containing all of the elements in this queue
460 >     * @throws ArrayStoreException if the runtime type of the specified array
461 >     *         is not a supertype of the runtime type of every element in
462 >     *         this queue
463 >     * @throws NullPointerException if the specified array is null
464 >     */
465 >    public <T> T[] toArray(T[] a) {
466 >        final int size = this.size;
467 >        if (a.length < size)
468 >            // Make a new array of a's runtime type, but my contents:
469 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
470 >        System.arraycopy(queue, 0, a, 0, size);
471 >        if (a.length > size)
472 >            a[size] = null;
473 >        return a;
474 >    }
475 >
476 >    /**
477 >     * Returns an iterator over the elements in this queue. The iterator
478 >     * does not return the elements in any particular order.
479 >     *
480 >     * @return an iterator over the elements in this queue
481 >     */
482 >    public Iterator<E> iterator() {
483 >        return new Itr();
484 >    }
485 >
486 >    private final class Itr implements Iterator<E> {
487 >        /**
488 >         * Index (into queue array) of element to be returned by
489 >         * subsequent call to next.
490 >         */
491 >        private int cursor;
492 >
493 >        /**
494 >         * Index of element returned by most recent call to next,
495 >         * unless that element came from the forgetMeNot list.
496 >         * Set to -1 if element is deleted by a call to remove.
497 >         */
498 >        private int lastRet = -1;
499 >
500 >        /**
501 >         * A queue of elements that were moved from the unvisited portion of
502 >         * the heap into the visited portion as a result of "unlucky" element
503 >         * removals during the iteration.  (Unlucky element removals are those
504 >         * that require a siftup instead of a siftdown.)  We must visit all of
505 >         * the elements in this list to complete the iteration.  We do this
506 >         * after we've completed the "normal" iteration.
507 >         *
508 >         * We expect that most iterations, even those involving removals,
509 >         * will not need to store elements in this field.
510 >         */
511 >        private ArrayDeque<E> forgetMeNot;
512 >
513 >        /**
514 >         * Element returned by the most recent call to next iff that
515 >         * element was drawn from the forgetMeNot list.
516 >         */
517 >        private E lastRetElt;
518 >
519 >        /**
520 >         * The modCount value that the iterator believes that the backing
521 >         * Queue should have.  If this expectation is violated, the iterator
522 >         * has detected concurrent modification.
523 >         */
524 >        private int expectedModCount = modCount;
525 >
526 >        Itr() {}                        // prevent access constructor creation
527 >
528 >        public boolean hasNext() {
529 >            return cursor < size ||
530 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
531 >        }
532 >
533 >        public E next() {
534 >            if (expectedModCount != modCount)
535 >                throw new ConcurrentModificationException();
536 >            if (cursor < size)
537 >                return (E) queue[lastRet = cursor++];
538 >            if (forgetMeNot != null) {
539 >                lastRet = -1;
540 >                lastRetElt = forgetMeNot.poll();
541 >                if (lastRetElt != null)
542 >                    return lastRetElt;
543 >            }
544 >            throw new NoSuchElementException();
545 >        }
546 >
547 >        public void remove() {
548 >            if (expectedModCount != modCount)
549 >                throw new ConcurrentModificationException();
550 >            if (lastRet != -1) {
551 >                E moved = PriorityQueue.this.removeAt(lastRet);
552 >                lastRet = -1;
553 >                if (moved == null)
554 >                    cursor--;
555 >                else {
556 >                    if (forgetMeNot == null)
557 >                        forgetMeNot = new ArrayDeque<>();
558 >                    forgetMeNot.add(moved);
559 >                }
560 >            } else if (lastRetElt != null) {
561 >                PriorityQueue.this.removeEq(lastRetElt);
562 >                lastRetElt = null;
563 >            } else {
564 >                throw new IllegalStateException();
565 >            }
566 >            expectedModCount = modCount;
567 >        }
568 >    }
569 >
570 >    public int size() {
571 >        return size;
572 >    }
573 >
574 >    /**
575 >     * Removes all of the elements from this priority queue.
576 >     * The queue will be empty after this call returns.
577 >     */
578 >    public void clear() {
579 >        modCount++;
580 >        final Object[] es = queue;
581 >        for (int i = 0, n = size; i < n; i++)
582 >            es[i] = null;
583 >        size = 0;
584      }
585  
586 <    public <T> T[] toArray(T[] array) {
586 >    public E poll() {
587 >        final Object[] es;
588 >        final E result;
589 >
590 >        if ((result = (E) ((es = queue)[0])) != null) {
591 >            modCount++;
592 >            final int n;
593 >            final E x = (E) es[(n = --size)];
594 >            es[n] = null;
595 >            if (n > 0) {
596 >                final Comparator<? super E> cmp;
597 >                if ((cmp = comparator) == null)
598 >                    siftDownComparable(0, x, es, n);
599 >                else
600 >                    siftDownUsingComparator(0, x, es, n, cmp);
601 >            }
602 >        }
603 >        return result;
604 >    }
605 >
606 >    /**
607 >     * Removes the ith element from queue.
608 >     *
609 >     * Normally this method leaves the elements at up to i-1,
610 >     * inclusive, untouched.  Under these circumstances, it returns
611 >     * null.  Occasionally, in order to maintain the heap invariant,
612 >     * it must swap a later element of the list with one earlier than
613 >     * i.  Under these circumstances, this method returns the element
614 >     * that was previously at the end of the list and is now at some
615 >     * position before i. This fact is used by iterator.remove so as to
616 >     * avoid missing traversing elements.
617 >     */
618 >    E removeAt(int i) {
619 >        // assert i >= 0 && i < size;
620 >        modCount++;
621 >        int s = --size;
622 >        if (s == i) // removed last element
623 >            queue[i] = null;
624 >        else {
625 >            E moved = (E) queue[s];
626 >            queue[s] = null;
627 >            siftDown(i, moved);
628 >            if (queue[i] == moved) {
629 >                siftUp(i, moved);
630 >                if (queue[i] != moved)
631 >                    return moved;
632 >            }
633 >        }
634          return null;
635      }
636  
637 +    /**
638 +     * Inserts item x at position k, maintaining heap invariant by
639 +     * promoting x up the tree until it is greater than or equal to
640 +     * its parent, or is the root.
641 +     *
642 +     * To simplify and speed up coercions and comparisons, the
643 +     * Comparable and Comparator versions are separated into different
644 +     * methods that are otherwise identical. (Similarly for siftDown.)
645 +     *
646 +     * @param k the position to fill
647 +     * @param x the item to insert
648 +     */
649 +    private void siftUp(int k, E x) {
650 +        if (comparator != null)
651 +            siftUpUsingComparator(k, x, queue, comparator);
652 +        else
653 +            siftUpComparable(k, x, queue);
654 +    }
655 +
656 +    private static <T> void siftUpComparable(int k, T x, Object[] es) {
657 +        Comparable<? super T> key = (Comparable<? super T>) x;
658 +        while (k > 0) {
659 +            int parent = (k - 1) >>> 1;
660 +            Object e = es[parent];
661 +            if (key.compareTo((T) e) >= 0)
662 +                break;
663 +            es[k] = e;
664 +            k = parent;
665 +        }
666 +        es[k] = key;
667 +    }
668 +
669 +    private static <T> void siftUpUsingComparator(
670 +        int k, T x, Object[] es, Comparator<? super T> cmp) {
671 +        while (k > 0) {
672 +            int parent = (k - 1) >>> 1;
673 +            Object e = es[parent];
674 +            if (cmp.compare(x, (T) e) >= 0)
675 +                break;
676 +            es[k] = e;
677 +            k = parent;
678 +        }
679 +        es[k] = x;
680 +    }
681 +
682 +    /**
683 +     * Inserts item x at position k, maintaining heap invariant by
684 +     * demoting x down the tree repeatedly until it is less than or
685 +     * equal to its children or is a leaf.
686 +     *
687 +     * @param k the position to fill
688 +     * @param x the item to insert
689 +     */
690 +    private void siftDown(int k, E x) {
691 +        if (comparator != null)
692 +            siftDownUsingComparator(k, x, queue, size, comparator);
693 +        else
694 +            siftDownComparable(k, x, queue, size);
695 +    }
696 +
697 +    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
698 +        // assert n > 0;
699 +        Comparable<? super T> key = (Comparable<? super T>)x;
700 +        int half = n >>> 1;           // loop while a non-leaf
701 +        while (k < half) {
702 +            int child = (k << 1) + 1; // assume left child is least
703 +            Object c = es[child];
704 +            int right = child + 1;
705 +            if (right < n &&
706 +                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
707 +                c = es[child = right];
708 +            if (key.compareTo((T) c) <= 0)
709 +                break;
710 +            es[k] = c;
711 +            k = child;
712 +        }
713 +        es[k] = key;
714 +    }
715 +
716 +    private static <T> void siftDownUsingComparator(
717 +        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
718 +        // assert n > 0;
719 +        int half = n >>> 1;
720 +        while (k < half) {
721 +            int child = (k << 1) + 1;
722 +            Object c = es[child];
723 +            int right = child + 1;
724 +            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
725 +                c = es[child = right];
726 +            if (cmp.compare(x, (T) c) <= 0)
727 +                break;
728 +            es[k] = c;
729 +            k = child;
730 +        }
731 +        es[k] = x;
732 +    }
733 +
734 +    /**
735 +     * Establishes the heap invariant (described above) in the entire tree,
736 +     * assuming nothing about the order of the elements prior to the call.
737 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
738 +     */
739 +    private void heapify() {
740 +        final Object[] es = queue;
741 +        int n = size, i = (n >>> 1) - 1;
742 +        final Comparator<? super E> cmp;
743 +        if ((cmp = comparator) == null)
744 +            for (; i >= 0; i--)
745 +                siftDownComparable(i, (E) es[i], es, n);
746 +        else
747 +            for (; i >= 0; i--)
748 +                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
749 +    }
750 +
751 +    /**
752 +     * Returns the comparator used to order the elements in this
753 +     * queue, or {@code null} if this queue is sorted according to
754 +     * the {@linkplain Comparable natural ordering} of its elements.
755 +     *
756 +     * @return the comparator used to order this queue, or
757 +     *         {@code null} if this queue is sorted according to the
758 +     *         natural ordering of its elements
759 +     */
760 +    public Comparator<? super E> comparator() {
761 +        return comparator;
762 +    }
763 +
764 +    /**
765 +     * Saves this queue to a stream (that is, serializes it).
766 +     *
767 +     * @param s the stream
768 +     * @throws java.io.IOException if an I/O error occurs
769 +     * @serialData The length of the array backing the instance is
770 +     *             emitted (int), followed by all of its elements
771 +     *             (each an {@code Object}) in the proper order.
772 +     */
773 +    private void writeObject(java.io.ObjectOutputStream s)
774 +        throws java.io.IOException {
775 +        // Write out element count, and any hidden stuff
776 +        s.defaultWriteObject();
777 +
778 +        // Write out array length, for compatibility with 1.5 version
779 +        s.writeInt(Math.max(2, size + 1));
780 +
781 +        // Write out all elements in the "proper order".
782 +        final Object[] es = queue;
783 +        for (int i = 0, n = size; i < n; i++)
784 +            s.writeObject(es[i]);
785 +    }
786 +
787 +    /**
788 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
789 +     * (that is, deserializes it).
790 +     *
791 +     * @param s the stream
792 +     * @throws ClassNotFoundException if the class of a serialized object
793 +     *         could not be found
794 +     * @throws java.io.IOException if an I/O error occurs
795 +     */
796 +    private void readObject(java.io.ObjectInputStream s)
797 +        throws java.io.IOException, ClassNotFoundException {
798 +        // Read in size, and any hidden stuff
799 +        s.defaultReadObject();
800 +
801 +        // Read in (and discard) array length
802 +        s.readInt();
803 +
804 +        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
805 +        final Object[] es = queue = new Object[Math.max(size, 1)];
806 +
807 +        // Read in all elements.
808 +        for (int i = 0, n = size; i < n; i++)
809 +            es[i] = s.readObject();
810 +
811 +        // Elements are guaranteed to be in "proper order", but the
812 +        // spec has never explained what that might be.
813 +        heapify();
814 +    }
815 +
816 +    /**
817 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
818 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
819 +     * queue. The spliterator does not traverse elements in any particular order
820 +     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
821 +     *
822 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
823 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
824 +     * Overriding implementations should document the reporting of additional
825 +     * characteristic values.
826 +     *
827 +     * @return a {@code Spliterator} over the elements in this queue
828 +     * @since 1.8
829 +     */
830 +    public final Spliterator<E> spliterator() {
831 +        return new PriorityQueueSpliterator(0, -1, 0);
832 +    }
833 +
834 +    final class PriorityQueueSpliterator implements Spliterator<E> {
835 +        private int index;            // current index, modified on advance/split
836 +        private int fence;            // -1 until first use
837 +        private int expectedModCount; // initialized when fence set
838 +
839 +        /** Creates new spliterator covering the given range. */
840 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
841 +            this.index = origin;
842 +            this.fence = fence;
843 +            this.expectedModCount = expectedModCount;
844 +        }
845 +
846 +        private int getFence() { // initialize fence to size on first use
847 +            int hi;
848 +            if ((hi = fence) < 0) {
849 +                expectedModCount = modCount;
850 +                hi = fence = size;
851 +            }
852 +            return hi;
853 +        }
854 +
855 +        public PriorityQueueSpliterator trySplit() {
856 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
857 +            return (lo >= mid) ? null :
858 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
859 +        }
860 +
861 +        public void forEachRemaining(Consumer<? super E> action) {
862 +            if (action == null)
863 +                throw new NullPointerException();
864 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
865 +            final Object[] es = queue;
866 +            int i, hi; E e;
867 +            for (i = index, index = hi = fence; i < hi; i++) {
868 +                if ((e = (E) es[i]) == null)
869 +                    break;      // must be CME
870 +                action.accept(e);
871 +            }
872 +            if (modCount != expectedModCount)
873 +                throw new ConcurrentModificationException();
874 +        }
875 +
876 +        public boolean tryAdvance(Consumer<? super E> action) {
877 +            if (action == null)
878 +                throw new NullPointerException();
879 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
880 +            int i;
881 +            if ((i = index) < fence) {
882 +                index = i + 1;
883 +                E e;
884 +                if ((e = (E) queue[i]) == null
885 +                    || modCount != expectedModCount)
886 +                    throw new ConcurrentModificationException();
887 +                action.accept(e);
888 +                return true;
889 +            }
890 +            return false;
891 +        }
892 +
893 +        public long estimateSize() {
894 +            return getFence() - index;
895 +        }
896 +
897 +        public int characteristics() {
898 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
899 +        }
900 +    }
901 +
902 +    /**
903 +     * @throws NullPointerException {@inheritDoc}
904 +     */
905 +    public void forEach(Consumer<? super E> action) {
906 +        Objects.requireNonNull(action);
907 +        final int expectedModCount = modCount;
908 +        final Object[] es = queue;
909 +        for (int i = 0, n = size; i < n; i++)
910 +            action.accept((E) es[i]);
911 +        if (expectedModCount != modCount)
912 +            throw new ConcurrentModificationException();
913 +    }
914   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines