ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.58 by dl, Mon Nov 28 23:53:32 2005 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7  
8 < import java.util.*;
8 > package java.util;
9 > import java.util.*; // for javadoc (till 6280605 is fixed)
10  
11   /**
12 < * An unbounded (resizable) priority queue based on a priority
13 < * heap.The take operation returns the least element with respect to
14 < * the given ordering. (If more than one element is tied for least
15 < * value, one of them is arbitrarily chosen to be returned -- no
16 < * guarantees are made for ordering across ties.) Ordering follows the
17 < * java.util.Collection conventions: Either the elements must be
18 < * Comparable, or a Comparator must be supplied. Comparison failures
19 < * throw ClassCastExceptions during insertions and extractions.
20 < **/
21 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
22 <    public PriorityQueue(int initialCapacity) {}
23 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
12 > * An unbounded priority {@linkplain Queue queue} based on a priority
13 > * heap.  The elements of the priority queue are ordered according to
14 > * their {@linkplain Comparable natural ordering}, or by a {@link
15 > * Comparator} provided at queue construction time, depending on which
16 > * constructor is used.  A priority queue does not permit
17 > * <tt>null</tt> elements.  A priority queue relying on natural
18 > * ordering also does not permit insertion of non-comparable objects
19 > * (doing so may result in <tt>ClassCastException</tt>).
20 > *
21 > * <p>The <em>head</em> of this queue is the <em>least</em> element
22 > * with respect to the specified ordering.  If multiple elements are
23 > * tied for least value, the head is one of those elements -- ties are
24 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
25 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
26 > * element at the head of the queue.
27 > *
28 > * <p>A priority queue is unbounded, but has an internal
29 > * <i>capacity</i> governing the size of an array used to store the
30 > * elements on the queue.  It is always at least as large as the queue
31 > * size.  As elements are added to a priority queue, its capacity
32 > * grows automatically.  The details of the growth policy are not
33 > * specified.
34 > *
35 > * <p>This class and its iterator implement all of the
36 > * <em>optional</em> methods of the {@link Collection} and {@link
37 > * Iterator} interfaces.  The Iterator provided in method {@link
38 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
39 > * the priority queue in any particular order. If you need ordered
40 > * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
41 > *
42 > * <p> <strong>Note that this implementation is not synchronized.</strong>
43 > * Multiple threads should not access a <tt>PriorityQueue</tt>
44 > * instance concurrently if any of the threads modifies the list
45 > * structurally. Instead, use the thread-safe {@link
46 > * java.util.concurrent.PriorityBlockingQueue} class.
47 > *
48 > * <p>Implementation note: this implementation provides O(log(n)) time
49 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
50 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
51 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
52 > * constant time for the retrieval methods (<tt>peek</tt>,
53 > * <tt>element</tt>, and <tt>size</tt>).
54 > *
55 > * <p>This class is a member of the
56 > * <a href="{@docRoot}/../guide/collections/index.html">
57 > * Java Collections Framework</a>.
58 > * @since 1.5
59 > * @version 1.8, 08/27/05
60 > * @author Josh Bloch
61 > * @param <E> the type of elements held in this collection
62 > */
63 > public class PriorityQueue<E> extends AbstractQueue<E>
64 >    implements java.io.Serializable {
65  
66 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
66 >    private static final long serialVersionUID = -7720805057305804111L;
67  
68 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
68 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
69  
70 <    public boolean add(E x) {
71 <        return false;
70 >    /**
71 >     * Priority queue represented as a balanced binary heap: the two
72 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
73 >     * priority queue is ordered by comparator, or by the elements'
74 >     * natural ordering, if comparator is null: For each node n in the
75 >     * heap and each descendant d of n, n <= d.  The element with the
76 >     * lowest value is in queue[0], assuming the queue is nonempty.
77 >     */
78 >    private transient Object[] queue;
79 >
80 >    /**
81 >     * The number of elements in the priority queue.
82 >     */
83 >    private int size = 0;
84 >
85 >    /**
86 >     * The comparator, or null if priority queue uses elements'
87 >     * natural ordering.
88 >     */
89 >    private final Comparator<? super E> comparator;
90 >
91 >    /**
92 >     * The number of times this priority queue has been
93 >     * <i>structurally modified</i>.  See AbstractList for gory details.
94 >     */
95 >    private transient int modCount = 0;
96 >
97 >    /**
98 >     * Creates a <tt>PriorityQueue</tt> with the default initial
99 >     * capacity (11) that orders its elements according to their
100 >     * {@linkplain Comparable natural ordering}.
101 >     */
102 >    public PriorityQueue() {
103 >        this(DEFAULT_INITIAL_CAPACITY, null);
104      }
105 <    public boolean offer(E x) {
106 <        return false;
105 >
106 >    /**
107 >     * Creates a <tt>PriorityQueue</tt> with the specified initial
108 >     * capacity that orders its elements according to their
109 >     * {@linkplain Comparable natural ordering}.
110 >     *
111 >     * @param initialCapacity the initial capacity for this priority queue
112 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
113 >     * than 1
114 >     */
115 >    public PriorityQueue(int initialCapacity) {
116 >        this(initialCapacity, null);
117      }
118 <    public boolean remove(Object x) {
119 <        return false;
118 >
119 >    /**
120 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
121 >     * that orders its elements according to the specified comparator.
122 >     *
123 >     * @param  initialCapacity the initial capacity for this priority queue
124 >     * @param  comparator the comparator that will be used to order
125 >     *         this priority queue.  If <tt>null</tt>, the <i>natural
126 >     *         ordering</i> of the elements will be used.
127 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
128 >     *         less than 1
129 >     */
130 >    public PriorityQueue(int initialCapacity,
131 >                         Comparator<? super E> comparator) {
132 >        // Note: This restriction of at least one is not actually needed,
133 >        // but continues for 1.5 compatibility
134 >        if (initialCapacity < 1)
135 >            throw new IllegalArgumentException();
136 >        this.queue = new Object[initialCapacity];
137 >        this.comparator = comparator;
138      }
139  
140 <    public E remove() {
141 <        return null;
140 >    /**
141 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
142 >     * specified collection.   If the specified collection is an
143 >     * instance of a {@link java.util.SortedSet} or is another
144 >     * <tt>PriorityQueue</tt>, the priority queue will be ordered
145 >     * according to the same ordering.  Otherwise, this priority queue
146 >     * will be ordered according to the natural ordering of its elements.
147 >     *
148 >     * @param  c the collection whose elements are to be placed
149 >     *         into this priority queue
150 >     * @throws ClassCastException if elements of the specified collection
151 >     *         cannot be compared to one another according to the priority
152 >     *         queue's ordering
153 >     * @throws NullPointerException if the specified collection or any
154 >     *         of its elements are null
155 >     */
156 >    public PriorityQueue(Collection<? extends E> c) {
157 >        initFromCollection(c);
158 >        if (c instanceof SortedSet)
159 >            comparator = (Comparator<? super E>)
160 >                ((SortedSet<? extends E>)c).comparator();
161 >        else if (c instanceof PriorityQueue)
162 >            comparator = (Comparator<? super E>)
163 >                ((PriorityQueue<? extends E>)c).comparator();
164 >        else {
165 >            comparator = null;
166 >            heapify();
167 >        }
168      }
169 <    public Iterator<E> iterator() {
170 <      return null;
169 >
170 >    /**
171 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
172 >     * specified priority queue.  This priority queue will be
173 >     * ordered according to the same ordering as the given priority
174 >     * queue.
175 >     *
176 >     * @param  c the priority queue whose elements are to be placed
177 >     *         into this priority queue
178 >     * @throws ClassCastException if elements of <tt>c</tt> cannot be
179 >     *         compared to one another according to <tt>c</tt>'s
180 >     *         ordering
181 >     * @throws NullPointerException if the specified priority queue or any
182 >     *         of its elements are null
183 >     */
184 >    public PriorityQueue(PriorityQueue<? extends E> c) {
185 >        comparator = (Comparator<? super E>)c.comparator();
186 >        initFromCollection(c);
187      }
188  
189 <    public E element() {
190 <        return null;
189 >    /**
190 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
191 >     * specified sorted set.  This priority queue will be ordered
192 >     * according to the same ordering as the given sorted set.
193 >     *
194 >     * @param  c the sorted set whose elements are to be placed
195 >     *         into this priority queue.
196 >     * @throws ClassCastException if elements of the specified sorted
197 >     *         set cannot be compared to one another according to the
198 >     *         sorted set's ordering
199 >     * @throws NullPointerException if the specified sorted set or any
200 >     *         of its elements are null
201 >     */
202 >    public PriorityQueue(SortedSet<? extends E> c) {
203 >        comparator = (Comparator<? super E>)c.comparator();
204 >        initFromCollection(c);
205      }
206 <    public E poll() {
207 <        return null;
206 >
207 >    /**
208 >     * Initialize queue array with elements from the given Collection.
209 >     * @param c the collection
210 >     */
211 >    private void initFromCollection(Collection<? extends E> c) {
212 >        Object[] a = c.toArray();
213 >        // If c.toArray incorrectly doesn't return Object[], copy it.
214 >        if (a.getClass() != Object[].class)
215 >            a = Arrays.copyOf(a, a.length, Object[].class);
216 >        queue = a;
217 >        size = a.length;
218      }
219 +
220 +    /**
221 +     * Increases the capacity of the array.
222 +     *
223 +     * @param minCapacity the desired minimum capacity
224 +     */
225 +    private void grow(int minCapacity) {
226 +        if (minCapacity < 0) // overflow
227 +            throw new OutOfMemoryError();
228 +        int oldCapacity = queue.length;
229 +        // Double size if small; else grow by 50%
230 +        int newCapacity = ((oldCapacity < 64)?
231 +                           ((oldCapacity + 1) * 2):
232 +                           ((oldCapacity / 2) * 3));
233 +        if (newCapacity < 0) // overflow
234 +            newCapacity = Integer.MAX_VALUE;
235 +        if (newCapacity < minCapacity)
236 +            newCapacity = minCapacity;
237 +        queue = Arrays.copyOf(queue, newCapacity);
238 +    }
239 +
240 +    /**
241 +     * Inserts the specified element into this priority queue.
242 +     *
243 +     * @return <tt>true</tt> (as specified by {@link Collection#add})
244 +     * @throws ClassCastException if the specified element cannot be
245 +     *         compared with elements currently in this priority queue
246 +     *         according to the priority queue's ordering
247 +     * @throws NullPointerException if the specified element is null
248 +     */
249 +    public boolean add(E e) {
250 +        return offer(e);
251 +    }
252 +
253 +    /**
254 +     * Inserts the specified element into this priority queue.
255 +     *
256 +     * @return <tt>true</tt> (as specified by {@link Queue#offer})
257 +     * @throws ClassCastException if the specified element cannot be
258 +     *         compared with elements currently in this priority queue
259 +     *         according to the priority queue's ordering
260 +     * @throws NullPointerException if the specified element is null
261 +     */
262 +    public boolean offer(E e) {
263 +        if (e == null)
264 +            throw new NullPointerException();
265 +        modCount++;
266 +        int i = size;
267 +        if (i >= queue.length)
268 +            grow(i + 1);
269 +        size = i + 1;
270 +        if (i == 0)
271 +            queue[0] = e;
272 +        else
273 +            siftUp(i, e);
274 +        return true;
275 +    }
276 +
277      public E peek() {
278 <        return null;
278 >        if (size == 0)
279 >            return null;
280 >        return (E) queue[0];
281      }
282  
283 <    public boolean isEmpty() {
283 >    private int indexOf(Object o) {
284 >        if (o != null) {
285 >            for (int i = 0; i < size; i++)
286 >                if (o.equals(queue[i]))
287 >                    return i;
288 >        }
289 >        return -1;
290 >    }
291 >
292 >    /**
293 >     * Removes a single instance of the specified element from this queue,
294 >     * if it is present.  More formally, removes an element <tt>e</tt> such
295 >     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
296 >     * elements.  Returns true if this queue contained the specified element
297 >     * (or equivalently, if this queue changed as a result of the call).
298 >     *
299 >     * @param o element to be removed from this queue, if present
300 >     * @return <tt>true</tt> if this queue changed as a result of the call
301 >     */
302 >    public boolean remove(Object o) {
303 >        int i = indexOf(o);
304 >        if (i == -1)
305 >            return false;
306 >        else {
307 >            removeAt(i);
308 >            return true;
309 >        }
310 >    }
311 >
312 >    /**
313 >     * Version of remove using reference equality, not equals.
314 >     * Needed by iterator.remove
315 >     *
316 >     * @param o element to be removed from this queue, if present
317 >     * @return <tt>true</tt> if removed.
318 >     */
319 >    boolean removeEq(Object o) {
320 >        for (int i = 0; i < size; i++) {
321 >            if (o == queue[i]) {
322 >                removeAt(i);
323 >                return true;
324 >            }
325 >        }
326          return false;
327      }
328 <    public int size() {
329 <        return 0;
328 >
329 >    /**
330 >     * Returns <tt>true</tt> if this queue contains the specified element.
331 >     * More formally, returns <tt>true</tt> if and only if this queue contains
332 >     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
333 >     *
334 >     * @param o object to be checked for containment in this queue
335 >     * @return <tt>true</tt> if this queue contains the specified element
336 >     */
337 >    public boolean contains(Object o) {
338 >        return indexOf(o) != -1;
339      }
340 +
341 +    /**
342 +     * Returns an array containing all of the elements in this queue,
343 +     * The elements are in no particular order.
344 +     *
345 +     * <p>The returned array will be "safe" in that no references to it are
346 +     * maintained by this list.  (In other words, this method must allocate
347 +     * a new array).  The caller is thus free to modify the returned array.
348 +     *
349 +     * @return an array containing all of the elements in this queue.
350 +     */
351      public Object[] toArray() {
352 <        return null;
352 >        return Arrays.copyOf(queue, size);
353 >    }
354 >
355 >    /**
356 >     * Returns an array containing all of the elements in this queue.
357 >     * The elements are in no particular order.  The runtime type of
358 >     * the returned array is that of the specified array.  If the queue
359 >     * fits in the specified array, it is returned therein.
360 >     * Otherwise, a new array is allocated with the runtime type of
361 >     * the specified array and the size of this queue.
362 >     *
363 >     * <p>If the queue fits in the specified array with room to spare
364 >     * (i.e., the array has more elements than the queue), the element in
365 >     * the array immediately following the end of the collection is set to
366 >     * <tt>null</tt>.  (This is useful in determining the length of the
367 >     * queue <i>only</i> if the caller knows that the queue does not contain
368 >     * any null elements.)
369 >     *
370 >     * @param a the array into which the elements of the queue are to
371 >     *          be stored, if it is big enough; otherwise, a new array of the
372 >     *          same runtime type is allocated for this purpose.
373 >     * @return an array containing the elements of the queue
374 >     * @throws ArrayStoreException if the runtime type of the specified array
375 >     *         is not a supertype of the runtime type of every element in
376 >     *         this queue
377 >     * @throws NullPointerException if the specified array is null
378 >     */
379 >    public <T> T[] toArray(T[] a) {
380 >        if (a.length < size)
381 >            // Make a new array of a's runtime type, but my contents:
382 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
383 >        System.arraycopy(queue, 0, a, 0, size);
384 >        if (a.length > size)
385 >            a[size] = null;
386 >        return a;
387      }
388  
389 <    public <T> T[] toArray(T[] array) {
389 >    /**
390 >     * Returns an iterator over the elements in this queue. The iterator
391 >     * does not return the elements in any particular order.
392 >     *
393 >     * @return an iterator over the elements in this queue
394 >     */
395 >    public Iterator<E> iterator() {
396 >        return new Itr();
397 >    }
398 >
399 >    private final class Itr implements Iterator<E> {
400 >        /**
401 >         * Index (into queue array) of element to be returned by
402 >         * subsequent call to next.
403 >         */
404 >        private int cursor = 0;
405 >
406 >        /**
407 >         * Index of element returned by most recent call to next,
408 >         * unless that element came from the forgetMeNot list.
409 >         * Set to -1 if element is deleted by a call to remove.
410 >         */
411 >        private int lastRet = -1;
412 >
413 >        /**
414 >         * A queue of elements that were moved from the unvisited portion of
415 >         * the heap into the visited portion as a result of "unlucky" element
416 >         * removals during the iteration.  (Unlucky element removals are those
417 >         * that require a siftup instead of a siftdown.)  We must visit all of
418 >         * the elements in this list to complete the iteration.  We do this
419 >         * after we've completed the "normal" iteration.
420 >         *
421 >         * We expect that most iterations, even those involving removals,
422 >         * will not use need to store elements in this field.
423 >         */
424 >        private ArrayDeque<E> forgetMeNot = null;
425 >
426 >        /**
427 >         * Element returned by the most recent call to next iff that
428 >         * element was drawn from the forgetMeNot list.
429 >         */
430 >        private E lastRetElt = null;
431 >
432 >        /**
433 >         * The modCount value that the iterator believes that the backing
434 >         * List should have.  If this expectation is violated, the iterator
435 >         * has detected concurrent modification.
436 >         */
437 >        private int expectedModCount = modCount;
438 >
439 >        public boolean hasNext() {
440 >            return cursor < size ||
441 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
442 >        }
443 >
444 >        public E next() {
445 >            if (expectedModCount != modCount)
446 >                throw new ConcurrentModificationException();
447 >            if (cursor < size)
448 >                return (E) queue[lastRet = cursor++];
449 >            if (forgetMeNot != null) {
450 >                lastRet = -1;
451 >                lastRetElt = forgetMeNot.poll();
452 >                if (lastRetElt != null)
453 >                    return lastRetElt;
454 >            }
455 >            throw new NoSuchElementException();
456 >        }
457 >
458 >        public void remove() {
459 >            if (expectedModCount != modCount)
460 >                throw new ConcurrentModificationException();
461 >            if (lastRet == -1 && lastRetElt == null)
462 >                throw new IllegalStateException();
463 >            if (lastRet != -1) {
464 >                E moved = PriorityQueue.this.removeAt(lastRet);
465 >                lastRet = -1;
466 >                if (moved == null)
467 >                    cursor--;
468 >                else {
469 >                    if (forgetMeNot == null)
470 >                        forgetMeNot = new ArrayDeque<E>();
471 >                    forgetMeNot.add(moved);
472 >                }
473 >            } else {
474 >                PriorityQueue.this.removeEq(lastRetElt);
475 >                lastRetElt = null;
476 >            }
477 >            expectedModCount = modCount;
478 >        }
479 >
480 >    }
481 >
482 >    public int size() {
483 >        return size;
484 >    }
485 >
486 >    /**
487 >     * Removes all of the elements from this priority queue.
488 >     * The queue will be empty after this call returns.
489 >     */
490 >    public void clear() {
491 >        modCount++;
492 >        for (int i = 0; i < size; i++)
493 >            queue[i] = null;
494 >        size = 0;
495 >    }
496 >
497 >    public E poll() {
498 >        if (size == 0)
499 >            return null;
500 >        int s = --size;
501 >        modCount++;
502 >        E result = (E)queue[0];
503 >        E x = (E)queue[s];
504 >        queue[s] = null;
505 >        if (s != 0)
506 >            siftDown(0, x);
507 >        return result;
508 >    }
509 >
510 >    /**
511 >     * Removes the ith element from queue.
512 >     *
513 >     * Normally this method leaves the elements at up to i-1,
514 >     * inclusive, untouched.  Under these circumstances, it returns
515 >     * null.  Occasionally, in order to maintain the heap invariant,
516 >     * it must swap a later element of the list with one earlier than
517 >     * i.  Under these circumstances, this method returns the element
518 >     * that was previously at the end of the list and is now at some
519 >     * position before i. This fact is used by iterator.remove so as to
520 >     * avoid missing traverseing elements.
521 >     */
522 >    private E removeAt(int i) {
523 >        assert i >= 0 && i < size;
524 >        modCount++;
525 >        int s = --size;
526 >        if (s == i) // removed last element
527 >            queue[i] = null;
528 >        else {
529 >            E moved = (E) queue[s];
530 >            queue[s] = null;
531 >            siftDown(i, moved);
532 >            if (queue[i] == moved) {
533 >                siftUp(i, moved);
534 >                if (queue[i] != moved)
535 >                    return moved;
536 >            }
537 >        }
538          return null;
539      }
540  
541 +    /**
542 +     * Inserts item x at position k, maintaining heap invariant by
543 +     * promoting x up the tree until it is greater than or equal to
544 +     * its parent, or is the root.
545 +     *
546 +     * To simplify and speed up coercions and comparisons. the
547 +     * Comparable and Comparator versions are separated into different
548 +     * methods that are otherwise identical. (Similarly for siftDown.)
549 +     *
550 +     * @param k the position to fill
551 +     * @param x the item to insert
552 +     */
553 +    private void siftUp(int k, E x) {
554 +        if (comparator != null)
555 +            siftUpUsingComparator(k, x);
556 +        else
557 +            siftUpComparable(k, x);
558 +    }
559 +
560 +    private void siftUpComparable(int k, E x) {
561 +        Comparable<? super E> key = (Comparable<? super E>) x;
562 +        while (k > 0) {
563 +            int parent = (k - 1) >>> 1;
564 +            Object e = queue[parent];
565 +            if (key.compareTo((E)e) >= 0)
566 +                break;
567 +            queue[k] = e;
568 +            k = parent;
569 +        }
570 +        queue[k] = key;
571 +    }
572 +
573 +    private void siftUpUsingComparator(int k, E x) {
574 +        while (k > 0) {
575 +            int parent = (k - 1) >>> 1;
576 +            Object e = queue[parent];
577 +            if (comparator.compare(x, (E)e) >= 0)
578 +                break;
579 +            queue[k] = e;
580 +            k = parent;
581 +        }
582 +        queue[k] = x;
583 +    }
584 +
585 +    /**
586 +     * Inserts item x at position k, maintaining heap invariant by
587 +     * demoting x down the tree repeatedly until it is less than or
588 +     * equal to its children or is a leaf.
589 +     *
590 +     * @param k the position to fill
591 +     * @param x the item to insert
592 +     */
593 +    private void siftDown(int k, E x) {
594 +        if (comparator != null)
595 +            siftDownUsingComparator(k, x);
596 +        else
597 +            siftDownComparable(k, x);
598 +    }
599 +
600 +    private void siftDownComparable(int k, E x) {
601 +        Comparable<? super E> key = (Comparable<? super E>)x;
602 +        int half = size >>> 1;        // loop while a non-leaf
603 +        while (k < half) {
604 +            int child = (k << 1) + 1; // assume left child is least
605 +            Object c = queue[child];
606 +            int right = child + 1;
607 +            if (right < size &&
608 +                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
609 +                c = queue[child = right];
610 +            if (key.compareTo((E)c) <= 0)
611 +                break;
612 +            queue[k] = c;
613 +            k = child;
614 +        }
615 +        queue[k] = key;
616 +    }
617 +
618 +    private void siftDownUsingComparator(int k, E x) {
619 +        int half = size >>> 1;
620 +        while (k < half) {
621 +            int child = (k << 1) + 1;
622 +            Object c = queue[child];
623 +            int right = child + 1;
624 +            if (right < size &&
625 +                comparator.compare((E)c, (E)queue[right]) > 0)
626 +                c = queue[child = right];
627 +            if (comparator.compare(x, (E)c) <= 0)
628 +                break;
629 +            queue[k] = c;
630 +            k = child;
631 +        }
632 +        queue[k] = x;
633 +    }
634 +
635 +    /**
636 +     * Establishes the heap invariant (described above) in the entire tree,
637 +     * assuming nothing about the order of the elements prior to the call.
638 +     */
639 +    private void heapify() {
640 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
641 +            siftDown(i, (E)queue[i]);
642 +    }
643 +
644 +    /**
645 +     * Returns the comparator used to order the elements in this
646 +     * queue, or <tt>null</tt> if this queue is sorted according to
647 +     * the {@linkplain Comparable natural ordering} of its elements.
648 +     *
649 +     * @return the comparator used to order this queue, or
650 +     *         <tt>null</tt> if this queue is sorted according to the
651 +     *         natural ordering of its elements.
652 +     */
653 +    public Comparator<? super E> comparator() {
654 +        return comparator;
655 +    }
656 +
657 +    /**
658 +     * Save the state of the instance to a stream (that
659 +     * is, serialize it).
660 +     *
661 +     * @serialData The length of the array backing the instance is
662 +     * emitted (int), followed by all of its elements (each an
663 +     * <tt>Object</tt>) in the proper order.
664 +     * @param s the stream
665 +     */
666 +    private void writeObject(java.io.ObjectOutputStream s)
667 +        throws java.io.IOException{
668 +        // Write out element count, and any hidden stuff
669 +        s.defaultWriteObject();
670 +
671 +        // Write out array length
672 +        // For compatibility with 1.5 version, must be at least 2.
673 +        s.writeInt(Math.max(2, queue.length));
674 +
675 +        // Write out all elements in the proper order.
676 +        for (int i=0; i<size; i++)
677 +            s.writeObject(queue[i]);
678 +    }
679 +
680 +    /**
681 +     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
682 +     * (that is, deserialize it).
683 +     * @param s the stream
684 +     */
685 +    private void readObject(java.io.ObjectInputStream s)
686 +        throws java.io.IOException, ClassNotFoundException {
687 +        // Read in size, and any hidden stuff
688 +        s.defaultReadObject();
689 +
690 +        // Read in array length and allocate array
691 +        int arrayLength = s.readInt();
692 +        queue = new Object[arrayLength];
693 +
694 +        // Read in all elements in the proper order.
695 +        for (int i=0; i<size; i++)
696 +            queue[i] = (E) s.readObject();
697 +    }
698 +
699   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines