ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.61 by jsr166, Tue Feb 7 20:54:24 2006 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * %W% %E%
3 > *
4 > * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 > * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
6 > */
7  
8 < import java.util.*;
8 > package java.util;
9  
10   /**
11 < * An unbounded (resizable) priority queue based on a priority
12 < * heap.The take operation returns the least element with respect to
13 < * the given ordering. (If more than one element is tied for least
14 < * value, one of them is arbitrarily chosen to be returned -- no
15 < * guarantees are made for ordering across ties.) Ordering follows the
16 < * java.util.Collection conventions: Either the elements must be
17 < * Comparable, or a Comparator must be supplied. Comparison failures
18 < * throw ClassCastExceptions during insertions and extractions.
19 < **/
20 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
21 <    public PriorityQueue(int initialCapacity) {}
22 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
11 > * An unbounded priority {@linkplain Queue queue} based on a priority
12 > * heap.  The elements of the priority queue are ordered according to
13 > * their {@linkplain Comparable natural ordering}, or by a {@link
14 > * Comparator} provided at queue construction time, depending on which
15 > * constructor is used.  A priority queue does not permit
16 > * <tt>null</tt> elements.  A priority queue relying on natural
17 > * ordering also does not permit insertion of non-comparable objects
18 > * (doing so may result in <tt>ClassCastException</tt>).
19 > *
20 > * <p>The <em>head</em> of this queue is the <em>least</em> element
21 > * with respect to the specified ordering.  If multiple elements are
22 > * tied for least value, the head is one of those elements -- ties are
23 > * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
24 > * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
25 > * element at the head of the queue.
26 > *
27 > * <p>A priority queue is unbounded, but has an internal
28 > * <i>capacity</i> governing the size of an array used to store the
29 > * elements on the queue.  It is always at least as large as the queue
30 > * size.  As elements are added to a priority queue, its capacity
31 > * grows automatically.  The details of the growth policy are not
32 > * specified.
33 > *
34 > * <p>This class and its iterator implement all of the
35 > * <em>optional</em> methods of the {@link Collection} and {@link
36 > * Iterator} interfaces.  The Iterator provided in method {@link
37 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
38 > * the priority queue in any particular order. If you need ordered
39 > * traversal, consider using <tt>Arrays.sort(pq.toArray())</tt>.
40 > *
41 > * <p> <strong>Note that this implementation is not synchronized.</strong>
42 > * Multiple threads should not access a <tt>PriorityQueue</tt>
43 > * instance concurrently if any of the threads modifies the list
44 > * structurally. Instead, use the thread-safe {@link
45 > * java.util.concurrent.PriorityBlockingQueue} class.
46 > *
47 > * <p>Implementation note: this implementation provides O(log(n)) time
48 > * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
49 > * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
50 > * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
51 > * constant time for the retrieval methods (<tt>peek</tt>,
52 > * <tt>element</tt>, and <tt>size</tt>).
53 > *
54 > * <p>This class is a member of the
55 > * <a href="{@docRoot}/../guide/collections/index.html">
56 > * Java Collections Framework</a>.
57 > * @since 1.5
58 > * @version 1.8, 08/27/05
59 > * @author Josh Bloch
60 > * @param <E> the type of elements held in this collection
61 > */
62 > public class PriorityQueue<E> extends AbstractQueue<E>
63 >    implements java.io.Serializable {
64  
65 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
65 >    private static final long serialVersionUID = -7720805057305804111L;
66  
67 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
67 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
68  
69 <    public boolean add(E x) {
70 <        return false;
69 >    /**
70 >     * Priority queue represented as a balanced binary heap: the two
71 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
72 >     * priority queue is ordered by comparator, or by the elements'
73 >     * natural ordering, if comparator is null: For each node n in the
74 >     * heap and each descendant d of n, n <= d.  The element with the
75 >     * lowest value is in queue[0], assuming the queue is nonempty.
76 >     */
77 >    private transient Object[] queue;
78 >
79 >    /**
80 >     * The number of elements in the priority queue.
81 >     */
82 >    private int size = 0;
83 >
84 >    /**
85 >     * The comparator, or null if priority queue uses elements'
86 >     * natural ordering.
87 >     */
88 >    private final Comparator<? super E> comparator;
89 >
90 >    /**
91 >     * The number of times this priority queue has been
92 >     * <i>structurally modified</i>.  See AbstractList for gory details.
93 >     */
94 >    private transient int modCount = 0;
95 >
96 >    /**
97 >     * Creates a <tt>PriorityQueue</tt> with the default initial
98 >     * capacity (11) that orders its elements according to their
99 >     * {@linkplain Comparable natural ordering}.
100 >     */
101 >    public PriorityQueue() {
102 >        this(DEFAULT_INITIAL_CAPACITY, null);
103      }
104 <    public boolean offer(E x) {
105 <        return false;
104 >
105 >    /**
106 >     * Creates a <tt>PriorityQueue</tt> with the specified initial
107 >     * capacity that orders its elements according to their
108 >     * {@linkplain Comparable natural ordering}.
109 >     *
110 >     * @param initialCapacity the initial capacity for this priority queue
111 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
112 >     * than 1
113 >     */
114 >    public PriorityQueue(int initialCapacity) {
115 >        this(initialCapacity, null);
116      }
117 <    public boolean remove(Object x) {
118 <        return false;
117 >
118 >    /**
119 >     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
120 >     * that orders its elements according to the specified comparator.
121 >     *
122 >     * @param  initialCapacity the initial capacity for this priority queue
123 >     * @param  comparator the comparator that will be used to order
124 >     *         this priority queue.  If <tt>null</tt>, the <i>natural
125 >     *         ordering</i> of the elements will be used.
126 >     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is
127 >     *         less than 1
128 >     */
129 >    public PriorityQueue(int initialCapacity,
130 >                         Comparator<? super E> comparator) {
131 >        // Note: This restriction of at least one is not actually needed,
132 >        // but continues for 1.5 compatibility
133 >        if (initialCapacity < 1)
134 >            throw new IllegalArgumentException();
135 >        this.queue = new Object[initialCapacity];
136 >        this.comparator = comparator;
137      }
138  
139 <    public E remove() {
140 <        return null;
139 >    /**
140 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
141 >     * specified collection.   If the specified collection is an
142 >     * instance of a {@link java.util.SortedSet} or is another
143 >     * <tt>PriorityQueue</tt>, the priority queue will be ordered
144 >     * according to the same ordering.  Otherwise, this priority queue
145 >     * will be ordered according to the natural ordering of its elements.
146 >     *
147 >     * @param  c the collection whose elements are to be placed
148 >     *         into this priority queue
149 >     * @throws ClassCastException if elements of the specified collection
150 >     *         cannot be compared to one another according to the priority
151 >     *         queue's ordering
152 >     * @throws NullPointerException if the specified collection or any
153 >     *         of its elements are null
154 >     */
155 >    public PriorityQueue(Collection<? extends E> c) {
156 >        initFromCollection(c);
157 >        if (c instanceof SortedSet)
158 >            comparator = (Comparator<? super E>)
159 >                ((SortedSet<? extends E>)c).comparator();
160 >        else if (c instanceof PriorityQueue)
161 >            comparator = (Comparator<? super E>)
162 >                ((PriorityQueue<? extends E>)c).comparator();
163 >        else {
164 >            comparator = null;
165 >            heapify();
166 >        }
167      }
168 <    public Iterator<E> iterator() {
169 <      return null;
168 >
169 >    /**
170 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
171 >     * specified priority queue.  This priority queue will be
172 >     * ordered according to the same ordering as the given priority
173 >     * queue.
174 >     *
175 >     * @param  c the priority queue whose elements are to be placed
176 >     *         into this priority queue
177 >     * @throws ClassCastException if elements of <tt>c</tt> cannot be
178 >     *         compared to one another according to <tt>c</tt>'s
179 >     *         ordering
180 >     * @throws NullPointerException if the specified priority queue or any
181 >     *         of its elements are null
182 >     */
183 >    public PriorityQueue(PriorityQueue<? extends E> c) {
184 >        comparator = (Comparator<? super E>)c.comparator();
185 >        initFromCollection(c);
186      }
187  
188 <    public E element() {
189 <        return null;
188 >    /**
189 >     * Creates a <tt>PriorityQueue</tt> containing the elements in the
190 >     * specified sorted set.  This priority queue will be ordered
191 >     * according to the same ordering as the given sorted set.
192 >     *
193 >     * @param  c the sorted set whose elements are to be placed
194 >     *         into this priority queue.
195 >     * @throws ClassCastException if elements of the specified sorted
196 >     *         set cannot be compared to one another according to the
197 >     *         sorted set's ordering
198 >     * @throws NullPointerException if the specified sorted set or any
199 >     *         of its elements are null
200 >     */
201 >    public PriorityQueue(SortedSet<? extends E> c) {
202 >        comparator = (Comparator<? super E>)c.comparator();
203 >        initFromCollection(c);
204      }
205 <    public E poll() {
206 <        return null;
205 >
206 >    /**
207 >     * Initialize queue array with elements from the given Collection.
208 >     * @param c the collection
209 >     */
210 >    private void initFromCollection(Collection<? extends E> c) {
211 >        Object[] a = c.toArray();
212 >        // If c.toArray incorrectly doesn't return Object[], copy it.
213 >        if (a.getClass() != Object[].class)
214 >            a = Arrays.copyOf(a, a.length, Object[].class);
215 >        queue = a;
216 >        size = a.length;
217      }
218 +
219 +    /**
220 +     * Increases the capacity of the array.
221 +     *
222 +     * @param minCapacity the desired minimum capacity
223 +     */
224 +    private void grow(int minCapacity) {
225 +        if (minCapacity < 0) // overflow
226 +            throw new OutOfMemoryError();
227 +        int oldCapacity = queue.length;
228 +        // Double size if small; else grow by 50%
229 +        int newCapacity = ((oldCapacity < 64)?
230 +                           ((oldCapacity + 1) * 2):
231 +                           ((oldCapacity / 2) * 3));
232 +        if (newCapacity < 0) // overflow
233 +            newCapacity = Integer.MAX_VALUE;
234 +        if (newCapacity < minCapacity)
235 +            newCapacity = minCapacity;
236 +        queue = Arrays.copyOf(queue, newCapacity);
237 +    }
238 +
239 +    /**
240 +     * Inserts the specified element into this priority queue.
241 +     *
242 +     * @return <tt>true</tt> (as specified by {@link Collection#add})
243 +     * @throws ClassCastException if the specified element cannot be
244 +     *         compared with elements currently in this priority queue
245 +     *         according to the priority queue's ordering
246 +     * @throws NullPointerException if the specified element is null
247 +     */
248 +    public boolean add(E e) {
249 +        return offer(e);
250 +    }
251 +
252 +    /**
253 +     * Inserts the specified element into this priority queue.
254 +     *
255 +     * @return <tt>true</tt> (as specified by {@link Queue#offer})
256 +     * @throws ClassCastException if the specified element cannot be
257 +     *         compared with elements currently in this priority queue
258 +     *         according to the priority queue's ordering
259 +     * @throws NullPointerException if the specified element is null
260 +     */
261 +    public boolean offer(E e) {
262 +        if (e == null)
263 +            throw new NullPointerException();
264 +        modCount++;
265 +        int i = size;
266 +        if (i >= queue.length)
267 +            grow(i + 1);
268 +        size = i + 1;
269 +        if (i == 0)
270 +            queue[0] = e;
271 +        else
272 +            siftUp(i, e);
273 +        return true;
274 +    }
275 +
276      public E peek() {
277 <        return null;
277 >        if (size == 0)
278 >            return null;
279 >        return (E) queue[0];
280      }
281  
282 <    public boolean isEmpty() {
282 >    private int indexOf(Object o) {
283 >        if (o != null) {
284 >            for (int i = 0; i < size; i++)
285 >                if (o.equals(queue[i]))
286 >                    return i;
287 >        }
288 >        return -1;
289 >    }
290 >
291 >    /**
292 >     * Removes a single instance of the specified element from this queue,
293 >     * if it is present.  More formally, removes an element <tt>e</tt> such
294 >     * that <tt>o.equals(e)</tt>, if this queue contains one or more such
295 >     * elements.  Returns true if this queue contained the specified element
296 >     * (or equivalently, if this queue changed as a result of the call).
297 >     *
298 >     * @param o element to be removed from this queue, if present
299 >     * @return <tt>true</tt> if this queue changed as a result of the call
300 >     */
301 >    public boolean remove(Object o) {
302 >        int i = indexOf(o);
303 >        if (i == -1)
304 >            return false;
305 >        else {
306 >            removeAt(i);
307 >            return true;
308 >        }
309 >    }
310 >
311 >    /**
312 >     * Version of remove using reference equality, not equals.
313 >     * Needed by iterator.remove.
314 >     *
315 >     * @param o element to be removed from this queue, if present
316 >     * @return <tt>true</tt> if removed
317 >     */
318 >    boolean removeEq(Object o) {
319 >        for (int i = 0; i < size; i++) {
320 >            if (o == queue[i]) {
321 >                removeAt(i);
322 >                return true;
323 >            }
324 >        }
325          return false;
326      }
327 <    public int size() {
328 <        return 0;
327 >
328 >    /**
329 >     * Returns <tt>true</tt> if this queue contains the specified element.
330 >     * More formally, returns <tt>true</tt> if and only if this queue contains
331 >     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
332 >     *
333 >     * @param o object to be checked for containment in this queue
334 >     * @return <tt>true</tt> if this queue contains the specified element
335 >     */
336 >    public boolean contains(Object o) {
337 >        return indexOf(o) != -1;
338      }
339 +
340 +    /**
341 +     * Returns an array containing all of the elements in this queue,
342 +     * The elements are in no particular order.
343 +     *
344 +     * <p>The returned array will be "safe" in that no references to it are
345 +     * maintained by this list.  (In other words, this method must allocate
346 +     * a new array).  The caller is thus free to modify the returned array.
347 +     *
348 +     * @return an array containing all of the elements in this queue
349 +     */
350      public Object[] toArray() {
351 <        return null;
351 >        return Arrays.copyOf(queue, size);
352 >    }
353 >
354 >    /**
355 >     * Returns an array containing all of the elements in this queue.
356 >     * The elements are in no particular order.  The runtime type of
357 >     * the returned array is that of the specified array.  If the queue
358 >     * fits in the specified array, it is returned therein.
359 >     * Otherwise, a new array is allocated with the runtime type of
360 >     * the specified array and the size of this queue.
361 >     *
362 >     * <p>If the queue fits in the specified array with room to spare
363 >     * (i.e., the array has more elements than the queue), the element in
364 >     * the array immediately following the end of the collection is set to
365 >     * <tt>null</tt>.  (This is useful in determining the length of the
366 >     * queue <i>only</i> if the caller knows that the queue does not contain
367 >     * any null elements.)
368 >     *
369 >     * @param a the array into which the elements of the queue are to
370 >     *          be stored, if it is big enough; otherwise, a new array of the
371 >     *          same runtime type is allocated for this purpose.
372 >     * @return an array containing the elements of the queue
373 >     * @throws ArrayStoreException if the runtime type of the specified array
374 >     *         is not a supertype of the runtime type of every element in
375 >     *         this queue
376 >     * @throws NullPointerException if the specified array is null
377 >     */
378 >    public <T> T[] toArray(T[] a) {
379 >        if (a.length < size)
380 >            // Make a new array of a's runtime type, but my contents:
381 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
382 >        System.arraycopy(queue, 0, a, 0, size);
383 >        if (a.length > size)
384 >            a[size] = null;
385 >        return a;
386      }
387  
388 <    public <T> T[] toArray(T[] array) {
388 >    /**
389 >     * Returns an iterator over the elements in this queue. The iterator
390 >     * does not return the elements in any particular order.
391 >     *
392 >     * @return an iterator over the elements in this queue
393 >     */
394 >    public Iterator<E> iterator() {
395 >        return new Itr();
396 >    }
397 >
398 >    private final class Itr implements Iterator<E> {
399 >        /**
400 >         * Index (into queue array) of element to be returned by
401 >         * subsequent call to next.
402 >         */
403 >        private int cursor = 0;
404 >
405 >        /**
406 >         * Index of element returned by most recent call to next,
407 >         * unless that element came from the forgetMeNot list.
408 >         * Set to -1 if element is deleted by a call to remove.
409 >         */
410 >        private int lastRet = -1;
411 >
412 >        /**
413 >         * A queue of elements that were moved from the unvisited portion of
414 >         * the heap into the visited portion as a result of "unlucky" element
415 >         * removals during the iteration.  (Unlucky element removals are those
416 >         * that require a siftup instead of a siftdown.)  We must visit all of
417 >         * the elements in this list to complete the iteration.  We do this
418 >         * after we've completed the "normal" iteration.
419 >         *
420 >         * We expect that most iterations, even those involving removals,
421 >         * will not use need to store elements in this field.
422 >         */
423 >        private ArrayDeque<E> forgetMeNot = null;
424 >
425 >        /**
426 >         * Element returned by the most recent call to next iff that
427 >         * element was drawn from the forgetMeNot list.
428 >         */
429 >        private E lastRetElt = null;
430 >
431 >        /**
432 >         * The modCount value that the iterator believes that the backing
433 >         * List should have.  If this expectation is violated, the iterator
434 >         * has detected concurrent modification.
435 >         */
436 >        private int expectedModCount = modCount;
437 >
438 >        public boolean hasNext() {
439 >            return cursor < size ||
440 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
441 >        }
442 >
443 >        public E next() {
444 >            if (expectedModCount != modCount)
445 >                throw new ConcurrentModificationException();
446 >            if (cursor < size)
447 >                return (E) queue[lastRet = cursor++];
448 >            if (forgetMeNot != null) {
449 >                lastRet = -1;
450 >                lastRetElt = forgetMeNot.poll();
451 >                if (lastRetElt != null)
452 >                    return lastRetElt;
453 >            }
454 >            throw new NoSuchElementException();
455 >        }
456 >
457 >        public void remove() {
458 >            if (expectedModCount != modCount)
459 >                throw new ConcurrentModificationException();
460 >            if (lastRet == -1 && lastRetElt == null)
461 >                throw new IllegalStateException();
462 >            if (lastRet != -1) {
463 >                E moved = PriorityQueue.this.removeAt(lastRet);
464 >                lastRet = -1;
465 >                if (moved == null)
466 >                    cursor--;
467 >                else {
468 >                    if (forgetMeNot == null)
469 >                        forgetMeNot = new ArrayDeque<E>();
470 >                    forgetMeNot.add(moved);
471 >                }
472 >            } else {
473 >                PriorityQueue.this.removeEq(lastRetElt);
474 >                lastRetElt = null;
475 >            }
476 >            expectedModCount = modCount;
477 >        }
478 >
479 >    }
480 >
481 >    public int size() {
482 >        return size;
483 >    }
484 >
485 >    /**
486 >     * Removes all of the elements from this priority queue.
487 >     * The queue will be empty after this call returns.
488 >     */
489 >    public void clear() {
490 >        modCount++;
491 >        for (int i = 0; i < size; i++)
492 >            queue[i] = null;
493 >        size = 0;
494 >    }
495 >
496 >    public E poll() {
497 >        if (size == 0)
498 >            return null;
499 >        int s = --size;
500 >        modCount++;
501 >        E result = (E)queue[0];
502 >        E x = (E)queue[s];
503 >        queue[s] = null;
504 >        if (s != 0)
505 >            siftDown(0, x);
506 >        return result;
507 >    }
508 >
509 >    /**
510 >     * Removes the ith element from queue.
511 >     *
512 >     * Normally this method leaves the elements at up to i-1,
513 >     * inclusive, untouched.  Under these circumstances, it returns
514 >     * null.  Occasionally, in order to maintain the heap invariant,
515 >     * it must swap a later element of the list with one earlier than
516 >     * i.  Under these circumstances, this method returns the element
517 >     * that was previously at the end of the list and is now at some
518 >     * position before i. This fact is used by iterator.remove so as to
519 >     * avoid missing traverseing elements.
520 >     */
521 >    private E removeAt(int i) {
522 >        assert i >= 0 && i < size;
523 >        modCount++;
524 >        int s = --size;
525 >        if (s == i) // removed last element
526 >            queue[i] = null;
527 >        else {
528 >            E moved = (E) queue[s];
529 >            queue[s] = null;
530 >            siftDown(i, moved);
531 >            if (queue[i] == moved) {
532 >                siftUp(i, moved);
533 >                if (queue[i] != moved)
534 >                    return moved;
535 >            }
536 >        }
537          return null;
538      }
539  
540 +    /**
541 +     * Inserts item x at position k, maintaining heap invariant by
542 +     * promoting x up the tree until it is greater than or equal to
543 +     * its parent, or is the root.
544 +     *
545 +     * To simplify and speed up coercions and comparisons. the
546 +     * Comparable and Comparator versions are separated into different
547 +     * methods that are otherwise identical. (Similarly for siftDown.)
548 +     *
549 +     * @param k the position to fill
550 +     * @param x the item to insert
551 +     */
552 +    private void siftUp(int k, E x) {
553 +        if (comparator != null)
554 +            siftUpUsingComparator(k, x);
555 +        else
556 +            siftUpComparable(k, x);
557 +    }
558 +
559 +    private void siftUpComparable(int k, E x) {
560 +        Comparable<? super E> key = (Comparable<? super E>) x;
561 +        while (k > 0) {
562 +            int parent = (k - 1) >>> 1;
563 +            Object e = queue[parent];
564 +            if (key.compareTo((E)e) >= 0)
565 +                break;
566 +            queue[k] = e;
567 +            k = parent;
568 +        }
569 +        queue[k] = key;
570 +    }
571 +
572 +    private void siftUpUsingComparator(int k, E x) {
573 +        while (k > 0) {
574 +            int parent = (k - 1) >>> 1;
575 +            Object e = queue[parent];
576 +            if (comparator.compare(x, (E)e) >= 0)
577 +                break;
578 +            queue[k] = e;
579 +            k = parent;
580 +        }
581 +        queue[k] = x;
582 +    }
583 +
584 +    /**
585 +     * Inserts item x at position k, maintaining heap invariant by
586 +     * demoting x down the tree repeatedly until it is less than or
587 +     * equal to its children or is a leaf.
588 +     *
589 +     * @param k the position to fill
590 +     * @param x the item to insert
591 +     */
592 +    private void siftDown(int k, E x) {
593 +        if (comparator != null)
594 +            siftDownUsingComparator(k, x);
595 +        else
596 +            siftDownComparable(k, x);
597 +    }
598 +
599 +    private void siftDownComparable(int k, E x) {
600 +        Comparable<? super E> key = (Comparable<? super E>)x;
601 +        int half = size >>> 1;        // loop while a non-leaf
602 +        while (k < half) {
603 +            int child = (k << 1) + 1; // assume left child is least
604 +            Object c = queue[child];
605 +            int right = child + 1;
606 +            if (right < size &&
607 +                ((Comparable<? super E>)c).compareTo((E)queue[right]) > 0)
608 +                c = queue[child = right];
609 +            if (key.compareTo((E)c) <= 0)
610 +                break;
611 +            queue[k] = c;
612 +            k = child;
613 +        }
614 +        queue[k] = key;
615 +    }
616 +
617 +    private void siftDownUsingComparator(int k, E x) {
618 +        int half = size >>> 1;
619 +        while (k < half) {
620 +            int child = (k << 1) + 1;
621 +            Object c = queue[child];
622 +            int right = child + 1;
623 +            if (right < size &&
624 +                comparator.compare((E)c, (E)queue[right]) > 0)
625 +                c = queue[child = right];
626 +            if (comparator.compare(x, (E)c) <= 0)
627 +                break;
628 +            queue[k] = c;
629 +            k = child;
630 +        }
631 +        queue[k] = x;
632 +    }
633 +
634 +    /**
635 +     * Establishes the heap invariant (described above) in the entire tree,
636 +     * assuming nothing about the order of the elements prior to the call.
637 +     */
638 +    private void heapify() {
639 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
640 +            siftDown(i, (E)queue[i]);
641 +    }
642 +
643 +    /**
644 +     * Returns the comparator used to order the elements in this
645 +     * queue, or <tt>null</tt> if this queue is sorted according to
646 +     * the {@linkplain Comparable natural ordering} of its elements.
647 +     *
648 +     * @return the comparator used to order this queue, or
649 +     *         <tt>null</tt> if this queue is sorted according to the
650 +     *         natural ordering of its elements.
651 +     */
652 +    public Comparator<? super E> comparator() {
653 +        return comparator;
654 +    }
655 +
656 +    /**
657 +     * Save the state of the instance to a stream (that
658 +     * is, serialize it).
659 +     *
660 +     * @serialData The length of the array backing the instance is
661 +     * emitted (int), followed by all of its elements (each an
662 +     * <tt>Object</tt>) in the proper order.
663 +     * @param s the stream
664 +     */
665 +    private void writeObject(java.io.ObjectOutputStream s)
666 +        throws java.io.IOException{
667 +        // Write out element count, and any hidden stuff
668 +        s.defaultWriteObject();
669 +
670 +        // Write out array length
671 +        // For compatibility with 1.5 version, must be at least 2.
672 +        s.writeInt(Math.max(2, queue.length));
673 +
674 +        // Write out all elements in the proper order.
675 +        for (int i=0; i<size; i++)
676 +            s.writeObject(queue[i]);
677 +    }
678 +
679 +    /**
680 +     * Reconstitute the <tt>PriorityQueue</tt> instance from a stream
681 +     * (that is, deserialize it).
682 +     * @param s the stream
683 +     */
684 +    private void readObject(java.io.ObjectInputStream s)
685 +        throws java.io.IOException, ClassNotFoundException {
686 +        // Read in size, and any hidden stuff
687 +        s.defaultReadObject();
688 +
689 +        // Read in array length and allocate array
690 +        int arrayLength = s.readInt();
691 +        queue = new Object[arrayLength];
692 +
693 +        // Read in all elements in the proper order.
694 +        for (int i=0; i<size; i++)
695 +            queue[i] = (E) s.readObject();
696 +    }
697 +
698   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines