ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.40 by dl, Fri Sep 12 15:38:26 2003 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7  
8 < import java.util.*;
8 > package java.util;
9  
10   /**
11 < * An unbounded (resizable) priority queue based on a priority
12 < * heap.The take operation returns the least element with respect to
13 < * the given ordering. (If more than one element is tied for least
14 < * value, one of them is arbitrarily chosen to be returned -- no
15 < * guarantees are made for ordering across ties.) Ordering follows the
16 < * java.util.Collection conventions: Either the elements must be
17 < * Comparable, or a Comparator must be supplied. Comparison failures
18 < * throw ClassCastExceptions during insertions and extractions.
19 < **/
20 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
21 <    public PriorityQueue(int initialCapacity) {}
22 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
11 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
12 > * This queue orders elements according to an order specified at construction
13 > * time, which is specified in the same manner as {@link java.util.TreeSet}
14 > * and {@link java.util.TreeMap}: elements are ordered either according to
15 > * their <i>natural order</i> (see {@link Comparable}), or according to a
16 > * {@link java.util.Comparator}, depending on which constructor is used.
17 > *
18 > * <p>The <em>head</em> of this queue is the <em>least</em> element with
19 > * respect to the specified ordering.  If multiple elements are tied for least
20 > * value, the head is one of those elements. A priority queue does not permit
21 > * <tt>null</tt> elements.
22 > *
23 > * <p>The {@link #remove()} and {@link #poll()} methods remove and
24 > * return the head of the queue.
25 > *
26 > * <p>The {@link #element()} and {@link #peek()} methods return, but do
27 > * not delete, the head of the queue.
28 > *
29 > * <p>A priority queue is unbounded, but has a <i>capacity</i>.  The
30 > * capacity is the size of the array used internally to store the
31 > * elements on the queue.  It is always at least as large as the queue
32 > * size.  As elements are added to a priority queue, its capacity
33 > * grows automatically.  The details of the growth policy are not
34 > * specified.
35 > *
36 > * <p>The Iterator provided in method {@link #iterator()} is <em>not</em>
37 > * guaranteed to traverse the elements of the PriorityQueue in any
38 > * particular order. If you need ordered traversal, consider using
39 > * <tt>Arrays.sort(pq.toArray())</tt>.
40 > *
41 > * <p> <strong>Note that this implementation is not synchronized.</strong>
42 > * Multiple threads should not access a <tt>PriorityQueue</tt>
43 > * instance concurrently if any of the threads modifies the list
44 > * structurally. Instead, use the thread-safe {@link
45 > * java.util.concurrent.PriorityBlockingQueue} class.
46 > *
47 > *
48 > * <p>Implementation note: this implementation provides O(log(n)) time
49 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
50 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
51 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
52 > * constant time for the retrieval methods (<tt>peek</tt>,
53 > * <tt>element</tt>, and <tt>size</tt>).
54 > *
55 > * <p>This class is a member of the
56 > * <a href="{@docRoot}/../guide/collections/index.html">
57 > * Java Collections Framework</a>.
58 > * @since 1.5
59 > * @version %I%, %G%
60 > * @author Josh Bloch
61 > */
62 > public class PriorityQueue<E> extends AbstractQueue<E>
63 >    implements Queue<E>, java.io.Serializable {
64  
65 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
65 >    private static final long serialVersionUID = -7720805057305804111L;
66  
67 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
67 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
68  
69 <    public boolean add(E x) {
70 <        return false;
69 >    /**
70 >     * Priority queue represented as a balanced binary heap: the two children
71 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
72 >     * ordered by comparator, or by the elements' natural ordering, if
73 >     * comparator is null:  For each node n in the heap and each descendant d
74 >     * of n, n <= d.
75 >     *
76 >     * The element with the lowest value is in queue[1], assuming the queue is
77 >     * nonempty.  (A one-based array is used in preference to the traditional
78 >     * zero-based array to simplify parent and child calculations.)
79 >     *
80 >     * queue.length must be >= 2, even if size == 0.
81 >     */
82 >    private transient Object[] queue;
83 >
84 >    /**
85 >     * The number of elements in the priority queue.
86 >     */
87 >    private int size = 0;
88 >
89 >    /**
90 >     * The comparator, or null if priority queue uses elements'
91 >     * natural ordering.
92 >     */
93 >    private final Comparator<? super E> comparator;
94 >
95 >    /**
96 >     * The number of times this priority queue has been
97 >     * <i>structurally modified</i>.  See AbstractList for gory details.
98 >     */
99 >    private transient int modCount = 0;
100 >
101 >    /**
102 >     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
103 >     * (11) that orders its elements according to their natural
104 >     * ordering (using <tt>Comparable</tt>).
105 >     */
106 >    public PriorityQueue() {
107 >        this(DEFAULT_INITIAL_CAPACITY, null);
108      }
109 <    public boolean offer(E x) {
110 <        return false;
109 >
110 >    /**
111 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
112 >     * that orders its elements according to their natural ordering
113 >     * (using <tt>Comparable</tt>).
114 >     *
115 >     * @param initialCapacity the initial capacity for this priority queue.
116 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
117 >     * than 1
118 >     */
119 >    public PriorityQueue(int initialCapacity) {
120 >        this(initialCapacity, null);
121      }
122 <    public boolean remove(Object x) {
123 <        return false;
122 >
123 >    /**
124 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
125 >     * that orders its elements according to the specified comparator.
126 >     *
127 >     * @param initialCapacity the initial capacity for this priority queue.
128 >     * @param comparator the comparator used to order this priority queue.
129 >     * If <tt>null</tt> then the order depends on the elements' natural
130 >     * ordering.
131 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
132 >     * than 1
133 >     */
134 >    public PriorityQueue(int initialCapacity,
135 >                         Comparator<? super E> comparator) {
136 >        if (initialCapacity < 1)
137 >            throw new IllegalArgumentException();
138 >        this.queue = new Object[initialCapacity + 1];
139 >        this.comparator = comparator;
140      }
141  
142 <    public E remove() {
143 <        return null;
142 >    /**
143 >     * Common code to initialize underlying queue array across
144 >     * constructors below.
145 >     */
146 >    private void initializeArray(Collection<? extends E> c) {
147 >        int sz = c.size();
148 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
149 >                                            Integer.MAX_VALUE - 1);
150 >        if (initialCapacity < 1)
151 >            initialCapacity = 1;
152 >
153 >        this.queue = new Object[initialCapacity + 1];
154      }
155 <    public Iterator<E> iterator() {
156 <      return null;
155 >
156 >    /**
157 >     * Initially fill elements of the queue array under the
158 >     * knowledge that it is sorted or is another PQ, in which
159 >     * case we can just place the elements in the order presented.
160 >     */
161 >    private void fillFromSorted(Collection<? extends E> c) {
162 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
163 >            queue[++size] = i.next();
164      }
165  
166 <    public E element() {
167 <        return null;
166 >    /**
167 >     * Initially fill elements of the queue array that is not to our knowledge
168 >     * sorted, so we must rearrange the elements to guarantee the heap
169 >     * invariant.
170 >     */
171 >    private void fillFromUnsorted(Collection<? extends E> c) {
172 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
173 >            queue[++size] = i.next();
174 >        heapify();
175      }
176 <    public E poll() {
177 <        return null;
176 >
177 >    /**
178 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
179 >     * specified collection.  The priority queue has an initial
180 >     * capacity of 110% of the size of the specified collection or 1
181 >     * if the collection is empty.  If the specified collection is an
182 >     * instance of a {@link java.util.SortedSet} or is another
183 >     * <tt>PriorityQueue</tt>, the priority queue will be sorted
184 >     * according to the same comparator, or according to its elements'
185 >     * natural order if the collection is sorted according to its
186 >     * elements' natural order.  Otherwise, the priority queue is
187 >     * ordered according to its elements' natural order.
188 >     *
189 >     * @param c the collection whose elements are to be placed
190 >     *        into this priority queue.
191 >     * @throws ClassCastException if elements of the specified collection
192 >     *         cannot be compared to one another according to the priority
193 >     *         queue's ordering.
194 >     * @throws NullPointerException if <tt>c</tt> or any element within it
195 >     * is <tt>null</tt>
196 >     */
197 >    public PriorityQueue(Collection<? extends E> c) {
198 >        initializeArray(c);
199 >        if (c instanceof SortedSet) {
200 >            // @fixme double-cast workaround for compiler
201 >            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
202 >            comparator = (Comparator<? super E>)s.comparator();
203 >            fillFromSorted(s);
204 >        } else if (c instanceof PriorityQueue) {
205 >            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
206 >            comparator = (Comparator<? super E>)s.comparator();
207 >            fillFromSorted(s);
208 >        } else {
209 >            comparator = null;
210 >            fillFromUnsorted(c);
211 >        }
212 >    }
213 >
214 >    /**
215 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
216 >     * specified collection.  The priority queue has an initial
217 >     * capacity of 110% of the size of the specified collection or 1
218 >     * if the collection is empty.  This priority queue will be sorted
219 >     * according to the same comparator as the given collection, or
220 >     * according to its elements' natural order if the collection is
221 >     * sorted according to its elements' natural order.
222 >     *
223 >     * @param c the collection whose elements are to be placed
224 >     *        into this priority queue.
225 >     * @throws ClassCastException if elements of the specified collection
226 >     *         cannot be compared to one another according to the priority
227 >     *         queue's ordering.
228 >     * @throws NullPointerException if <tt>c</tt> or any element within it
229 >     * is <tt>null</tt>
230 >     */
231 >    public PriorityQueue(PriorityQueue<? extends E> c) {
232 >        initializeArray(c);
233 >        comparator = (Comparator<? super E>)c.comparator();
234 >        fillFromSorted(c);
235      }
236 +
237 +    /**
238 +     * Creates a <tt>PriorityQueue</tt> containing the elements in the
239 +     * specified collection.  The priority queue has an initial
240 +     * capacity of 110% of the size of the specified collection or 1
241 +     * if the collection is empty.  This priority queue will be sorted
242 +     * according to the same comparator as the given collection, or
243 +     * according to its elements' natural order if the collection is
244 +     * sorted according to its elements' natural order.
245 +     *
246 +     * @param c the collection whose elements are to be placed
247 +     *        into this priority queue.
248 +     * @throws ClassCastException if elements of the specified collection
249 +     *         cannot be compared to one another according to the priority
250 +     *         queue's ordering.
251 +     * @throws NullPointerException if <tt>c</tt> or any element within it
252 +     * is <tt>null</tt>
253 +     */
254 +    public PriorityQueue(SortedSet<? extends E> c) {
255 +        initializeArray(c);
256 +        comparator = (Comparator<? super E>)c.comparator();
257 +        fillFromSorted(c);
258 +    }
259 +
260 +    /**
261 +     * Resize array, if necessary, to be able to hold given index
262 +     */
263 +    private void grow(int index) {
264 +        int newlen = queue.length;
265 +        if (index < newlen) // don't need to grow
266 +            return;
267 +        if (index == Integer.MAX_VALUE)
268 +            throw new OutOfMemoryError();
269 +        while (newlen <= index) {
270 +            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
271 +                newlen = Integer.MAX_VALUE;
272 +            else
273 +                newlen <<= 2;
274 +        }
275 +        Object[] newQueue = new Object[newlen];
276 +        System.arraycopy(queue, 0, newQueue, 0, queue.length);
277 +        queue = newQueue;
278 +    }
279 +            
280 +
281 +    /**
282 +     * Inserts the specified element to this priority queue.
283 +     *
284 +     * @return <tt>true</tt>
285 +     * @throws ClassCastException if the specified element cannot be compared
286 +     * with elements currently in the priority queue according
287 +     * to the priority queue's ordering.
288 +     * @throws NullPointerException if the specified element is <tt>null</tt>.
289 +     */
290 +    public boolean offer(E o) {
291 +        if (o == null)
292 +            throw new NullPointerException();
293 +        modCount++;
294 +        ++size;
295 +
296 +        // Grow backing store if necessary
297 +        if (size >= queue.length)
298 +            grow(size);
299 +
300 +        queue[size] = o;
301 +        fixUp(size);
302 +        return true;
303 +    }
304 +
305      public E peek() {
306 <        return null;
306 >        if (size == 0)
307 >            return null;
308 >        return (E) queue[1];
309      }
310  
311 <    public boolean isEmpty() {
311 >    // Collection Methods - the first two override to update docs
312 >
313 >    /**
314 >     * Adds the specified element to this queue.
315 >     * @return <tt>true</tt> (as per the general contract of
316 >     * <tt>Collection.add</tt>).
317 >     *
318 >     * @throws NullPointerException if the specified element is <tt>null</tt>.
319 >     * @throws ClassCastException if the specified element cannot be compared
320 >     * with elements currently in the priority queue according
321 >     * to the priority queue's ordering.
322 >     */
323 >    public boolean add(E o) {
324 >        return super.add(o);
325 >    }
326 >
327 >  
328 >    /**
329 >     * Adds all of the elements in the specified collection to this queue.
330 >     * The behavior of this operation is undefined if
331 >     * the specified collection is modified while the operation is in
332 >     * progress.  (This implies that the behavior of this call is undefined if
333 >     * the specified collection is this queue, and this queue is nonempty.)
334 >     * <p>
335 >     * This implementation iterates over the specified collection, and adds
336 >     * each object returned by the iterator to this collection, in turn.
337 >     * @param c collection whose elements are to be added to this queue
338 >     * @return <tt>true</tt> if this queue changed as a result of the
339 >     *         call.
340 >     * @throws NullPointerException if <tt>c</tt> or any element in <tt>c</tt>
341 >     * is <tt>null</tt>
342 >     * @throws ClassCastException if any element cannot be compared
343 >     * with elements currently in the priority queue according
344 >     * to the priority queue's ordering.
345 >     */
346 >    public boolean addAll(Collection<? extends E> c) {
347 >        return super.addAll(c);
348 >    }
349 >
350 >    public boolean remove(Object o) {
351 >        if (o == null)
352 >            return false;
353 >
354 >        if (comparator == null) {
355 >            for (int i = 1; i <= size; i++) {
356 >                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
357 >                    removeAt(i);
358 >                    return true;
359 >                }
360 >            }
361 >        } else {
362 >            for (int i = 1; i <= size; i++) {
363 >                if (comparator.compare((E)queue[i], (E)o) == 0) {
364 >                    removeAt(i);
365 >                    return true;
366 >                }
367 >            }
368 >        }
369          return false;
370      }
371 +
372 +    /**
373 +     * Returns an iterator over the elements in this queue. The iterator
374 +     * does not return the elements in any particular order.
375 +     *
376 +     * @return an iterator over the elements in this queue.
377 +     */
378 +    public Iterator<E> iterator() {
379 +        return new Itr();
380 +    }
381 +
382 +    private class Itr implements Iterator<E> {
383 +
384 +        /**
385 +         * Index (into queue array) of element to be returned by
386 +         * subsequent call to next.
387 +         */
388 +        private int cursor = 1;
389 +
390 +        /**
391 +         * Index of element returned by most recent call to next,
392 +         * unless that element came from the forgetMeNot list.
393 +         * Reset to 0 if element is deleted by a call to remove.
394 +         */
395 +        private int lastRet = 0;
396 +
397 +        /**
398 +         * The modCount value that the iterator believes that the backing
399 +         * List should have.  If this expectation is violated, the iterator
400 +         * has detected concurrent modification.
401 +         */
402 +        private int expectedModCount = modCount;
403 +
404 +        /**
405 +         * A list of elements that were moved from the unvisited portion of
406 +         * the heap into the visited portion as a result of "unlucky" element
407 +         * removals during the iteration.  (Unlucky element removals are those
408 +         * that require a fixup instead of a fixdown.)  We must visit all of
409 +         * the elements in this list to complete the iteration.  We do this
410 +         * after we've completed the "normal" iteration.
411 +         *
412 +         * We expect that most iterations, even those involving removals,
413 +         * will not use need to store elements in this field.
414 +         */
415 +        private ArrayList<E> forgetMeNot = null;
416 +
417 +        /**
418 +         * Element returned by the most recent call to next iff that
419 +         * element was drawn from the forgetMeNot list.
420 +         */
421 +        private Object lastRetElt = null;
422 +
423 +        public boolean hasNext() {
424 +            return cursor <= size || forgetMeNot != null;
425 +        }
426 +
427 +        public E next() {
428 +            checkForComodification();
429 +            E result;
430 +            if (cursor <= size) {
431 +                result = (E) queue[cursor];
432 +                lastRet = cursor++;
433 +            }
434 +            else if (forgetMeNot == null)
435 +                throw new NoSuchElementException();
436 +            else {
437 +                int remaining = forgetMeNot.size();
438 +                result = forgetMeNot.remove(remaining - 1);
439 +                if (remaining == 1)
440 +                    forgetMeNot = null;
441 +                lastRet = 0;
442 +                lastRetElt = result;
443 +            }
444 +            return result;
445 +        }
446 +
447 +        public void remove() {
448 +            checkForComodification();
449 +
450 +            if (lastRet != 0) {
451 +                E moved = PriorityQueue.this.removeAt(lastRet);
452 +                lastRet = 0;
453 +                if (moved == null) {
454 +                    cursor--;
455 +                } else {
456 +                    if (forgetMeNot == null)
457 +                        forgetMeNot = new ArrayList<E>();
458 +                    forgetMeNot.add(moved);
459 +                }
460 +            } else if (lastRetElt != null) {
461 +                PriorityQueue.this.remove(lastRetElt);
462 +                lastRetElt = null;
463 +            } else {
464 +                throw new IllegalStateException();
465 +            }
466 +
467 +            expectedModCount = modCount;
468 +        }
469 +
470 +        final void checkForComodification() {
471 +            if (modCount != expectedModCount)
472 +                throw new ConcurrentModificationException();
473 +        }
474 +    }
475 +
476      public int size() {
477 <        return 0;
477 >        return size;
478      }
479 <    public Object[] toArray() {
480 <        return null;
479 >
480 >    /**
481 >     * Remove all elements from the priority queue.
482 >     */
483 >    public void clear() {
484 >        modCount++;
485 >
486 >        // Null out element references to prevent memory leak
487 >        for (int i=1; i<=size; i++)
488 >            queue[i] = null;
489 >
490 >        size = 0;
491 >    }
492 >
493 >    public E poll() {
494 >        if (size == 0)
495 >            return null;
496 >        modCount++;
497 >
498 >        E result = (E) queue[1];
499 >        queue[1] = queue[size];
500 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
501 >        if (size > 1)
502 >            fixDown(1);
503 >
504 >        return result;
505      }
506  
507 <    public <T> T[] toArray(T[] array) {
507 >    /**
508 >     * Removes and returns the ith element from queue.  (Recall that queue
509 >     * is one-based, so 1 <= i <= size.)
510 >     *
511 >     * Normally this method leaves the elements at positions from 1 up to i-1,
512 >     * inclusive, untouched.  Under these circumstances, it returns null.
513 >     * Occasionally, in order to maintain the heap invariant, it must move
514 >     * the last element of the list to some index in the range [2, i-1],
515 >     * and move the element previously at position (i/2) to position i.
516 >     * Under these circumstances, this method returns the element that was
517 >     * previously at the end of the list and is now at some position between
518 >     * 2 and i-1 inclusive.
519 >     */
520 >    private E removeAt(int i) {
521 >        assert i > 0 && i <= size;
522 >        modCount++;
523 >
524 >        E moved = (E) queue[size];
525 >        queue[i] = moved;
526 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
527 >        if (i <= size) {
528 >            fixDown(i);
529 >            if (queue[i] == moved) {
530 >                fixUp(i);
531 >                if (queue[i] != moved)
532 >                    return moved;
533 >            }
534 >        }
535          return null;
536      }
537  
538 +    /**
539 +     * Establishes the heap invariant (described above) assuming the heap
540 +     * satisfies the invariant except possibly for the leaf-node indexed by k
541 +     * (which may have a nextExecutionTime less than its parent's).
542 +     *
543 +     * This method functions by "promoting" queue[k] up the hierarchy
544 +     * (by swapping it with its parent) repeatedly until queue[k]
545 +     * is greater than or equal to its parent.
546 +     */
547 +    private void fixUp(int k) {
548 +        if (comparator == null) {
549 +            while (k > 1) {
550 +                int j = k >> 1;
551 +                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
552 +                    break;
553 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
554 +                k = j;
555 +            }
556 +        } else {
557 +            while (k > 1) {
558 +                int j = k >>> 1;
559 +                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
560 +                    break;
561 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
562 +                k = j;
563 +            }
564 +        }
565 +    }
566 +
567 +    /**
568 +     * Establishes the heap invariant (described above) in the subtree
569 +     * rooted at k, which is assumed to satisfy the heap invariant except
570 +     * possibly for node k itself (which may be greater than its children).
571 +     *
572 +     * This method functions by "demoting" queue[k] down the hierarchy
573 +     * (by swapping it with its smaller child) repeatedly until queue[k]
574 +     * is less than or equal to its children.
575 +     */
576 +    private void fixDown(int k) {
577 +        int j;
578 +        if (comparator == null) {
579 +            while ((j = k << 1) <= size && (j > 0)) {
580 +                if (j<size &&
581 +                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
582 +                    j++; // j indexes smallest kid
583 +
584 +                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
585 +                    break;
586 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
587 +                k = j;
588 +            }
589 +        } else {
590 +            while ((j = k << 1) <= size && (j > 0)) {
591 +                if (j<size &&
592 +                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
593 +                    j++; // j indexes smallest kid
594 +                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
595 +                    break;
596 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
597 +                k = j;
598 +            }
599 +        }
600 +    }
601 +
602 +    /**
603 +     * Establishes the heap invariant (described above) in the entire tree,
604 +     * assuming nothing about the order of the elements prior to the call.
605 +     */
606 +    private void heapify() {
607 +        for (int i = size/2; i >= 1; i--)
608 +            fixDown(i);
609 +    }
610 +
611 +    /**
612 +     * Returns the comparator used to order this collection, or <tt>null</tt>
613 +     * if this collection is sorted according to its elements natural ordering
614 +     * (using <tt>Comparable</tt>).
615 +     *
616 +     * @return the comparator used to order this collection, or <tt>null</tt>
617 +     * if this collection is sorted according to its elements natural ordering.
618 +     */
619 +    public Comparator<? super E> comparator() {
620 +        return comparator;
621 +    }
622 +
623 +    /**
624 +     * Save the state of the instance to a stream (that
625 +     * is, serialize it).
626 +     *
627 +     * @serialData The length of the array backing the instance is
628 +     * emitted (int), followed by all of its elements (each an
629 +     * <tt>Object</tt>) in the proper order.
630 +     * @param s the stream
631 +     */
632 +    private void writeObject(java.io.ObjectOutputStream s)
633 +        throws java.io.IOException{
634 +        // Write out element count, and any hidden stuff
635 +        s.defaultWriteObject();
636 +
637 +        // Write out array length
638 +        s.writeInt(queue.length);
639 +
640 +        // Write out all elements in the proper order.
641 +        for (int i=1; i<=size; i++)
642 +            s.writeObject(queue[i]);
643 +    }
644 +
645 +    /**
646 +     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
647 +     * deserialize it).
648 +     * @param s the stream
649 +     */
650 +    private void readObject(java.io.ObjectInputStream s)
651 +        throws java.io.IOException, ClassNotFoundException {
652 +        // Read in size, and any hidden stuff
653 +        s.defaultReadObject();
654 +
655 +        // Read in array length and allocate array
656 +        int arrayLength = s.readInt();
657 +        queue = new Object[arrayLength];
658 +
659 +        // Read in all elements in the proper order.
660 +        for (int i=1; i<=size; i++)
661 +            queue[i] = (E) s.readObject();
662 +    }
663 +
664   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines