ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.52 by dl, Tue Nov 22 11:44:47 2005 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * @(#)PriorityQueue.java       1.8 05/08/27
3 > *
4 > * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7  
8 < import java.util.*;
8 > package java.util;
9 > import java.util.*; // for javadoc (till 6280605 is fixed)
10  
11   /**
12 < * An unbounded (resizable) priority queue based on a priority
13 < * heap.The take operation returns the least element with respect to
14 < * the given ordering. (If more than one element is tied for least
15 < * value, one of them is arbitrarily chosen to be returned -- no
16 < * guarantees are made for ordering across ties.) Ordering follows the
17 < * java.util.Collection conventions: Either the elements must be
18 < * Comparable, or a Comparator must be supplied. Comparison failures
19 < * throw ClassCastExceptions during insertions and extractions.
20 < **/
21 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
22 <    public PriorityQueue(int initialCapacity) {}
23 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
24 <
25 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
26 <
27 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
28 <
29 <    public boolean add(E x) {
30 <        return false;
12 > * An unbounded priority {@linkplain Queue queue} based on a priority
13 > * heap.  The elements of the priority queue are ordered according to
14 > * their {@linkplain Comparable natural ordering}, or by a {@link
15 > * Comparator} provided at queue construction time, depending on which
16 > * constructor is used.  A priority queue does not permit
17 > * <tt>null</tt> elements.  A priority queue relying on natural
18 > * ordering also does not permit insertion of non-comparable objects
19 > * (doing so may result in <tt>ClassCastException</tt>).
20 > *
21 > * <p>The <em>head</em> of this queue is the <em>least</em> element
22 > * with respect to the specified ordering.  If multiple elements are
23 > * tied for least value, the head is one of those elements -- ties are
24 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
25 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 > * element at the head of the queue.
27 > *
28 > * <p>A priority queue is unbounded, but has an internal
29 > * <i>capacity</i> governing the size of an array used to store the
30 > * elements on the queue.  It is always at least as large as the queue
31 > * size.  As elements are added to a priority queue, its capacity
32 > * grows automatically.  The details of the growth policy are not
33 > * specified.
34 > *
35 > * <p>This class and its iterator implement all of the
36 > * <em>optional</em> methods of the {@link Collection} and {@link
37 > * Iterator} interfaces.  The Iterator provided in method {@link
38 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
39 > * the priority queue in any particular order. If you need ordered
40 > * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
41 > *
42 > * <p> <strong>Note that this implementation is not synchronized.</strong>
43 > * Multiple threads should not access a <tt>PriorityQueue</tt>
44 > * instance concurrently if any of the threads modifies the list
45 > * structurally. Instead, use the thread-safe {@link
46 > * java.util.concurrent.PriorityBlockingQueue} class.
47 > *
48 > * <p>Implementation note: this implementation provides O(log(n)) time
49 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
50 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
51 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
52 > * constant time for the retrieval methods (<tt>peek</tt>,
53 > * <tt>element</tt>, and <tt>size</tt>).
54 > *
55 > * <p>This class is a member of the
56 > * <a href="{@docRoot}/../guide/collections/index.html">
57 > * Java Collections Framework</a>.
58 > * @since 1.5
59 > * @version 1.8, 08/27/05
60 > * @author Josh Bloch
61 > * @param <E> the type of elements held in this collection
62 > */
63 > public class PriorityQueue<E> extends AbstractQueue<E>
64 >    implements java.io.Serializable {
65 >
66 >    private static final long serialVersionUID = -7720805057305804111L;
67 >
68 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
69 >
70 >    /**
71 >     * Priority queue represented as a balanced binary heap: the two children
72 >     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
73 >     * ordered by comparator, or by the elements' natural ordering, if
74 >     * comparator is null:  For each node n in the heap and each descendant d
75 >     * of n, n <= d.
76 >     *
77 >     * The element with the lowest value is in queue[1], assuming the queue is
78 >     * nonempty.  (A one-based array is used in preference to the traditional
79 >     * zero-based array to simplify parent and child calculations.)
80 >     *
81 >     * queue.length must be >= 2, even if size == 0.
82 >     */
83 >    private transient Object[] queue;
84 >
85 >    /**
86 >     * The number of elements in the priority queue.
87 >     */
88 >    private int size = 0;
89 >
90 >    /**
91 >     * The comparator, or null if priority queue uses elements'
92 >     * natural ordering.
93 >     */
94 >    private final Comparator<? super E> comparator;
95 >
96 >    /**
97 >     * The number of times this priority queue has been
98 >     * <i>structurally modified</i>.  See AbstractList for gory details.
99 >     */
100 >    private transient int modCount = 0;
101 >
102 >    /**
103 >     * Creates a <tt>PriorityQueue</tt> with the default initial
104 >     * capacity (11) that orders its elements according to their
105 >     * {@linkplain Comparable natural ordering}.
106 >     */
107 >    public PriorityQueue() {
108 >        this(DEFAULT_INITIAL_CAPACITY, null);
109 >    }
110 >
111 >    /**
112 >     * Creates a <tt>PriorityQueue</tt> with the specified initial
113 >     * capacity that orders its elements according to their
114 >     * {@linkplain Comparable natural ordering}.
115 >     *
116 >     * @param initialCapacity the initial capacity for this priority queue
117 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
118 >     * than 1
119 >     */
120 >    public PriorityQueue(int initialCapacity) {
121 >        this(initialCapacity, null);
122      }
123 <    public boolean offer(E x) {
124 <        return false;
123 >
124 >    /**
125 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
126 >     * that orders its elements according to the specified comparator.
127 >     *
128 >     * @param  initialCapacity the initial capacity for this priority queue
129 >     * @param  comparator the comparator that will be used to order
130 >     *         this priority queue.  If <tt>null</tt>, the <i>natural
131 >     *         ordering</i> of the elements will be used.
132 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
133 >     *         less than 1
134 >     */
135 >    public PriorityQueue(int initialCapacity,
136 >                         Comparator<? super E> comparator) {
137 >        if (initialCapacity < 1)
138 >            throw new IllegalArgumentException();
139 >        this.queue = new Object[initialCapacity + 1];
140 >        this.comparator = comparator;
141      }
142 <    public boolean remove(Object x) {
143 <        return false;
142 >
143 >    /**
144 >     * Common code to initialize underlying queue array across
145 >     * constructors below.
146 >     */
147 >    private void initializeArray(Collection<? extends E> c) {
148 >        int sz = c.size();
149 >        int initialCapacity = (int)Math.min((sz * 110L) / 100,
150 >                                            Integer.MAX_VALUE - 1);
151 >        if (initialCapacity < 1)
152 >            initialCapacity = 1;
153 >
154 >        this.queue = new Object[initialCapacity + 1];
155      }
156  
157 <    public E remove() {
158 <        return null;
157 >    /**
158 >     * Initially fill elements of the queue array under the
159 >     * knowledge that it is sorted or is another PQ, in which
160 >     * case we can just place the elements in the order presented.
161 >     */
162 >    private void fillFromSorted(Collection<? extends E> c) {
163 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
164 >            int k = ++size;
165 >            if (k >= queue.length)
166 >                grow(k);
167 >            queue[k] = i.next();
168 >        }
169      }
170 <    public Iterator<E> iterator() {
171 <      return null;
170 >
171 >    /**
172 >     * Initially fill elements of the queue array that is not to our knowledge
173 >     * sorted, so we must rearrange the elements to guarantee the heap
174 >     * invariant.
175 >     */
176 >    private void fillFromUnsorted(Collection<? extends E> c) {
177 >        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); ) {
178 >            int k = ++size;
179 >            if (k >= queue.length)
180 >                grow(k);
181 >            queue[k] = i.next();
182 >        }
183 >        heapify();
184      }
185  
186 <    public E element() {
187 <        return null;
186 >    /**
187 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
188 >     * specified collection.  The priority queue has an initial
189 >     * capacity of 110% of the size of the specified collection or 1
190 >     * if the collection is empty.  If the specified collection is an
191 >     * instance of a {@link java.util.SortedSet} or is another
192 >     * <tt>PriorityQueue</tt>, the priority queue will be ordered
193 >     * according to the same ordering.  Otherwise, this priority queue
194 >     * will be ordered according to the natural ordering of its elements.
195 >     *
196 >     * @param  c the collection whose elements are to be placed
197 >     *         into this priority queue
198 >     * @throws ClassCastException if elements of the specified collection
199 >     *         cannot be compared to one another according to the priority
200 >     *         queue's ordering
201 >     * @throws NullPointerException if the specified collection or any
202 >     *         of its elements are null
203 >     */
204 >    public PriorityQueue(Collection<? extends E> c) {
205 >        initializeArray(c);
206 >        if (c instanceof SortedSet) {
207 >            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
208 >            comparator = (Comparator<? super E>)s.comparator();
209 >            fillFromSorted(s);
210 >        } else if (c instanceof PriorityQueue) {
211 >            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
212 >            comparator = (Comparator<? super E>)s.comparator();
213 >            fillFromSorted(s);
214 >        } else {
215 >            comparator = null;
216 >            fillFromUnsorted(c);
217 >        }
218      }
219 <    public E poll() {
220 <        return null;
219 >
220 >    /**
221 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
222 >     * specified priority queue.  The priority queue has an initial
223 >     * capacity of 110% of the size of the specified priority queue or
224 >     * 1 if the priority queue is empty.  This priority queue will be
225 >     * ordered according to the same ordering as the given priority
226 >     * queue.
227 >     *
228 >     * @param  c the priority queue whose elements are to be placed
229 >     *         into this priority queue
230 >     * @throws ClassCastException if elements of <tt>c</tt> cannot be
231 >     *         compared to one another according to <tt>c</tt>'s
232 >     *         ordering
233 >     * @throws NullPointerException if the specified priority queue or any
234 >     *         of its elements are null
235 >     */
236 >    public PriorityQueue(PriorityQueue<? extends E> c) {
237 >        initializeArray(c);
238 >        comparator = (Comparator<? super E>)c.comparator();
239 >        fillFromSorted(c);
240 >    }
241 >
242 >    /**
243 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
244 >     * specified sorted set.  The priority queue has an initial
245 >     * capacity of 110% of the size of the specified sorted set or 1
246 >     * if the sorted set is empty.  This priority queue will be ordered
247 >     * according to the same ordering as the given sorted set.
248 >     *
249 >     * @param  c the sorted set whose elements are to be placed
250 >     *         into this priority queue.
251 >     * @throws ClassCastException if elements of the specified sorted
252 >     *         set cannot be compared to one another according to the
253 >     *         sorted set's ordering
254 >     * @throws NullPointerException if the specified sorted set or any
255 >     *         of its elements are null
256 >     */
257 >    public PriorityQueue(SortedSet<? extends E> c) {
258 >        initializeArray(c);
259 >        comparator = (Comparator<? super E>)c.comparator();
260 >        fillFromSorted(c);
261 >    }
262 >
263 >    /**
264 >     * Resize array, if necessary, to be able to hold given index.
265 >     */
266 >    private void grow(int index) {
267 >        int newlen = queue.length;
268 >        if (index < newlen) // don't need to grow
269 >            return;
270 >        if (index == Integer.MAX_VALUE)
271 >            throw new OutOfMemoryError();
272 >        while (newlen <= index) {
273 >            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
274 >                newlen = Integer.MAX_VALUE;
275 >            else
276 >                newlen <<= 2;
277 >        }
278 >        queue = Arrays.copyOf(queue, newlen);
279      }
280 +
281 +    /**
282 +     * Inserts the specified element into this priority queue.
283 +     *
284 +     * @return <tt>true</tt> (as specified by {@link Collection#add})
285 +     * @throws ClassCastException if the specified element cannot be
286 +     *         compared with elements currently in this priority queue
287 +     *         according to the priority queue's ordering
288 +     * @throws NullPointerException if the specified element is null
289 +     */
290 +    public boolean add(E e) {
291 +        return offer(e);
292 +    }
293 +
294 +    /**
295 +     * Inserts the specified element into this priority queue.
296 +     *
297 +     * @return <tt>true</tt> (as specified by {@link Queue#offer})
298 +     * @throws ClassCastException if the specified element cannot be
299 +     *         compared with elements currently in this priority queue
300 +     *         according to the priority queue's ordering
301 +     * @throws NullPointerException if the specified element is null
302 +     */
303 +    public boolean offer(E e) {
304 +        if (e == null)
305 +            throw new NullPointerException();
306 +        modCount++;
307 +        ++size;
308 +
309 +        // Grow backing store if necessary
310 +        if (size >= queue.length)
311 +            grow(size);
312 +
313 +        queue[size] = e;
314 +        fixUp(size);
315 +        return true;
316 +    }
317 +
318      public E peek() {
319 <        return null;
319 >        if (size == 0)
320 >            return null;
321 >        return (E) queue[1];
322      }
323  
324 <    public boolean isEmpty() {
325 <        return false;
324 >    private int indexOf(Object o) {
325 >        if (o == null)
326 >            return -1;
327 >        for (int i = 1; i <= size; i++)
328 >            if (o.equals(queue[i]))
329 >                return i;
330 >        return -1;
331      }
332 <    public int size() {
333 <        return 0;
332 >
333 >    /**
334 >     * Removes a single instance of the specified element from this queue,
335 >     * if it is present.  More formally, removes an element <tt>e</tt> such
336 >     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
337 >     * elements.  Returns true if this queue contained the specified element
338 >     * (or equivalently, if this queue changed as a result of the call).
339 >     *
340 >     * @param o element to be removed from this queue, if present
341 >     * @return <tt>true</tt> if this queue changed as a result of the call
342 >     */
343 >    public boolean remove(Object o) {
344 >        int i = indexOf(o);
345 >        if (i == -1)
346 >            return false;
347 >        else {
348 >            removeAt(i);
349 >            return true;
350 >        }
351 >    }
352 >
353 >    /**
354 >     * Returns <tt>true</tt> if this queue contains the specified element.
355 >     * More formally, returns <tt>true</tt> if and only if this queue contains
356 >     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
357 >     *
358 >     * @param o object to be checked for containment in this queue
359 >     * @return <tt>true</tt> if this queue contains the specified element
360 >     */
361 >    public boolean contains(Object o) {
362 >        return indexOf(o) != -1;
363      }
364 +
365 +    /**
366 +     * Returns an array containing all of the elements in this queue,
367 +     * The elements are in no particular order.
368 +     *
369 +     * <p>The returned array will be "safe" in that no references to it are
370 +     * maintained by this list.  (In other words, this method must allocate
371 +     * a new array).  The caller is thus free to modify the returned array.
372 +     *
373 +     * @return an array containing all of the elements in this queue.
374 +     */
375      public Object[] toArray() {
376 <        return null;
376 >        return Arrays.copyOfRange(queue, 1, size+1);
377 >    }
378 >
379 >    /**
380 >     * Returns an array containing all of the elements in this queue.
381 >     * The elements are in no particular order.  The runtime type of
382 >     * the returned array is that of the specified array.  If the queue
383 >     * fits in the specified array, it is returned therein.
384 >     * Otherwise, a new array is allocated with the runtime type of
385 >     * the specified array and the size of this queue.
386 >     *
387 >     * <p>If the queue fits in the specified array with room to spare
388 >     * (i.e., the array has more elements than the queue), the element in
389 >     * the array immediately following the end of the collection is set to
390 >     * <tt>null</tt>.  (This is useful in determining the length of the
391 >     * queue <i>only</i> if the caller knows that the queue does not contain
392 >     * any null elements.)
393 >     *
394 >     * @param a the array into which the elements of the queue are to
395 >     *          be stored, if it is big enough; otherwise, a new array of the
396 >     *          same runtime type is allocated for this purpose.
397 >     * @return an array containing the elements of the queue
398 >     * @throws ArrayStoreException if the runtime type of the specified array
399 >     *         is not a supertype of the runtime type of every element in
400 >     *         this queue
401 >     * @throws NullPointerException if the specified array is null
402 >     */
403 >    public <T> T[] toArray(T[] a) {
404 >        if (a.length < size)
405 >            // Make a new array of a's runtime type, but my contents:
406 >            return (T[]) Arrays.copyOfRange(queue, 1, size+1, a.getClass());
407 >        System.arraycopy(queue, 1, a, 0, size);
408 >        if (a.length > size)
409 >            a[size] = null;
410 >        return a;
411 >    }
412 >
413 >    /**
414 >     * Returns an iterator over the elements in this queue. The iterator
415 >     * does not return the elements in any particular order.
416 >     *
417 >     * @return an iterator over the elements in this queue
418 >     */
419 >    public Iterator<E> iterator() {
420 >        return new Itr();
421      }
422  
423 <    public <T> T[] toArray(T[] array) {
423 >    private class Itr implements Iterator<E> {
424 >
425 >        /**
426 >         * Index (into queue array) of element to be returned by
427 >         * subsequent call to next.
428 >         */
429 >        private int cursor = 1;
430 >
431 >        /**
432 >         * Index of element returned by most recent call to next,
433 >         * unless that element came from the forgetMeNot list.
434 >         * Reset to 0 if element is deleted by a call to remove.
435 >         */
436 >        private int lastRet = 0;
437 >
438 >        /**
439 >         * The modCount value that the iterator believes that the backing
440 >         * List should have.  If this expectation is violated, the iterator
441 >         * has detected concurrent modification.
442 >         */
443 >        private int expectedModCount = modCount;
444 >
445 >        /**
446 >         * A list of elements that were moved from the unvisited portion of
447 >         * the heap into the visited portion as a result of "unlucky" element
448 >         * removals during the iteration.  (Unlucky element removals are those
449 >         * that require a fixup instead of a fixdown.)  We must visit all of
450 >         * the elements in this list to complete the iteration.  We do this
451 >         * after we've completed the "normal" iteration.
452 >         *
453 >         * We expect that most iterations, even those involving removals,
454 >         * will not use need to store elements in this field.
455 >         */
456 >        private ArrayList<E> forgetMeNot = null;
457 >
458 >        /**
459 >         * Element returned by the most recent call to next iff that
460 >         * element was drawn from the forgetMeNot list.
461 >         */
462 >        private Object lastRetElt = null;
463 >
464 >        public boolean hasNext() {
465 >            return cursor <= size || forgetMeNot != null;
466 >        }
467 >
468 >        public E next() {
469 >            checkForComodification();
470 >            E result;
471 >            if (cursor <= size) {
472 >                result = (E) queue[cursor];
473 >                lastRet = cursor++;
474 >            }
475 >            else if (forgetMeNot == null)
476 >                throw new NoSuchElementException();
477 >            else {
478 >                int remaining = forgetMeNot.size();
479 >                result = forgetMeNot.remove(remaining - 1);
480 >                if (remaining == 1)
481 >                    forgetMeNot = null;
482 >                lastRet = 0;
483 >                lastRetElt = result;
484 >            }
485 >            return result;
486 >        }
487 >
488 >        public void remove() {
489 >            checkForComodification();
490 >
491 >            if (lastRet != 0) {
492 >                E moved = PriorityQueue.this.removeAt(lastRet);
493 >                lastRet = 0;
494 >                if (moved == null) {
495 >                    cursor--;
496 >                } else {
497 >                    if (forgetMeNot == null)
498 >                        forgetMeNot = new ArrayList<E>();
499 >                    forgetMeNot.add(moved);
500 >                }
501 >            } else if (lastRetElt != null) {
502 >                PriorityQueue.this.remove(lastRetElt);
503 >                lastRetElt = null;
504 >            } else {
505 >                throw new IllegalStateException();
506 >            }
507 >
508 >            expectedModCount = modCount;
509 >        }
510 >
511 >        final void checkForComodification() {
512 >            if (modCount != expectedModCount)
513 >                throw new ConcurrentModificationException();
514 >        }
515 >    }
516 >
517 >    public int size() {
518 >        return size;
519 >    }
520 >
521 >    /**
522 >     * Removes all of the elements from this priority queue.
523 >     * The queue will be empty after this call returns.
524 >     */
525 >    public void clear() {
526 >        modCount++;
527 >
528 >        // Null out element references to prevent memory leak
529 >        for (int i=1; i<=size; i++)
530 >            queue[i] = null;
531 >
532 >        size = 0;
533 >    }
534 >
535 >    public E poll() {
536 >        if (size == 0)
537 >            return null;
538 >        modCount++;
539 >
540 >        E result = (E) queue[1];
541 >        queue[1] = queue[size];
542 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
543 >        if (size > 1)
544 >            fixDown(1);
545 >
546 >        return result;
547 >    }
548 >
549 >    /**
550 >     * Removes and returns the ith element from queue.  (Recall that queue
551 >     * is one-based, so 1 <= i <= size.)
552 >     *
553 >     * Normally this method leaves the elements at positions from 1 up to i-1,
554 >     * inclusive, untouched.  Under these circumstances, it returns null.
555 >     * Occasionally, in order to maintain the heap invariant, it must move
556 >     * the last element of the list to some index in the range [2, i-1],
557 >     * and move the element previously at position (i/2) to position i.
558 >     * Under these circumstances, this method returns the element that was
559 >     * previously at the end of the list and is now at some position between
560 >     * 2 and i-1 inclusive.
561 >     */
562 >    private E removeAt(int i) {
563 >        assert i > 0 && i <= size;
564 >        modCount++;
565 >
566 >        E moved = (E) queue[size];
567 >        queue[i] = moved;
568 >        queue[size--] = null;  // Drop extra ref to prevent memory leak
569 >        if (i <= size) {
570 >            fixDown(i);
571 >            if (queue[i] == moved) {
572 >                fixUp(i);
573 >                if (queue[i] != moved)
574 >                    return moved;
575 >            }
576 >        }
577          return null;
578      }
579  
580 +    /**
581 +     * Establishes the heap invariant (described above) assuming the heap
582 +     * satisfies the invariant except possibly for the leaf-node indexed by k
583 +     * (which may have a nextExecutionTime less than its parent's).
584 +     *
585 +     * This method functions by "promoting" queue[k] up the hierarchy
586 +     * (by swapping it with its parent) repeatedly until queue[k]
587 +     * is greater than or equal to its parent.
588 +     */
589 +    private void fixUp(int k) {
590 +        if (comparator == null) {
591 +            while (k > 1) {
592 +                int j = k >> 1;
593 +                if (((Comparable<? super E>)queue[j]).compareTo((E)queue[k]) <= 0)
594 +                    break;
595 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
596 +                k = j;
597 +            }
598 +        } else {
599 +            while (k > 1) {
600 +                int j = k >>> 1;
601 +                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
602 +                    break;
603 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
604 +                k = j;
605 +            }
606 +        }
607 +    }
608 +
609 +    /**
610 +     * Establishes the heap invariant (described above) in the subtree
611 +     * rooted at k, which is assumed to satisfy the heap invariant except
612 +     * possibly for node k itself (which may be greater than its children).
613 +     *
614 +     * This method functions by "demoting" queue[k] down the hierarchy
615 +     * (by swapping it with its smaller child) repeatedly until queue[k]
616 +     * is less than or equal to its children.
617 +     */
618 +    private void fixDown(int k) {
619 +        int j;
620 +        if (comparator == null) {
621 +            while ((j = k << 1) <= size && (j > 0)) {
622 +                if (j<size &&
623 +                    ((Comparable<? super E>)queue[j]).compareTo((E)queue[j+1]) > 0)
624 +                    j++; // j indexes smallest kid
625 +
626 +                if (((Comparable<? super E>)queue[k]).compareTo((E)queue[j]) <= 0)
627 +                    break;
628 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
629 +                k = j;
630 +            }
631 +        } else {
632 +            while ((j = k << 1) <= size && (j > 0)) {
633 +                if (j<size &&
634 +                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
635 +                    j++; // j indexes smallest kid
636 +                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
637 +                    break;
638 +                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
639 +                k = j;
640 +            }
641 +        }
642 +    }
643 +
644 +    /**
645 +     * Establishes the heap invariant (described above) in the entire tree,
646 +     * assuming nothing about the order of the elements prior to the call.
647 +     */
648 +    private void heapify() {
649 +        for (int i = size/2; i >= 1; i--)
650 +            fixDown(i);
651 +    }
652 +
653 +    /**
654 +     * Returns the comparator used to order the elements in this
655 +     * queue, or <tt>null</tt> if this queue is sorted according to
656 +     * the {@linkplain Comparable natural ordering} of its elements.
657 +     *
658 +     * @return the comparator used to order this queue, or
659 +     *         <tt>null</tt> if this queue is sorted according to the
660 +     *         natural ordering of its elements.
661 +     */
662 +    public Comparator<? super E> comparator() {
663 +        return comparator;
664 +    }
665 +
666 +    /**
667 +     * Save the state of the instance to a stream (that
668 +     * is, serialize it).
669 +     *
670 +     * @serialData The length of the array backing the instance is
671 +     * emitted (int), followed by all of its elements (each an
672 +     * <tt>Object</tt>) in the proper order.
673 +     * @param s the stream
674 +     */
675 +    private void writeObject(java.io.ObjectOutputStream s)
676 +        throws java.io.IOException{
677 +        // Write out element count, and any hidden stuff
678 +        s.defaultWriteObject();
679 +
680 +        // Write out array length
681 +        s.writeInt(queue.length);
682 +
683 +        // Write out all elements in the proper order.
684 +        for (int i=1; i<=size; i++)
685 +            s.writeObject(queue[i]);
686 +    }
687 +
688 +    /**
689 +     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
690 +     * (that is, deserialize it).
691 +     * @param s the stream
692 +     */
693 +    private void readObject(java.io.ObjectInputStream s)
694 +        throws java.io.IOException, ClassNotFoundException {
695 +        // Read in size, and any hidden stuff
696 +        s.defaultReadObject();
697 +
698 +        // Read in array length and allocate array
699 +        int arrayLength = s.readInt();
700 +        queue = new Object[arrayLength];
701 +
702 +        // Read in all elements in the proper order.
703 +        for (int i=1; i<=size; i++)
704 +            queue[i] = (E) s.readObject();
705 +    }
706 +
707   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines