ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.45 by dl, Sun Oct 19 13:38:29 2003 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7  
8 < import java.util.*;
8 > package java.util;
9  
10   /**
11 < * An unbounded (resizable) priority queue based on a priority
12 < * heap.The take operation returns the least element with respect to
13 < * the given ordering. (If more than one element is tied for least
14 < * value, one of them is arbitrarily chosen to be returned -- no
15 < * guarantees are made for ordering across ties.) Ordering follows the
16 < * java.util.Collection conventions: Either the elements must be
17 < * Comparable, or a Comparator must be supplied. Comparison failures
18 < * throw ClassCastExceptions during insertions and extractions.
19 < **/
20 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
21 <    public PriorityQueue(int initialCapacity) {}
22 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
11 > * An unbounded priority {@linkplain Queue queue} based on a priority
12 > * heap.  This queue orders elements according to an order specified
13 > * at construction time, which is specified either according to their
14 > * <i>natural order</i> (see {@link Comparable}), or according to a
15 > * {@link java.util.Comparator}, depending on which constructor is
16 > * used. A priority queue does not permit <tt>null</tt> elements.
17 > * A priority queue relying on natural ordering also does not
18 > * permit insertion of non-comparable objects (doing so may result
19 > * in <tt>ClassCastException</tt>).
20 > *
21 > * <p>The <em>head</em> of this queue is the <em>least</em> element
22 > * with respect to the specified ordering.  If multiple elements are
23 > * tied for least value, the head is one of those elements -- ties are
24 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
25 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 > * element at the head of the queue.
27 > *
28 > * <p>A priority queue is unbounded, but has an internal
29 > * <i>capacity</i> governing the size of an array used to store the
30 > * elements on the queue.  It is always at least as large as the queue
31 > * size.  As elements are added to a priority queue, its capacity
32 > * grows automatically.  The details of the growth policy are not
33 > * specified.
34 > *
35 > * <p>This class implements all of the <em>optional</em> methods of
36 > * the {@link Collection} and {@link Iterator} interfaces.  The
37 > * Iterator provided in method {@link #iterator()} is <em>not</em>
38 > * guaranteed to traverse the elements of the PriorityQueue in any
39 > * particular order. If you need ordered traversal, consider using
40 > * <tt>Arrays.sort(pq.toArray())</tt>.
41 > *
42 > * <p> <strong>Note that this implementation is not synchronized.</strong>
43 > * Multiple threads should not access a <tt>PriorityQueue</tt>
44 > * instance concurrently if any of the threads modifies the list
45 > * structurally. Instead, use the thread-safe {@link
46 > * java.util.concurrent.PriorityBlockingQueue} class.
47 > *
48 > *
49 > * <p>Implementation note: this implementation provides O(log(n)) time
50 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
51 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
52 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
53 > * constant time for the retrieval methods (<tt>peek</tt>,
54 > * <tt>element</tt>, and <tt>size</tt>).
55 > *
56 > * <p>This class is a member of the
57 > * <a href="{@docRoot}/../guide/collections/index.html">
58 > * Java Collections Framework</a>.
59 > * @since 1.5
60 > * @version %I%, %G%
61 > * @author Josh Bloch
62 > * @param <E> the type of elements held in this collection
63 > */
64 > public class PriorityQueue<E> extends AbstractQueue<E>
65 >    implements Queue<E>, java.io.Serializable {
66  
67 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
67 >    private static final long serialVersionUID = -7720805057305804111L;
68  
69 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
69 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
70  
71 <    public boolean add(E x) {
72 <        return false;
71 >    /**
72 >     * Priority queue represented as a balanced binary heap: the two children
73 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
74 >     * ordered by comparator, or by the elements' natural ordering, if
75 >     * comparator is null:  For each node n in the heap and each descendant d
76 >     * of n, n <= d.
77 >     *
78 >     * The element with the lowest value is in queue[1], assuming the queue is
79 >     * nonempty.  (A one-based array is used in preference to the traditional
80 >     * zero-based array to simplify parent and child calculations.)
81 >     *
82 >     * queue.length must be >= 2, even if size == 0.
83 >     */
84 >    private transient Object[] queue;
85 >
86 >    /**
87 >     * The number of elements in the priority queue.
88 >     */
89 >    private int size = 0;
90 >
91 >    /**
92 >     * The comparator, or null if priority queue uses elements'
93 >     * natural ordering.
94 >     */
95 >    private final Comparator<? super E> comparator;
96 >
97 >    /**
98 >     * The number of times this priority queue has been
99 >     * <i>structurally modified</i>.  See AbstractList for gory details.
100 >     */
101 >    private transient int modCount = 0;
102 >
103 >    /**
104 >     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
105 >     * (11) that orders its elements according to their natural
106 >     * ordering (using <tt>Comparable</tt>).
107 >     */
108 >    public PriorityQueue() {
109 >        this(DEFAULT_INITIAL_CAPACITY, null);
110      }
111 <    public boolean offer(E x) {
112 <        return false;
111 >
112 >    /**
113 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
114 >     * that orders its elements according to their natural ordering
115 >     * (using <tt>Comparable</tt>).
116 >     *
117 >     * @param initialCapacity the initial capacity for this priority queue.
118 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
119 >     * than 1
120 >     */
121 >    public PriorityQueue(int initialCapacity) {
122 >        this(initialCapacity, null);
123      }
124 <    public boolean remove(Object x) {
125 <        return false;
124 >
125 >    /**
126 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
127 >     * that orders its elements according to the specified comparator.
128 >     *
129 >     * @param initialCapacity the initial capacity for this priority queue.
130 >     * @param comparator the comparator used to order this priority queue.
131 >     * If <tt>null</tt> then the order depends on the elements' natural
132 >     * ordering.
133 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
134 >     * than 1
135 >     */
136 >    public PriorityQueue(int initialCapacity,
137 >                         Comparator<? super E> comparator) {
138 >        if (initialCapacity < 1)
139 >            throw new IllegalArgumentException();
140 >        this.queue = new Object[initialCapacity + 1];
141 >        this.comparator = comparator;
142      }
143  
144 <    public E remove() {
145 <        return null;
144 >    /**
145 >     * Common code to initialize underlying queue array across
146 >     * constructors below.
147 >     */
148 >    private void initializeArray(Collection<? extends E> c) {
149 >        int sz = c.size();
150 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
151 >                                            Integer.MAX_VALUE - 1);
152 >        if (initialCapacity < 1)
153 >            initialCapacity = 1;
154 >
155 >        this.queue = new Object[initialCapacity + 1];
156      }
157 <    public Iterator<E> iterator() {
158 <      return null;
157 >
158 >    /**
159 >     * Initially fill elements of the queue array under the
160 >     * knowledge that it is sorted or is another PQ, in which
161 >     * case we can just place the elements in the order presented.
162 >     */
163 >    private void fillFromSorted(Collection<? extends E> c) {
164 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
165 >            queue[++size] = i.next();
166      }
167  
168 <    public E element() {
169 <        return null;
168 >    /**
169 >     * Initially fill elements of the queue array that is not to our knowledge
170 >     * sorted, so we must rearrange the elements to guarantee the heap
171 >     * invariant.
172 >     */
173 >    private void fillFromUnsorted(Collection<? extends E> c) {
174 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
175 >            queue[++size] = i.next();
176 >        heapify();
177      }
178 <    public E poll() {
179 <        return null;
178 >
179 >    /**
180 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
181 >     * specified collection.  The priority queue has an initial
182 >     * capacity of 110% of the size of the specified collection or 1
183 >     * if the collection is empty.  If the specified collection is an
184 >     * instance of a {@link java.util.SortedSet} or is another
185 >     * <tt>PriorityQueue</tt>, the priority queue will be sorted
186 >     * according to the same comparator, or according to its elements'
187 >     * natural order if the collection is sorted according to its
188 >     * elements' natural order.  Otherwise, the priority queue is
189 >     * ordered according to its elements' natural order.
190 >     *
191 >     * @param c the collection whose elements are to be placed
192 >     *        into this priority queue.
193 >     * @throws ClassCastException if elements of the specified collection
194 >     *         cannot be compared to one another according to the priority
195 >     *         queue's ordering.
196 >     * @throws NullPointerException if <tt>c</tt> or any element within it
197 >     * is <tt>null</tt>
198 >     */
199 >    public PriorityQueue(Collection<? extends E> c) {
200 >        initializeArray(c);
201 >        if (c instanceof SortedSet) {
202 >            // @fixme double-cast workaround for compiler
203 >            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
204 >            comparator = (Comparator<? super E>)s.comparator();
205 >            fillFromSorted(s);
206 >        } else if (c instanceof PriorityQueue) {
207 >            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
208 >            comparator = (Comparator<? super E>)s.comparator();
209 >            fillFromSorted(s);
210 >        } else {
211 >            comparator = null;
212 >            fillFromUnsorted(c);
213 >        }
214 >    }
215 >
216 >    /**
217 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
218 >     * specified collection.  The priority queue has an initial
219 >     * capacity of 110% of the size of the specified collection or 1
220 >     * if the collection is empty.  This priority queue will be sorted
221 >     * according to the same comparator as the given collection, or
222 >     * according to its elements' natural order if the collection is
223 >     * sorted according to its elements' natural order.
224 >     *
225 >     * @param c the collection whose elements are to be placed
226 >     *        into this priority queue.
227 >     * @throws ClassCastException if elements of the specified collection
228 >     *         cannot be compared to one another according to the priority
229 >     *         queue's ordering.
230 >     * @throws NullPointerException if <tt>c</tt> or any element within it
231 >     * is <tt>null</tt>
232 >     */
233 >    public PriorityQueue(PriorityQueue<? extends E> c) {
234 >        initializeArray(c);
235 >        comparator = (Comparator<? super E>)c.comparator();
236 >        fillFromSorted(c);
237 >    }
238 >
239 >    /**
240 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
241 >     * specified collection.  The priority queue has an initial
242 >     * capacity of 110% of the size of the specified collection or 1
243 >     * if the collection is empty.  This priority queue will be sorted
244 >     * according to the same comparator as the given collection, or
245 >     * according to its elements' natural order if the collection is
246 >     * sorted according to its elements' natural order.
247 >     *
248 >     * @param c the collection whose elements are to be placed
249 >     *        into this priority queue.
250 >     * @throws ClassCastException if elements of the specified collection
251 >     *         cannot be compared to one another according to the priority
252 >     *         queue's ordering.
253 >     * @throws NullPointerException if <tt>c</tt> or any element within it
254 >     * is <tt>null</tt>
255 >     */
256 >    public PriorityQueue(SortedSet<? extends E> c) {
257 >        initializeArray(c);
258 >        comparator = (Comparator<? super E>)c.comparator();
259 >        fillFromSorted(c);
260 >    }
261 >
262 >    /**
263 >     * Resize array, if necessary, to be able to hold given index
264 >     */
265 >    private void grow(int index) {
266 >        int newlen = queue.length;
267 >        if (index < newlen) // don't need to grow
268 >            return;
269 >        if (index == Integer.MAX_VALUE)
270 >            throw new OutOfMemoryError();
271 >        while (newlen <= index) {
272 >            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
273 >                newlen = Integer.MAX_VALUE;
274 >            else
275 >                newlen <<= 2;
276 >        }
277 >        Object[] newQueue = new Object[newlen];
278 >        System.arraycopy(queue, 0, newQueue, 0, queue.length);
279 >        queue = newQueue;
280      }
281 +            
282 +
283 +    /**
284 +     * Inserts the specified element into this priority queue.
285 +     *
286 +     * @return <tt>true</tt>
287 +     * @throws ClassCastException if the specified element cannot be compared
288 +     * with elements currently in the priority queue according
289 +     * to the priority queue's ordering.
290 +     * @throws NullPointerException if the specified element is <tt>null</tt>.
291 +     */
292 +    public boolean offer(E o) {
293 +        if (o == null)
294 +            throw new NullPointerException();
295 +        modCount++;
296 +        ++size;
297 +
298 +        // Grow backing store if necessary
299 +        if (size >= queue.length)
300 +            grow(size);
301 +
302 +        queue[size] = o;
303 +        fixUp(size);
304 +        return true;
305 +    }
306 +
307      public E peek() {
308 <        return null;
308 >        if (size == 0)
309 >            return null;
310 >        return (E) queue[1];
311      }
312  
313 <    public boolean isEmpty() {
313 >    // Collection Methods - the first two override to update docs
314 >
315 >    /**
316 >     * Adds the specified element to this queue.
317 >     * @return <tt>true</tt> (as per the general contract of
318 >     * <tt>Collection.add</tt>).
319 >     *
320 >     * @throws NullPointerException if the specified element is <tt>null</tt>.
321 >     * @throws ClassCastException if the specified element cannot be compared
322 >     * with elements currently in the priority queue according
323 >     * to the priority queue's ordering.
324 >     */
325 >    public boolean add(E o) {
326 >        return offer(o);
327 >    }
328 >
329 >    public boolean remove(Object o) {
330 >        if (o == null)
331 >            return false;
332 >
333 >        if (comparator == null) {
334 >            for (int i = 1; i <= size; i++) {
335 >                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
336 >                    removeAt(i);
337 >                    return true;
338 >                }
339 >            }
340 >        } else {
341 >            for (int i = 1; i <= size; i++) {
342 >                if (comparator.compare((E)queue[i], (E)o) == 0) {
343 >                    removeAt(i);
344 >                    return true;
345 >                }
346 >            }
347 >        }
348          return false;
349      }
350 +
351 +    /**
352 +     * Returns an iterator over the elements in this queue. The iterator
353 +     * does not return the elements in any particular order.
354 +     *
355 +     * @return an iterator over the elements in this queue.
356 +     */
357 +    public Iterator<E> iterator() {
358 +        return new Itr();
359 +    }
360 +
361 +    private class Itr implements Iterator<E> {
362 +
363 +        /**
364 +         * Index (into queue array) of element to be returned by
365 +         * subsequent call to next.
366 +         */
367 +        private int cursor = 1;
368 +
369 +        /**
370 +         * Index of element returned by most recent call to next,
371 +         * unless that element came from the forgetMeNot list.
372 +         * Reset to 0 if element is deleted by a call to remove.
373 +         */
374 +        private int lastRet = 0;
375 +
376 +        /**
377 +         * The modCount value that the iterator believes that the backing
378 +         * List should have.  If this expectation is violated, the iterator
379 +         * has detected concurrent modification.
380 +         */
381 +        private int expectedModCount = modCount;
382 +
383 +        /**
384 +         * A list of elements that were moved from the unvisited portion of
385 +         * the heap into the visited portion as a result of "unlucky" element
386 +         * removals during the iteration.  (Unlucky element removals are those
387 +         * that require a fixup instead of a fixdown.)  We must visit all of
388 +         * the elements in this list to complete the iteration.  We do this
389 +         * after we've completed the "normal" iteration.
390 +         *
391 +         * We expect that most iterations, even those involving removals,
392 +         * will not use need to store elements in this field.
393 +         */
394 +        private ArrayList<E> forgetMeNot = null;
395 +
396 +        /**
397 +         * Element returned by the most recent call to next iff that
398 +         * element was drawn from the forgetMeNot list.
399 +         */
400 +        private Object lastRetElt = null;
401 +
402 +        public boolean hasNext() {
403 +            return cursor <= size || forgetMeNot != null;
404 +        }
405 +
406 +        public E next() {
407 +            checkForComodification();
408 +            E result;
409 +            if (cursor <= size) {
410 +                result = (E) queue[cursor];
411 +                lastRet = cursor++;
412 +            }
413 +            else if (forgetMeNot == null)
414 +                throw new NoSuchElementException();
415 +            else {
416 +                int remaining = forgetMeNot.size();
417 +                result = forgetMeNot.remove(remaining - 1);
418 +                if (remaining == 1)
419 +                    forgetMeNot = null;
420 +                lastRet = 0;
421 +                lastRetElt = result;
422 +            }
423 +            return result;
424 +        }
425 +
426 +        public void remove() {
427 +            checkForComodification();
428 +
429 +            if (lastRet != 0) {
430 +                E moved = PriorityQueue.this.removeAt(lastRet);
431 +                lastRet = 0;
432 +                if (moved == null) {
433 +                    cursor--;
434 +                } else {
435 +                    if (forgetMeNot == null)
436 +                        forgetMeNot = new ArrayList<E>();
437 +                    forgetMeNot.add(moved);
438 +                }
439 +            } else if (lastRetElt != null) {
440 +                PriorityQueue.this.remove(lastRetElt);
441 +                lastRetElt = null;
442 +            } else {
443 +                throw new IllegalStateException();
444 +            }
445 +
446 +            expectedModCount = modCount;
447 +        }
448 +
449 +        final void checkForComodification() {
450 +            if (modCount != expectedModCount)
451 +                throw new ConcurrentModificationException();
452 +        }
453 +    }
454 +
455      public int size() {
456 <        return 0;
456 >        return size;
457      }
458 <    public Object[] toArray() {
459 <        return null;
458 >
459 >    /**
460 >     * Remove all elements from the priority queue.
461 >     */
462 >    public void clear() {
463 >        modCount++;
464 >
465 >        // Null out element references to prevent memory leak
466 >        for (int i=1; i<=size; i++)
467 >            queue[i] = null;
468 >
469 >        size = 0;
470      }
471  
472 <    public <T> T[] toArray(T[] array) {
472 >    public E poll() {
473 >        if (size == 0)
474 >            return null;
475 >        modCount++;
476 >
477 >        E result = (E) queue[1];
478 >        queue[1] = queue[size];
479 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
480 >        if (size > 1)
481 >            fixDown(1);
482 >
483 >        return result;
484 >    }
485 >
486 >    /**
487 >     * Removes and returns the ith element from queue.  (Recall that queue
488 >     * is one-based, so 1 <= i <= size.)
489 >     *
490 >     * Normally this method leaves the elements at positions from 1 up to i-1,
491 >     * inclusive, untouched.  Under these circumstances, it returns null.
492 >     * Occasionally, in order to maintain the heap invariant, it must move
493 >     * the last element of the list to some index in the range [2, i-1],
494 >     * and move the element previously at position (i/2) to position i.
495 >     * Under these circumstances, this method returns the element that was
496 >     * previously at the end of the list and is now at some position between
497 >     * 2 and i-1 inclusive.
498 >     */
499 >    private E removeAt(int i) {
500 >        assert i > 0 && i <= size;
501 >        modCount++;
502 >
503 >        E moved = (E) queue[size];
504 >        queue[i] = moved;
505 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
506 >        if (i <= size) {
507 >            fixDown(i);
508 >            if (queue[i] == moved) {
509 >                fixUp(i);
510 >                if (queue[i] != moved)
511 >                    return moved;
512 >            }
513 >        }
514          return null;
515      }
516  
517 +    /**
518 +     * Establishes the heap invariant (described above) assuming the heap
519 +     * satisfies the invariant except possibly for the leaf-node indexed by k
520 +     * (which may have a nextExecutionTime less than its parent's).
521 +     *
522 +     * This method functions by "promoting" queue[k] up the hierarchy
523 +     * (by swapping it with its parent) repeatedly until queue[k]
524 +     * is greater than or equal to its parent.
525 +     */
526 +    private void fixUp(int k) {
527 +        if (comparator == null) {
528 +            while (k > 1) {
529 +                int j = k >> 1;
530 +                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
531 +                    break;
532 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
533 +                k = j;
534 +            }
535 +        } else {
536 +            while (k > 1) {
537 +                int j = k >>> 1;
538 +                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
539 +                    break;
540 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
541 +                k = j;
542 +            }
543 +        }
544 +    }
545 +
546 +    /**
547 +     * Establishes the heap invariant (described above) in the subtree
548 +     * rooted at k, which is assumed to satisfy the heap invariant except
549 +     * possibly for node k itself (which may be greater than its children).
550 +     *
551 +     * This method functions by "demoting" queue[k] down the hierarchy
552 +     * (by swapping it with its smaller child) repeatedly until queue[k]
553 +     * is less than or equal to its children.
554 +     */
555 +    private void fixDown(int k) {
556 +        int j;
557 +        if (comparator == null) {
558 +            while ((j = k << 1) <= size && (j > 0)) {
559 +                if (j<size &&
560 +                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
561 +                    j++; // j indexes smallest kid
562 +
563 +                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
564 +                    break;
565 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
566 +                k = j;
567 +            }
568 +        } else {
569 +            while ((j = k << 1) <= size && (j > 0)) {
570 +                if (j<size &&
571 +                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
572 +                    j++; // j indexes smallest kid
573 +                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
574 +                    break;
575 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
576 +                k = j;
577 +            }
578 +        }
579 +    }
580 +
581 +    /**
582 +     * Establishes the heap invariant (described above) in the entire tree,
583 +     * assuming nothing about the order of the elements prior to the call.
584 +     */
585 +    private void heapify() {
586 +        for (int i = size/2; i >= 1; i--)
587 +            fixDown(i);
588 +    }
589 +
590 +    /**
591 +     * Returns the comparator used to order this collection, or <tt>null</tt>
592 +     * if this collection is sorted according to its elements natural ordering
593 +     * (using <tt>Comparable</tt>).
594 +     *
595 +     * @return the comparator used to order this collection, or <tt>null</tt>
596 +     * if this collection is sorted according to its elements natural ordering.
597 +     */
598 +    public Comparator<? super E> comparator() {
599 +        return comparator;
600 +    }
601 +
602 +    /**
603 +     * Save the state of the instance to a stream (that
604 +     * is, serialize it).
605 +     *
606 +     * @serialData The length of the array backing the instance is
607 +     * emitted (int), followed by all of its elements (each an
608 +     * <tt>Object</tt>) in the proper order.
609 +     * @param s the stream
610 +     */
611 +    private void writeObject(java.io.ObjectOutputStream s)
612 +        throws java.io.IOException{
613 +        // Write out element count, and any hidden stuff
614 +        s.defaultWriteObject();
615 +
616 +        // Write out array length
617 +        s.writeInt(queue.length);
618 +
619 +        // Write out all elements in the proper order.
620 +        for (int i=1; i<=size; i++)
621 +            s.writeObject(queue[i]);
622 +    }
623 +
624 +    /**
625 +     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
626 +     * deserialize it).
627 +     * @param s the stream
628 +     */
629 +    private void readObject(java.io.ObjectInputStream s)
630 +        throws java.io.IOException, ClassNotFoundException {
631 +        // Read in size, and any hidden stuff
632 +        s.defaultReadObject();
633 +
634 +        // Read in array length and allocate array
635 +        int arrayLength = s.readInt();
636 +        queue = new Object[arrayLength];
637 +
638 +        // Read in all elements in the proper order.
639 +        for (int i=1; i<=size; i++)
640 +            queue[i] = (E) s.readObject();
641 +    }
642 +
643   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines