ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.5 by dl, Tue May 27 18:20:06 2003 UTC

# Line 1 | Line 1
1 < package java.util;
2 <
3 < import java.util.*;
1 > package java.util;
2  
3   /**
4 < * An unbounded (resizable) priority queue based on a priority
5 < * heap.The take operation returns the least element with respect to
6 < * the given ordering. (If more than one element is tied for least
7 < * value, one of them is arbitrarily chosen to be returned -- no
8 < * guarantees are made for ordering across ties.) Ordering follows the
9 < * java.util.Collection conventions: Either the elements must be
10 < * Comparable, or a Comparator must be supplied. Comparison failures
11 < * throw ClassCastExceptions during insertions and extractions.
12 < **/
13 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
14 <    public PriorityQueue(int initialCapacity) {}
15 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
4 > * An unbounded priority queue based on a priority heap.  This queue orders
5 > * elements according to the order specified at creation time.  This order is
6 > * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
7 > * either according to their <i>natural order</i> (see {@link Comparable}), or
8 > * according to a {@link Comparator}, depending on which constructor is used.
9 > * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
10 > * minimal element with respect to the specified ordering.  If multiple
11 > * these elements are tied for least value, no guarantees are made as to
12 > * which of elements is returned.
13 > *
14 > * <p>Each priority queue has a <i>capacity</i>.  The capacity is the size of
15 > * the array used to store the elements on the queue.  It is always at least
16 > * as large as the queue size.  As elements are added to a priority list,
17 > * its capacity grows automatically.  The details of the growth policy are not
18 > * specified.
19 > *
20 > *<p>Implementation note: this implementation provides O(log(n)) time for
21 > * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
22 > * methods; linear time for the <tt>remove(Object)</tt> and
23 > * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
24 > * <tt>element</tt>, and <tt>size</tt> methods.
25 > *
26 > * <p>This class is a member of the
27 > * <a href="{@docRoot}/../guide/collections/index.html">
28 > * Java Collections Framework</a>.
29 > */
30 > public class PriorityQueue<E> extends AbstractQueue<E>
31 >                              implements Queue<E>
32 > {
33 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
34  
35 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
35 >    /**
36 >     * Priority queue represented as a balanced binary heap: the two children
37 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
38 >     * ordered by comparator, or by the elements' natural ordering, if
39 >     * comparator is null:  For each node n in the heap, and each descendant
40 >     * of n, d, n <= d.
41 >     *
42 >     * The element with the lowest value is in queue[1] (assuming the queue is
43 >     * nonempty). A one-based array is used in preference to the traditional
44 >     * zero-based array to simplify parent and child calculations.
45 >     *
46 >     * queue.length must be >= 2, even if size == 0.
47 >     */
48 >    private transient E[] queue;
49  
50 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
50 >    /**
51 >     * The number of elements in the priority queue.
52 >     */
53 >    private int size = 0;
54  
55 <    public boolean add(E x) {
56 <        return false;
57 <    }
58 <    public boolean offer(E x) {
59 <        return false;
60 <    }
61 <    public boolean remove(Object x) {
62 <        return false;
55 >    /**
56 >     * The comparator, or null if priority queue uses elements'
57 >     * natural ordering.
58 >     */
59 >    private final Comparator<E> comparator;
60 >
61 >    /**
62 >     * The number of times this priority queue has been
63 >     * <i>structurally modified</i>.  See AbstractList for gory details.
64 >     */
65 >    private transient int modCount = 0;
66 >
67 >    /**
68 >     * Create a new priority queue with the default initial capacity (11)
69 >     * that orders its elements according to their natural ordering.
70 >     */
71 >    public PriorityQueue() {
72 >        this(DEFAULT_INITIAL_CAPACITY);
73      }
74  
75 <    public E remove() {
76 <        return null;
75 >    /**
76 >     * Create a new priority queue with the specified initial capacity
77 >     * that orders its elements according to their natural ordering.
78 >     *
79 >     * @param initialCapacity the initial capacity for this priority queue.
80 >     */
81 >    public PriorityQueue(int initialCapacity) {
82 >        this(initialCapacity, null);
83      }
84 <    public Iterator<E> iterator() {
85 <      return null;
84 >
85 >    /**
86 >     * Create a new priority queue with the specified initial capacity (11)
87 >     * that orders its elements according to the specified comparator.
88 >     *
89 >     * @param initialCapacity the initial capacity for this priority queue.
90 >     * @param comparator the comparator used to order this priority queue.
91 >     */
92 >    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
93 >        if (initialCapacity < 1)
94 >            initialCapacity = 1;
95 >        queue = new E[initialCapacity + 1];
96 >        this.comparator = comparator;
97      }
98  
99 <    public E element() {
100 <        return null;
99 >    /**
100 >     * Create a new priority queue containing the elements in the specified
101 >     * collection.  The priority queue has an initial capacity of 110% of the
102 >     * size of the specified collection. If the specified collection
103 >     * implements the {@link Sorted} interface, the priority queue will be
104 >     * sorted according to the same comparator, or according to its elements'
105 >     * natural order if the collection is sorted according to its elements'
106 >     * natural order.  If the specified collection does not implement the
107 >     * <tt>Sorted</tt> interface, the priority queue is ordered according to
108 >     * its elements' natural order.
109 >     *
110 >     * @param initialElements the collection whose elements are to be placed
111 >     *        into this priority queue.
112 >     * @throws ClassCastException if elements of the specified collection
113 >     *         cannot be compared to one another according to the priority
114 >     *         queue's ordering.
115 >     * @throws NullPointerException if the specified collection or an
116 >     *         element of the specified collection is <tt>null</tt>.
117 >     */
118 >    public PriorityQueue(Collection<E> initialElements) {
119 >        int sz = initialElements.size();
120 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
121 >                                            Integer.MAX_VALUE - 1);
122 >        if (initialCapacity < 1)
123 >            initialCapacity = 1;
124 >        queue = new E[initialCapacity + 1];
125 >
126 >        /* Commented out to compile with generics compiler
127 >
128 >        if (initialElements instanceof Sorted) {
129 >            comparator = ((Sorted)initialElements).comparator();
130 >            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
131 >                queue[++size] = i.next();
132 >        } else {
133 >        */
134 >        {
135 >            comparator = null;
136 >            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
137 >                add(i.next());
138 >        }
139      }
140 +
141 +    // Queue Methods
142 +
143 +    /**
144 +     * Remove and return the minimal element from this priority queue if
145 +     * it contains one or more elements, otherwise <tt>null</tt>.  The term
146 +     * <i>minimal</i> is defined according to this priority queue's order.
147 +     *
148 +     * @return the minimal element from this priority queue if it contains
149 +     *         one or more elements, otherwise <tt>null</tt>.
150 +     */
151      public E poll() {
152 <        return null;
152 >        if (size == 0)
153 >            return null;
154 >        return remove(1);
155      }
156 +
157 +    /**
158 +     * Return, but do not remove, the minimal element from the priority queue,
159 +     * or <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
160 +     * defined according to this priority queue's order.  This method returns
161 +     * the same object reference that would be returned by by the
162 +     * <tt>poll</tt> method.  The two methods differ in that this method
163 +     * does not remove the element from the priority queue.
164 +     *
165 +     * @return the minimal element from this priority queue if it contains
166 +     *         one or more elements, otherwise <tt>null</tt>.
167 +     */
168      public E peek() {
169 <        return null;
169 >        return queue[1];
170      }
171  
172 <    public boolean isEmpty() {
172 >    // Collection Methods
173 >
174 >    /**
175 >     * Removes a single instance of the specified element from this priority
176 >     * queue, if it is present.  Returns true if this collection contained the
177 >     * specified element (or equivalently, if this collection changed as a
178 >     * result of the call).
179 >     *
180 >     * @param o element to be removed from this collection, if present.
181 >     * @return <tt>true</tt> if this collection changed as a result of the
182 >     *         call
183 >     * @throws ClassCastException if the specified element cannot be compared
184 >     *            with elements currently in the priority queue according
185 >     *            to the priority queue's ordering.
186 >     * @throws NullPointerException if the specified element is null.
187 >     */
188 >    public boolean remove(Object element) {
189 >        if (element == null)
190 >            throw new NullPointerException();
191 >
192 >        if (comparator == null) {
193 >            for (int i = 1; i <= size; i++) {
194 >                if (((Comparable)queue[i]).compareTo(element) == 0) {
195 >                    remove(i);
196 >                    return true;
197 >                }
198 >            }
199 >        } else {
200 >            for (int i = 1; i <= size; i++) {
201 >                if (comparator.compare(queue[i], (E) element) == 0) {
202 >                    remove(i);
203 >                    return true;
204 >                }
205 >            }
206 >        }
207          return false;
208      }
209 +
210 +    /**
211 +     * Returns an iterator over the elements in this priority queue.  The
212 +     * first element returned by this iterator is the same element that
213 +     * would be returned by a call to <tt>peek</tt>.
214 +     *
215 +     * @return an <tt>Iterator</tt> over the elements in this priority queue.
216 +     */
217 +    public Iterator<E> iterator() {
218 +        return new Itr();
219 +    }
220 +
221 +    private class Itr implements Iterator<E> {
222 +        /**
223 +         * Index (into queue array) of element to be returned by
224 +         * subsequent call to next.
225 +         */
226 +        int cursor = 1;
227 +
228 +        /**
229 +         * Index of element returned by most recent call to next or
230 +         * previous.  Reset to 0 if this element is deleted by a call
231 +         * to remove.
232 +         */
233 +        int lastRet = 0;
234 +
235 +        /**
236 +         * The modCount value that the iterator believes that the backing
237 +         * List should have.  If this expectation is violated, the iterator
238 +         * has detected concurrent modification.
239 +         */
240 +        int expectedModCount = modCount;
241 +
242 +        public boolean hasNext() {
243 +            return cursor <= size;
244 +        }
245 +
246 +        public E next() {
247 +            checkForComodification();
248 +            if (cursor > size)
249 +                throw new NoSuchElementException();
250 +            E result = queue[cursor];
251 +            lastRet = cursor++;
252 +            return result;
253 +        }
254 +
255 +        public void remove() {
256 +            if (lastRet == 0)
257 +                throw new IllegalStateException();
258 +            checkForComodification();
259 +
260 +            PriorityQueue.this.remove(lastRet);
261 +            if (lastRet < cursor)
262 +                cursor--;
263 +            lastRet = 0;
264 +            expectedModCount = modCount;
265 +        }
266 +
267 +        final void checkForComodification() {
268 +            if (modCount != expectedModCount)
269 +                throw new ConcurrentModificationException();
270 +        }
271 +    }
272 +
273 +    /**
274 +     * Returns the number of elements in this priority queue.
275 +     *
276 +     * @return the number of elements in this priority queue.
277 +     */
278      public int size() {
279 <        return 0;
279 >        return size;
280 >    }
281 >
282 >    /**
283 >     * Add the specified element to this priority queue.
284 >     *
285 >     * @param element the element to add.
286 >     * @return true
287 >     * @throws ClassCastException if the specified element cannot be compared
288 >     *            with elements currently in the priority queue according
289 >     *            to the priority queue's ordering.
290 >     * @throws NullPointerException if the specified element is null.
291 >     */
292 >    public boolean offer(E element) {
293 >        if (element == null)
294 >            throw new NullPointerException();
295 >        modCount++;
296 >
297 >        // Grow backing store if necessary
298 >        if (++size == queue.length) {
299 >            E[] newQueue = new E[2 * queue.length];
300 >            System.arraycopy(queue, 0, newQueue, 0, size);
301 >            queue = newQueue;
302 >        }
303 >
304 >        queue[size] = element;
305 >        fixUp(size);
306 >        return true;
307 >    }
308 >
309 >    /**
310 >     * Remove all elements from the priority queue.
311 >     */
312 >    public void clear() {
313 >        modCount++;
314 >
315 >        // Null out element references to prevent memory leak
316 >        for (int i=1; i<=size; i++)
317 >            queue[i] = null;
318 >
319 >        size = 0;
320 >    }
321 >
322 >    /**
323 >     * Removes and returns the ith element from queue.  Recall
324 >     * that queue is one-based, so 1 <= i <= size.
325 >     *
326 >     * XXX: Could further special-case i==size, but is it worth it?
327 >     * XXX: Could special-case i==0, but is it worth it?
328 >     */
329 >    private E remove(int i) {
330 >        assert i <= size;
331 >        modCount++;
332 >
333 >        E result = queue[i];
334 >        queue[i] = queue[size];
335 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
336 >        if (i <= size)
337 >            fixDown(i);
338 >        return result;
339 >    }
340 >
341 >    /**
342 >     * Establishes the heap invariant (described above) assuming the heap
343 >     * satisfies the invariant except possibly for the leaf-node indexed by k
344 >     * (which may have a nextExecutionTime less than its parent's).
345 >     *
346 >     * This method functions by "promoting" queue[k] up the hierarchy
347 >     * (by swapping it with its parent) repeatedly until queue[k]
348 >     * is greater than or equal to its parent.
349 >     */
350 >    private void fixUp(int k) {
351 >        if (comparator == null) {
352 >            while (k > 1) {
353 >                int j = k >> 1;
354 >                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
355 >                    break;
356 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
357 >                k = j;
358 >            }
359 >        } else {
360 >            while (k > 1) {
361 >                int j = k >> 1;
362 >                if (comparator.compare(queue[j], queue[k]) <= 0)
363 >                    break;
364 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
365 >                k = j;
366 >            }
367 >        }
368      }
369 <    public Object[] toArray() {
370 <        return null;
369 >
370 >    /**
371 >     * Establishes the heap invariant (described above) in the subtree
372 >     * rooted at k, which is assumed to satisfy the heap invariant except
373 >     * possibly for node k itself (which may be greater than its children).
374 >     *
375 >     * This method functions by "demoting" queue[k] down the hierarchy
376 >     * (by swapping it with its smaller child) repeatedly until queue[k]
377 >     * is less than or equal to its children.
378 >     */
379 >    private void fixDown(int k) {
380 >        int j;
381 >        if (comparator == null) {
382 >            while ((j = k << 1) <= size) {
383 >                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
384 >                    j++; // j indexes smallest kid
385 >                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
386 >                    break;
387 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
388 >                k = j;
389 >            }
390 >        } else {
391 >            while ((j = k << 1) <= size) {
392 >                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
393 >                    j++; // j indexes smallest kid
394 >                if (comparator.compare(queue[k], queue[j]) <= 0)
395 >                    break;
396 >                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
397 >                k = j;
398 >            }
399 >        }
400 >    }
401 >
402 >    /**
403 >     * Returns the comparator associated with this priority queue, or
404 >     * <tt>null</tt> if it uses its elements' natural ordering.
405 >     *
406 >     * @return the comparator associated with this priority queue, or
407 >     *         <tt>null</tt> if it uses its elements' natural ordering.
408 >     */
409 >    Comparator comparator() {
410 >        return comparator;
411      }
412  
413 <    public <T> T[] toArray(T[] array) {
414 <        return null;
413 >    /**
414 >     * Save the state of the instance to a stream (that
415 >     * is, serialize it).
416 >     *
417 >     * @serialData The length of the array backing the instance is
418 >     * emitted (int), followed by all of its elements (each an
419 >     * <tt>Object</tt>) in the proper order.
420 >     */
421 >    private synchronized void writeObject(java.io.ObjectOutputStream s)
422 >        throws java.io.IOException{
423 >        // Write out element count, and any hidden stuff
424 >        s.defaultWriteObject();
425 >
426 >        // Write out array length
427 >        s.writeInt(queue.length);
428 >
429 >        // Write out all elements in the proper order.
430 >        for (int i=0; i<size; i++)
431 >            s.writeObject(queue[i]);
432 >    }
433 >
434 >    /**
435 >     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
436 >     * deserialize it).
437 >     */
438 >    private synchronized void readObject(java.io.ObjectInputStream s)
439 >        throws java.io.IOException, ClassNotFoundException {
440 >        // Read in size, and any hidden stuff
441 >        s.defaultReadObject();
442 >
443 >        // Read in array length and allocate array
444 >        int arrayLength = s.readInt();
445 >        queue = new E[arrayLength];
446 >
447 >        // Read in all elements in the proper order.
448 >        for (int i=0; i<size; i++)
449 >            queue[i] = (E)s.readObject();
450      }
451  
452   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines