ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.67 by jsr166, Sun May 20 07:54:01 2007 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright 2003-2006 Sun Microsystems, Inc.  All Rights Reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
22 > * CA 95054 USA or visit www.sun.com if you need additional information or
23 > * have any questions.
24 > */
25  
26 < import java.util.*;
26 > package java.util;
27  
28   /**
29 < * An unbounded (resizable) priority queue based on a priority
30 < * heap.The take operation returns the least element with respect to
31 < * the given ordering. (If more than one element is tied for least
32 < * value, one of them is arbitrarily chosen to be returned -- no
33 < * guarantees are made for ordering across ties.) Ordering follows the
34 < * java.util.Collection conventions: Either the elements must be
35 < * Comparable, or a Comparator must be supplied. Comparison failures
36 < * throw ClassCastExceptions during insertions and extractions.
37 < **/
38 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
39 <    public PriorityQueue(int initialCapacity) {}
40 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50 > * specified.
51 > *
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 > *
59 > * <p> <strong>Note that this implementation is not synchronized.</strong>
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63 > * java.util.concurrent.PriorityBlockingQueue} class.
64 > *
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71 > *
72 > * <p>This class is a member of the
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 > * Java Collections Framework</a>.
75 > *
76 > * @since 1.5
77 > * @version %I%, %G%
78 > * @author Josh Bloch, Doug Lea
79 > * @param <E> the type of elements held in this collection
80 > */
81 > public class PriorityQueue<E> extends AbstractQueue<E>
82 >    implements java.io.Serializable {
83  
84 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
84 >    private static final long serialVersionUID = -7720805057305804111L;
85  
86 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
86 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
87  
88 <    public boolean add(E x) {
89 <        return false;
88 >    /**
89 >     * Priority queue represented as a balanced binary heap: the two
90 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
91 >     * priority queue is ordered by comparator, or by the elements'
92 >     * natural ordering, if comparator is null: For each node n in the
93 >     * heap and each descendant d of n, n <= d.  The element with the
94 >     * lowest value is in queue[0], assuming the queue is nonempty.
95 >     */
96 >    private transient Object[] queue;
97 >
98 >    /**
99 >     * The number of elements in the priority queue.
100 >     */
101 >    private int size = 0;
102 >
103 >    /**
104 >     * The comparator, or null if priority queue uses elements'
105 >     * natural ordering.
106 >     */
107 >    private final Comparator<? super E> comparator;
108 >
109 >    /**
110 >     * The number of times this priority queue has been
111 >     * <i>structurally modified</i>.  See AbstractList for gory details.
112 >     */
113 >    private transient int modCount = 0;
114 >
115 >    /**
116 >     * Creates a {@code PriorityQueue} with the default initial
117 >     * capacity (11) that orders its elements according to their
118 >     * {@linkplain Comparable natural ordering}.
119 >     */
120 >    public PriorityQueue() {
121 >        this(DEFAULT_INITIAL_CAPACITY, null);
122      }
123 <    public boolean offer(E x) {
124 <        return false;
123 >
124 >    /**
125 >     * Creates a {@code PriorityQueue} with the specified initial
126 >     * capacity that orders its elements according to their
127 >     * {@linkplain Comparable natural ordering}.
128 >     *
129 >     * @param initialCapacity the initial capacity for this priority queue
130 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
131 >     *         than 1
132 >     */
133 >    public PriorityQueue(int initialCapacity) {
134 >        this(initialCapacity, null);
135      }
136 <    public boolean remove(Object x) {
137 <        return false;
136 >
137 >    /**
138 >     * Creates a {@code PriorityQueue} with the specified initial capacity
139 >     * that orders its elements according to the specified comparator.
140 >     *
141 >     * @param  initialCapacity the initial capacity for this priority queue
142 >     * @param  comparator the comparator that will be used to order this
143 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
144 >     *         natural ordering} of the elements will be used.
145 >     * @throws IllegalArgumentException if {@code initialCapacity} is
146 >     *         less than 1
147 >     */
148 >    public PriorityQueue(int initialCapacity,
149 >                         Comparator<? super E> comparator) {
150 >        // Note: This restriction of at least one is not actually needed,
151 >        // but continues for 1.5 compatibility
152 >        if (initialCapacity < 1)
153 >            throw new IllegalArgumentException();
154 >        this.queue = new Object[initialCapacity];
155 >        this.comparator = comparator;
156      }
157  
158 <    public E remove() {
159 <        return null;
158 >    /**
159 >     * Creates a {@code PriorityQueue} containing the elements in the
160 >     * specified collection.  If the specified collection is an instance of
161 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
162 >     * priority queue will be ordered according to the same ordering.
163 >     * Otherwise, this priority queue will be ordered according to the
164 >     * {@linkplain Comparable natural ordering} of its elements.
165 >     *
166 >     * @param  c the collection whose elements are to be placed
167 >     *         into this priority queue
168 >     * @throws ClassCastException if elements of the specified collection
169 >     *         cannot be compared to one another according to the priority
170 >     *         queue's ordering
171 >     * @throws NullPointerException if the specified collection or any
172 >     *         of its elements are null
173 >     */
174 >    public PriorityQueue(Collection<? extends E> c) {
175 >        initFromCollection(c);
176 >        if (c instanceof SortedSet)
177 >            comparator = (Comparator<? super E>)
178 >                ((SortedSet<? extends E>)c).comparator();
179 >        else if (c instanceof PriorityQueue)
180 >            comparator = (Comparator<? super E>)
181 >                ((PriorityQueue<? extends E>)c).comparator();
182 >        else {
183 >            comparator = null;
184 >            heapify();
185 >        }
186      }
187 <    public Iterator<E> iterator() {
188 <      return null;
187 >
188 >    /**
189 >     * Creates a {@code PriorityQueue} containing the elements in the
190 >     * specified priority queue.  This priority queue will be
191 >     * ordered according to the same ordering as the given priority
192 >     * queue.
193 >     *
194 >     * @param  c the priority queue whose elements are to be placed
195 >     *         into this priority queue
196 >     * @throws ClassCastException if elements of {@code c} cannot be
197 >     *         compared to one another according to {@code c}'s
198 >     *         ordering
199 >     * @throws NullPointerException if the specified priority queue or any
200 >     *         of its elements are null
201 >     */
202 >    public PriorityQueue(PriorityQueue<? extends E> c) {
203 >        comparator = (Comparator<? super E>)c.comparator();
204 >        initFromCollection(c);
205      }
206  
207 <    public E element() {
208 <        return null;
207 >    /**
208 >     * Creates a {@code PriorityQueue} containing the elements in the
209 >     * specified sorted set.   This priority queue will be ordered
210 >     * according to the same ordering as the given sorted set.
211 >     *
212 >     * @param  c the sorted set whose elements are to be placed
213 >     *         into this priority queue
214 >     * @throws ClassCastException if elements of the specified sorted
215 >     *         set cannot be compared to one another according to the
216 >     *         sorted set's ordering
217 >     * @throws NullPointerException if the specified sorted set or any
218 >     *         of its elements are null
219 >     */
220 >    public PriorityQueue(SortedSet<? extends E> c) {
221 >        comparator = (Comparator<? super E>)c.comparator();
222 >        initFromCollection(c);
223      }
224 <    public E poll() {
225 <        return null;
224 >
225 >    /**
226 >     * Initializes queue array with elements from the given Collection.
227 >     *
228 >     * @param c the collection
229 >     */
230 >    private void initFromCollection(Collection<? extends E> c) {
231 >        Object[] a = c.toArray();
232 >        // If c.toArray incorrectly doesn't return Object[], copy it.
233 >        if (a.getClass() != Object[].class)
234 >            a = Arrays.copyOf(a, a.length, Object[].class);
235 >        queue = a;
236 >        size = a.length;
237      }
238 +
239 +    /**
240 +     * Increases the capacity of the array.
241 +     *
242 +     * @param minCapacity the desired minimum capacity
243 +     */
244 +    private void grow(int minCapacity) {
245 +        if (minCapacity < 0) // overflow
246 +            throw new OutOfMemoryError();
247 +        int oldCapacity = queue.length;
248 +        // Double size if small; else grow by 50%
249 +        int newCapacity = ((oldCapacity < 64)?
250 +                           ((oldCapacity + 1) * 2):
251 +                           ((oldCapacity / 2) * 3));
252 +        if (newCapacity < 0) // overflow
253 +            newCapacity = Integer.MAX_VALUE;
254 +        if (newCapacity < minCapacity)
255 +            newCapacity = minCapacity;
256 +        queue = Arrays.copyOf(queue, newCapacity);
257 +    }
258 +
259 +    /**
260 +     * Inserts the specified element into this priority queue.
261 +     *
262 +     * @return {@code true} (as specified by {@link Collection#add})
263 +     * @throws ClassCastException if the specified element cannot be
264 +     *         compared with elements currently in this priority queue
265 +     *         according to the priority queue's ordering
266 +     * @throws NullPointerException if the specified element is null
267 +     */
268 +    public boolean add(E e) {
269 +        return offer(e);
270 +    }
271 +
272 +    /**
273 +     * Inserts the specified element into this priority queue.
274 +     *
275 +     * @return {@code true} (as specified by {@link Queue#offer})
276 +     * @throws ClassCastException if the specified element cannot be
277 +     *         compared with elements currently in this priority queue
278 +     *         according to the priority queue's ordering
279 +     * @throws NullPointerException if the specified element is null
280 +     */
281 +    public boolean offer(E e) {
282 +        if (e == null)
283 +            throw new NullPointerException();
284 +        modCount++;
285 +        int i = size;
286 +        if (i >= queue.length)
287 +            grow(i + 1);
288 +        size = i + 1;
289 +        if (i == 0)
290 +            queue[0] = e;
291 +        else
292 +            siftUp(i, e);
293 +        return true;
294 +    }
295 +
296      public E peek() {
297 <        return null;
297 >        if (size == 0)
298 >            return null;
299 >        return (E) queue[0];
300      }
301  
302 <    public boolean isEmpty() {
302 >    private int indexOf(Object o) {
303 >        if (o != null) {
304 >            for (int i = 0; i < size; i++)
305 >                if (o.equals(queue[i]))
306 >                    return i;
307 >        }
308 >        return -1;
309 >    }
310 >
311 >    /**
312 >     * Removes a single instance of the specified element from this queue,
313 >     * if it is present.  More formally, removes an element {@code e} such
314 >     * that {@code o.equals(e)}, if this queue contains one or more such
315 >     * elements.  Returns {@code true} if and only if this queue contained
316 >     * the specified element (or equivalently, if this queue changed as a
317 >     * result of the call).
318 >     *
319 >     * @param o element to be removed from this queue, if present
320 >     * @return {@code true} if this queue changed as a result of the call
321 >     */
322 >    public boolean remove(Object o) {
323 >        int i = indexOf(o);
324 >        if (i == -1)
325 >            return false;
326 >        else {
327 >            removeAt(i);
328 >            return true;
329 >        }
330 >    }
331 >
332 >    /**
333 >     * Version of remove using reference equality, not equals.
334 >     * Needed by iterator.remove.
335 >     *
336 >     * @param o element to be removed from this queue, if present
337 >     * @return {@code true} if removed
338 >     */
339 >    boolean removeEq(Object o) {
340 >        for (int i = 0; i < size; i++) {
341 >            if (o == queue[i]) {
342 >                removeAt(i);
343 >                return true;
344 >            }
345 >        }
346          return false;
347      }
348 <    public int size() {
349 <        return 0;
348 >
349 >    /**
350 >     * Returns {@code true} if this queue contains the specified element.
351 >     * More formally, returns {@code true} if and only if this queue contains
352 >     * at least one element {@code e} such that {@code o.equals(e)}.
353 >     *
354 >     * @param o object to be checked for containment in this queue
355 >     * @return {@code true} if this queue contains the specified element
356 >     */
357 >    public boolean contains(Object o) {
358 >        return indexOf(o) != -1;
359      }
360 +
361 +    /**
362 +     * Returns an array containing all of the elements in this queue.
363 +     * The elements are in no particular order.
364 +     *
365 +     * <p>The returned array will be "safe" in that no references to it are
366 +     * maintained by this queue.  (In other words, this method must allocate
367 +     * a new array).  The caller is thus free to modify the returned array.
368 +     *
369 +     * <p>This method acts as bridge between array-based and collection-based
370 +     * APIs.
371 +     *
372 +     * @return an array containing all of the elements in this queue
373 +     */
374      public Object[] toArray() {
375 <        return null;
375 >        return Arrays.copyOf(queue, size);
376 >    }
377 >
378 >    /**
379 >     * Returns an array containing all of the elements in this queue; the
380 >     * runtime type of the returned array is that of the specified array.
381 >     * The returned array elements are in no particular order.
382 >     * If the queue fits in the specified array, it is returned therein.
383 >     * Otherwise, a new array is allocated with the runtime type of the
384 >     * specified array and the size of this queue.
385 >     *
386 >     * <p>If the queue fits in the specified array with room to spare
387 >     * (i.e., the array has more elements than the queue), the element in
388 >     * the array immediately following the end of the collection is set to
389 >     * {@code null}.
390 >     *
391 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
392 >     * array-based and collection-based APIs.  Further, this method allows
393 >     * precise control over the runtime type of the output array, and may,
394 >     * under certain circumstances, be used to save allocation costs.
395 >     *
396 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
397 >     * The following code can be used to dump the queue into a newly
398 >     * allocated array of <tt>String</tt>:
399 >     *
400 >     * <pre>
401 >     *     String[] y = x.toArray(new String[0]);</pre>
402 >     *
403 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
404 >     * <tt>toArray()</tt>.
405 >     *
406 >     * @param a the array into which the elements of the queue are to
407 >     *          be stored, if it is big enough; otherwise, a new array of the
408 >     *          same runtime type is allocated for this purpose.
409 >     * @return an array containing all of the elements in this queue
410 >     * @throws ArrayStoreException if the runtime type of the specified array
411 >     *         is not a supertype of the runtime type of every element in
412 >     *         this queue
413 >     * @throws NullPointerException if the specified array is null
414 >     */
415 >    public <T> T[] toArray(T[] a) {
416 >        if (a.length < size)
417 >            // Make a new array of a's runtime type, but my contents:
418 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
419 >        System.arraycopy(queue, 0, a, 0, size);
420 >        if (a.length > size)
421 >            a[size] = null;
422 >        return a;
423      }
424  
425 <    public <T> T[] toArray(T[] array) {
425 >    /**
426 >     * Returns an iterator over the elements in this queue. The iterator
427 >     * does not return the elements in any particular order.
428 >     *
429 >     * @return an iterator over the elements in this queue
430 >     */
431 >    public Iterator<E> iterator() {
432 >        return new Itr();
433 >    }
434 >
435 >    private final class Itr implements Iterator<E> {
436 >        /**
437 >         * Index (into queue array) of element to be returned by
438 >         * subsequent call to next.
439 >         */
440 >        private int cursor = 0;
441 >
442 >        /**
443 >         * Index of element returned by most recent call to next,
444 >         * unless that element came from the forgetMeNot list.
445 >         * Set to -1 if element is deleted by a call to remove.
446 >         */
447 >        private int lastRet = -1;
448 >
449 >        /**
450 >         * A queue of elements that were moved from the unvisited portion of
451 >         * the heap into the visited portion as a result of "unlucky" element
452 >         * removals during the iteration.  (Unlucky element removals are those
453 >         * that require a siftup instead of a siftdown.)  We must visit all of
454 >         * the elements in this list to complete the iteration.  We do this
455 >         * after we've completed the "normal" iteration.
456 >         *
457 >         * We expect that most iterations, even those involving removals,
458 >         * will not need to store elements in this field.
459 >         */
460 >        private ArrayDeque<E> forgetMeNot = null;
461 >
462 >        /**
463 >         * Element returned by the most recent call to next iff that
464 >         * element was drawn from the forgetMeNot list.
465 >         */
466 >        private E lastRetElt = null;
467 >
468 >        /**
469 >         * The modCount value that the iterator believes that the backing
470 >         * Queue should have.  If this expectation is violated, the iterator
471 >         * has detected concurrent modification.
472 >         */
473 >        private int expectedModCount = modCount;
474 >
475 >        public boolean hasNext() {
476 >            return cursor < size ||
477 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
478 >        }
479 >
480 >        public E next() {
481 >            if (expectedModCount != modCount)
482 >                throw new ConcurrentModificationException();
483 >            if (cursor < size)
484 >                return (E) queue[lastRet = cursor++];
485 >            if (forgetMeNot != null) {
486 >                lastRet = -1;
487 >                lastRetElt = forgetMeNot.poll();
488 >                if (lastRetElt != null)
489 >                    return lastRetElt;
490 >            }
491 >            throw new NoSuchElementException();
492 >        }
493 >
494 >        public void remove() {
495 >            if (expectedModCount != modCount)
496 >                throw new ConcurrentModificationException();
497 >            if (lastRet != -1) {
498 >                E moved = PriorityQueue.this.removeAt(lastRet);
499 >                lastRet = -1;
500 >                if (moved == null)
501 >                    cursor--;
502 >                else {
503 >                    if (forgetMeNot == null)
504 >                        forgetMeNot = new ArrayDeque<E>();
505 >                    forgetMeNot.add(moved);
506 >                }
507 >            } else if (lastRetElt != null) {
508 >                PriorityQueue.this.removeEq(lastRetElt);
509 >                lastRetElt = null;
510 >            } else {
511 >                throw new IllegalStateException();
512 >            }
513 >            expectedModCount = modCount;
514 >        }
515 >    }
516 >
517 >    public int size() {
518 >        return size;
519 >    }
520 >
521 >    /**
522 >     * Removes all of the elements from this priority queue.
523 >     * The queue will be empty after this call returns.
524 >     */
525 >    public void clear() {
526 >        modCount++;
527 >        for (int i = 0; i < size; i++)
528 >            queue[i] = null;
529 >        size = 0;
530 >    }
531 >
532 >    public E poll() {
533 >        if (size == 0)
534 >            return null;
535 >        int s = --size;
536 >        modCount++;
537 >        E result = (E) queue[0];
538 >        E x = (E) queue[s];
539 >        queue[s] = null;
540 >        if (s != 0)
541 >            siftDown(0, x);
542 >        return result;
543 >    }
544 >
545 >    /**
546 >     * Removes the ith element from queue.
547 >     *
548 >     * Normally this method leaves the elements at up to i-1,
549 >     * inclusive, untouched.  Under these circumstances, it returns
550 >     * null.  Occasionally, in order to maintain the heap invariant,
551 >     * it must swap a later element of the list with one earlier than
552 >     * i.  Under these circumstances, this method returns the element
553 >     * that was previously at the end of the list and is now at some
554 >     * position before i. This fact is used by iterator.remove so as to
555 >     * avoid missing traversing elements.
556 >     */
557 >    private E removeAt(int i) {
558 >        assert i >= 0 && i < size;
559 >        modCount++;
560 >        int s = --size;
561 >        if (s == i) // removed last element
562 >            queue[i] = null;
563 >        else {
564 >            E moved = (E) queue[s];
565 >            queue[s] = null;
566 >            siftDown(i, moved);
567 >            if (queue[i] == moved) {
568 >                siftUp(i, moved);
569 >                if (queue[i] != moved)
570 >                    return moved;
571 >            }
572 >        }
573          return null;
574      }
575  
576 +    /**
577 +     * Inserts item x at position k, maintaining heap invariant by
578 +     * promoting x up the tree until it is greater than or equal to
579 +     * its parent, or is the root.
580 +     *
581 +     * To simplify and speed up coercions and comparisons. the
582 +     * Comparable and Comparator versions are separated into different
583 +     * methods that are otherwise identical. (Similarly for siftDown.)
584 +     *
585 +     * @param k the position to fill
586 +     * @param x the item to insert
587 +     */
588 +    private void siftUp(int k, E x) {
589 +        if (comparator != null)
590 +            siftUpUsingComparator(k, x);
591 +        else
592 +            siftUpComparable(k, x);
593 +    }
594 +
595 +    private void siftUpComparable(int k, E x) {
596 +        Comparable<? super E> key = (Comparable<? super E>) x;
597 +        while (k > 0) {
598 +            int parent = (k - 1) >>> 1;
599 +            Object e = queue[parent];
600 +            if (key.compareTo((E) e) >= 0)
601 +                break;
602 +            queue[k] = e;
603 +            k = parent;
604 +        }
605 +        queue[k] = key;
606 +    }
607 +
608 +    private void siftUpUsingComparator(int k, E x) {
609 +        while (k > 0) {
610 +            int parent = (k - 1) >>> 1;
611 +            Object e = queue[parent];
612 +            if (comparator.compare(x, (E) e) >= 0)
613 +                break;
614 +            queue[k] = e;
615 +            k = parent;
616 +        }
617 +        queue[k] = x;
618 +    }
619 +
620 +    /**
621 +     * Inserts item x at position k, maintaining heap invariant by
622 +     * demoting x down the tree repeatedly until it is less than or
623 +     * equal to its children or is a leaf.
624 +     *
625 +     * @param k the position to fill
626 +     * @param x the item to insert
627 +     */
628 +    private void siftDown(int k, E x) {
629 +        if (comparator != null)
630 +            siftDownUsingComparator(k, x);
631 +        else
632 +            siftDownComparable(k, x);
633 +    }
634 +
635 +    private void siftDownComparable(int k, E x) {
636 +        Comparable<? super E> key = (Comparable<? super E>)x;
637 +        int half = size >>> 1;        // loop while a non-leaf
638 +        while (k < half) {
639 +            int child = (k << 1) + 1; // assume left child is least
640 +            Object c = queue[child];
641 +            int right = child + 1;
642 +            if (right < size &&
643 +                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
644 +                c = queue[child = right];
645 +            if (key.compareTo((E) c) <= 0)
646 +                break;
647 +            queue[k] = c;
648 +            k = child;
649 +        }
650 +        queue[k] = key;
651 +    }
652 +
653 +    private void siftDownUsingComparator(int k, E x) {
654 +        int half = size >>> 1;
655 +        while (k < half) {
656 +            int child = (k << 1) + 1;
657 +            Object c = queue[child];
658 +            int right = child + 1;
659 +            if (right < size &&
660 +                comparator.compare((E) c, (E) queue[right]) > 0)
661 +                c = queue[child = right];
662 +            if (comparator.compare(x, (E) c) <= 0)
663 +                break;
664 +            queue[k] = c;
665 +            k = child;
666 +        }
667 +        queue[k] = x;
668 +    }
669 +
670 +    /**
671 +     * Establishes the heap invariant (described above) in the entire tree,
672 +     * assuming nothing about the order of the elements prior to the call.
673 +     */
674 +    private void heapify() {
675 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
676 +            siftDown(i, (E) queue[i]);
677 +    }
678 +
679 +    /**
680 +     * Returns the comparator used to order the elements in this
681 +     * queue, or {@code null} if this queue is sorted according to
682 +     * the {@linkplain Comparable natural ordering} of its elements.
683 +     *
684 +     * @return the comparator used to order this queue, or
685 +     *         {@code null} if this queue is sorted according to the
686 +     *         natural ordering of its elements
687 +     */
688 +    public Comparator<? super E> comparator() {
689 +        return comparator;
690 +    }
691 +
692 +    /**
693 +     * Saves the state of the instance to a stream (that
694 +     * is, serializes it).
695 +     *
696 +     * @serialData The length of the array backing the instance is
697 +     *             emitted (int), followed by all of its elements
698 +     *             (each an {@code Object}) in the proper order.
699 +     * @param s the stream
700 +     */
701 +    private void writeObject(java.io.ObjectOutputStream s)
702 +        throws java.io.IOException{
703 +        // Write out element count, and any hidden stuff
704 +        s.defaultWriteObject();
705 +
706 +        // Write out array length, for compatibility with 1.5 version
707 +        s.writeInt(Math.max(2, size + 1));
708 +
709 +        // Write out all elements in the "proper order".
710 +        for (int i = 0; i < size; i++)
711 +            s.writeObject(queue[i]);
712 +    }
713 +
714 +    /**
715 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
716 +     * (that is, deserializes it).
717 +     *
718 +     * @param s the stream
719 +     */
720 +    private void readObject(java.io.ObjectInputStream s)
721 +        throws java.io.IOException, ClassNotFoundException {
722 +        // Read in size, and any hidden stuff
723 +        s.defaultReadObject();
724 +
725 +        // Read in (and discard) array length
726 +        s.readInt();
727 +
728 +        queue = new Object[size];
729 +
730 +        // Read in all elements.
731 +        for (int i = 0; i < size; i++)
732 +            queue[i] = s.readObject();
733 +
734 +        // Elements are guaranteed to be in "proper order", but the
735 +        // spec has never explained what that might be.
736 +        heapify();
737 +    }
738   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines