ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.71 by jsr166, Sun Sep 5 21:32:19 2010 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2006, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Sun designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Sun in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25  
26 < import java.util.*;
26 > package java.util;
27  
28   /**
29 < * An unbounded (resizable) priority queue based on a priority
30 < * heap.The take operation returns the least element with respect to
31 < * the given ordering. (If more than one element is tied for least
32 < * value, one of them is arbitrarily chosen to be returned -- no
33 < * guarantees are made for ordering across ties.) Ordering follows the
34 < * java.util.Collection conventions: Either the elements must be
35 < * Comparable, or a Comparator must be supplied. Comparison failures
36 < * throw ClassCastExceptions during insertions and extractions.
37 < **/
38 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
39 <    public PriorityQueue(int initialCapacity) {}
40 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
29 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
30 > * The elements of the priority queue are ordered according to their
31 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
32 > * provided at queue construction time, depending on which constructor is
33 > * used.  A priority queue does not permit {@code null} elements.
34 > * A priority queue relying on natural ordering also does not permit
35 > * insertion of non-comparable objects (doing so may result in
36 > * {@code ClassCastException}).
37 > *
38 > * <p>The <em>head</em> of this queue is the <em>least</em> element
39 > * with respect to the specified ordering.  If multiple elements are
40 > * tied for least value, the head is one of those elements -- ties are
41 > * broken arbitrarily.  The queue retrieval operations {@code poll},
42 > * {@code remove}, {@code peek}, and {@code element} access the
43 > * element at the head of the queue.
44 > *
45 > * <p>A priority queue is unbounded, but has an internal
46 > * <i>capacity</i> governing the size of an array used to store the
47 > * elements on the queue.  It is always at least as large as the queue
48 > * size.  As elements are added to a priority queue, its capacity
49 > * grows automatically.  The details of the growth policy are not
50 > * specified.
51 > *
52 > * <p>This class and its iterator implement all of the
53 > * <em>optional</em> methods of the {@link Collection} and {@link
54 > * Iterator} interfaces.  The Iterator provided in method {@link
55 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
56 > * the priority queue in any particular order. If you need ordered
57 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
58 > *
59 > * <p> <strong>Note that this implementation is not synchronized.</strong>
60 > * Multiple threads should not access a {@code PriorityQueue}
61 > * instance concurrently if any of the threads modifies the queue.
62 > * Instead, use the thread-safe {@link
63 > * java.util.concurrent.PriorityBlockingQueue} class.
64 > *
65 > * <p>Implementation note: this implementation provides
66 > * O(log(n)) time for the enqueing and dequeing methods
67 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
68 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
69 > * methods; and constant time for the retrieval methods
70 > * ({@code peek}, {@code element}, and {@code size}).
71 > *
72 > * <p>This class is a member of the
73 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
74 > * Java Collections Framework</a>.
75 > *
76 > * @since 1.5
77 > * @author Josh Bloch, Doug Lea
78 > * @param <E> the type of elements held in this collection
79 > */
80 > public class PriorityQueue<E> extends AbstractQueue<E>
81 >    implements java.io.Serializable {
82  
83 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
83 >    private static final long serialVersionUID = -7720805057305804111L;
84  
85 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
85 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
86  
87 <    public boolean add(E x) {
88 <        return false;
87 >    /**
88 >     * Priority queue represented as a balanced binary heap: the two
89 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
90 >     * priority queue is ordered by comparator, or by the elements'
91 >     * natural ordering, if comparator is null: For each node n in the
92 >     * heap and each descendant d of n, n <= d.  The element with the
93 >     * lowest value is in queue[0], assuming the queue is nonempty.
94 >     */
95 >    private transient Object[] queue;
96 >
97 >    /**
98 >     * The number of elements in the priority queue.
99 >     */
100 >    private int size = 0;
101 >
102 >    /**
103 >     * The comparator, or null if priority queue uses elements'
104 >     * natural ordering.
105 >     */
106 >    private final Comparator<? super E> comparator;
107 >
108 >    /**
109 >     * The number of times this priority queue has been
110 >     * <i>structurally modified</i>.  See AbstractList for gory details.
111 >     */
112 >    private transient int modCount = 0;
113 >
114 >    /**
115 >     * Creates a {@code PriorityQueue} with the default initial
116 >     * capacity (11) that orders its elements according to their
117 >     * {@linkplain Comparable natural ordering}.
118 >     */
119 >    public PriorityQueue() {
120 >        this(DEFAULT_INITIAL_CAPACITY, null);
121      }
122 <    public boolean offer(E x) {
123 <        return false;
122 >
123 >    /**
124 >     * Creates a {@code PriorityQueue} with the specified initial
125 >     * capacity that orders its elements according to their
126 >     * {@linkplain Comparable natural ordering}.
127 >     *
128 >     * @param initialCapacity the initial capacity for this priority queue
129 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
130 >     *         than 1
131 >     */
132 >    public PriorityQueue(int initialCapacity) {
133 >        this(initialCapacity, null);
134      }
135 <    public boolean remove(Object x) {
136 <        return false;
135 >
136 >    /**
137 >     * Creates a {@code PriorityQueue} with the specified initial capacity
138 >     * that orders its elements according to the specified comparator.
139 >     *
140 >     * @param  initialCapacity the initial capacity for this priority queue
141 >     * @param  comparator the comparator that will be used to order this
142 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
143 >     *         natural ordering} of the elements will be used.
144 >     * @throws IllegalArgumentException if {@code initialCapacity} is
145 >     *         less than 1
146 >     */
147 >    public PriorityQueue(int initialCapacity,
148 >                         Comparator<? super E> comparator) {
149 >        // Note: This restriction of at least one is not actually needed,
150 >        // but continues for 1.5 compatibility
151 >        if (initialCapacity < 1)
152 >            throw new IllegalArgumentException();
153 >        this.queue = new Object[initialCapacity];
154 >        this.comparator = comparator;
155      }
156  
157 <    public E remove() {
158 <        return null;
157 >    /**
158 >     * Creates a {@code PriorityQueue} containing the elements in the
159 >     * specified collection.  If the specified collection is an instance of
160 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
161 >     * priority queue will be ordered according to the same ordering.
162 >     * Otherwise, this priority queue will be ordered according to the
163 >     * {@linkplain Comparable natural ordering} of its elements.
164 >     *
165 >     * @param  c the collection whose elements are to be placed
166 >     *         into this priority queue
167 >     * @throws ClassCastException if elements of the specified collection
168 >     *         cannot be compared to one another according to the priority
169 >     *         queue's ordering
170 >     * @throws NullPointerException if the specified collection or any
171 >     *         of its elements are null
172 >     */
173 >    @SuppressWarnings("unchecked")
174 >    public PriorityQueue(Collection<? extends E> c) {
175 >        if (c instanceof SortedSet<?>) {
176 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
177 >            this.comparator = (Comparator<? super E>) ss.comparator();
178 >            initElementsFromCollection(ss);
179 >        }
180 >        else if (c instanceof PriorityQueue<?>) {
181 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
182 >            this.comparator = (Comparator<? super E>) pq.comparator();
183 >            initFromPriorityQueue(pq);
184 >        }
185 >        else {
186 >            this.comparator = null;
187 >            initFromCollection(c);
188 >        }
189      }
190 <    public Iterator<E> iterator() {
191 <      return null;
190 >
191 >    /**
192 >     * Creates a {@code PriorityQueue} containing the elements in the
193 >     * specified priority queue.  This priority queue will be
194 >     * ordered according to the same ordering as the given priority
195 >     * queue.
196 >     *
197 >     * @param  c the priority queue whose elements are to be placed
198 >     *         into this priority queue
199 >     * @throws ClassCastException if elements of {@code c} cannot be
200 >     *         compared to one another according to {@code c}'s
201 >     *         ordering
202 >     * @throws NullPointerException if the specified priority queue or any
203 >     *         of its elements are null
204 >     */
205 >    @SuppressWarnings("unchecked")
206 >    public PriorityQueue(PriorityQueue<? extends E> c) {
207 >        this.comparator = (Comparator<? super E>) c.comparator();
208 >        initFromPriorityQueue(c);
209      }
210  
211 <    public E element() {
212 <        return null;
211 >    /**
212 >     * Creates a {@code PriorityQueue} containing the elements in the
213 >     * specified sorted set.   This priority queue will be ordered
214 >     * according to the same ordering as the given sorted set.
215 >     *
216 >     * @param  c the sorted set whose elements are to be placed
217 >     *         into this priority queue
218 >     * @throws ClassCastException if elements of the specified sorted
219 >     *         set cannot be compared to one another according to the
220 >     *         sorted set's ordering
221 >     * @throws NullPointerException if the specified sorted set or any
222 >     *         of its elements are null
223 >     */
224 >    @SuppressWarnings("unchecked")
225 >    public PriorityQueue(SortedSet<? extends E> c) {
226 >        this.comparator = (Comparator<? super E>) c.comparator();
227 >        initElementsFromCollection(c);
228      }
229 <    public E poll() {
230 <        return null;
229 >
230 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
231 >        if (c.getClass() == PriorityQueue.class) {
232 >            this.queue = c.toArray();
233 >            this.size = c.size();
234 >        } else {
235 >            initFromCollection(c);
236 >        }
237 >    }
238 >
239 >    private void initElementsFromCollection(Collection<? extends E> c) {
240 >        Object[] a = c.toArray();
241 >        // If c.toArray incorrectly doesn't return Object[], copy it.
242 >        if (a.getClass() != Object[].class)
243 >            a = Arrays.copyOf(a, a.length, Object[].class);
244 >        int len = a.length;
245 >        if (len == 1 || this.comparator != null)
246 >            for (int i = 0; i < len; i++)
247 >                if (a[i] == null)
248 >                    throw new NullPointerException();
249 >        this.queue = a;
250 >        this.size = a.length;
251 >    }
252 >
253 >    /**
254 >     * Initializes queue array with elements from the given Collection.
255 >     *
256 >     * @param c the collection
257 >     */
258 >    private void initFromCollection(Collection<? extends E> c) {
259 >        initElementsFromCollection(c);
260 >        heapify();
261      }
262 +
263 +    /**
264 +     * The maximum size of array to allocate.
265 +     * Some VMs reserve some header words in an array.
266 +     * Attempts to allocate larger arrays may result in
267 +     * OutOfMemoryError: Requested array size exceeds VM limit
268 +     */
269 +    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
270 +
271 +    /**
272 +     * Increases the capacity of the array.
273 +     *
274 +     * @param minCapacity the desired minimum capacity
275 +     */
276 +    private void grow(int minCapacity) {
277 +        int oldCapacity = queue.length;
278 +        // Double size if small; else grow by 50%
279 +        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
280 +                                         (oldCapacity + 2) :
281 +                                         (oldCapacity >> 1));
282 +        // overflow-conscious code
283 +        if (newCapacity - MAX_ARRAY_SIZE > 0)
284 +            newCapacity = hugeCapacity(minCapacity);
285 +        queue = Arrays.copyOf(queue, newCapacity);
286 +    }
287 +
288 +    private static int hugeCapacity(int minCapacity) {
289 +        if (minCapacity < 0) // overflow
290 +            throw new OutOfMemoryError();
291 +        return (minCapacity > MAX_ARRAY_SIZE) ?
292 +            Integer.MAX_VALUE :
293 +            MAX_ARRAY_SIZE;
294 +    }
295 +
296 +    /**
297 +     * Inserts the specified element into this priority queue.
298 +     *
299 +     * @return {@code true} (as specified by {@link Collection#add})
300 +     * @throws ClassCastException if the specified element cannot be
301 +     *         compared with elements currently in this priority queue
302 +     *         according to the priority queue's ordering
303 +     * @throws NullPointerException if the specified element is null
304 +     */
305 +    public boolean add(E e) {
306 +        return offer(e);
307 +    }
308 +
309 +    /**
310 +     * Inserts the specified element into this priority queue.
311 +     *
312 +     * @return {@code true} (as specified by {@link Queue#offer})
313 +     * @throws ClassCastException if the specified element cannot be
314 +     *         compared with elements currently in this priority queue
315 +     *         according to the priority queue's ordering
316 +     * @throws NullPointerException if the specified element is null
317 +     */
318 +    public boolean offer(E e) {
319 +        if (e == null)
320 +            throw new NullPointerException();
321 +        modCount++;
322 +        int i = size;
323 +        if (i >= queue.length)
324 +            grow(i + 1);
325 +        size = i + 1;
326 +        if (i == 0)
327 +            queue[0] = e;
328 +        else
329 +            siftUp(i, e);
330 +        return true;
331 +    }
332 +
333      public E peek() {
334 <        return null;
334 >        if (size == 0)
335 >            return null;
336 >        return (E) queue[0];
337      }
338  
339 <    public boolean isEmpty() {
339 >    private int indexOf(Object o) {
340 >        if (o != null) {
341 >            for (int i = 0; i < size; i++)
342 >                if (o.equals(queue[i]))
343 >                    return i;
344 >        }
345 >        return -1;
346 >    }
347 >
348 >    /**
349 >     * Removes a single instance of the specified element from this queue,
350 >     * if it is present.  More formally, removes an element {@code e} such
351 >     * that {@code o.equals(e)}, if this queue contains one or more such
352 >     * elements.  Returns {@code true} if and only if this queue contained
353 >     * the specified element (or equivalently, if this queue changed as a
354 >     * result of the call).
355 >     *
356 >     * @param o element to be removed from this queue, if present
357 >     * @return {@code true} if this queue changed as a result of the call
358 >     */
359 >    public boolean remove(Object o) {
360 >        int i = indexOf(o);
361 >        if (i == -1)
362 >            return false;
363 >        else {
364 >            removeAt(i);
365 >            return true;
366 >        }
367 >    }
368 >
369 >    /**
370 >     * Version of remove using reference equality, not equals.
371 >     * Needed by iterator.remove.
372 >     *
373 >     * @param o element to be removed from this queue, if present
374 >     * @return {@code true} if removed
375 >     */
376 >    boolean removeEq(Object o) {
377 >        for (int i = 0; i < size; i++) {
378 >            if (o == queue[i]) {
379 >                removeAt(i);
380 >                return true;
381 >            }
382 >        }
383          return false;
384      }
385 <    public int size() {
386 <        return 0;
385 >
386 >    /**
387 >     * Returns {@code true} if this queue contains the specified element.
388 >     * More formally, returns {@code true} if and only if this queue contains
389 >     * at least one element {@code e} such that {@code o.equals(e)}.
390 >     *
391 >     * @param o object to be checked for containment in this queue
392 >     * @return {@code true} if this queue contains the specified element
393 >     */
394 >    public boolean contains(Object o) {
395 >        return indexOf(o) != -1;
396      }
397 +
398 +    /**
399 +     * Returns an array containing all of the elements in this queue.
400 +     * The elements are in no particular order.
401 +     *
402 +     * <p>The returned array will be "safe" in that no references to it are
403 +     * maintained by this queue.  (In other words, this method must allocate
404 +     * a new array).  The caller is thus free to modify the returned array.
405 +     *
406 +     * <p>This method acts as bridge between array-based and collection-based
407 +     * APIs.
408 +     *
409 +     * @return an array containing all of the elements in this queue
410 +     */
411      public Object[] toArray() {
412 <        return null;
412 >        return Arrays.copyOf(queue, size);
413 >    }
414 >
415 >    /**
416 >     * Returns an array containing all of the elements in this queue; the
417 >     * runtime type of the returned array is that of the specified array.
418 >     * The returned array elements are in no particular order.
419 >     * If the queue fits in the specified array, it is returned therein.
420 >     * Otherwise, a new array is allocated with the runtime type of the
421 >     * specified array and the size of this queue.
422 >     *
423 >     * <p>If the queue fits in the specified array with room to spare
424 >     * (i.e., the array has more elements than the queue), the element in
425 >     * the array immediately following the end of the collection is set to
426 >     * {@code null}.
427 >     *
428 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
429 >     * array-based and collection-based APIs.  Further, this method allows
430 >     * precise control over the runtime type of the output array, and may,
431 >     * under certain circumstances, be used to save allocation costs.
432 >     *
433 >     * <p>Suppose <tt>x</tt> is a queue known to contain only strings.
434 >     * The following code can be used to dump the queue into a newly
435 >     * allocated array of <tt>String</tt>:
436 >     *
437 >     * <pre>
438 >     *     String[] y = x.toArray(new String[0]);</pre>
439 >     *
440 >     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
441 >     * <tt>toArray()</tt>.
442 >     *
443 >     * @param a the array into which the elements of the queue are to
444 >     *          be stored, if it is big enough; otherwise, a new array of the
445 >     *          same runtime type is allocated for this purpose.
446 >     * @return an array containing all of the elements in this queue
447 >     * @throws ArrayStoreException if the runtime type of the specified array
448 >     *         is not a supertype of the runtime type of every element in
449 >     *         this queue
450 >     * @throws NullPointerException if the specified array is null
451 >     */
452 >    public <T> T[] toArray(T[] a) {
453 >        if (a.length < size)
454 >            // Make a new array of a's runtime type, but my contents:
455 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
456 >        System.arraycopy(queue, 0, a, 0, size);
457 >        if (a.length > size)
458 >            a[size] = null;
459 >        return a;
460 >    }
461 >
462 >    /**
463 >     * Returns an iterator over the elements in this queue. The iterator
464 >     * does not return the elements in any particular order.
465 >     *
466 >     * @return an iterator over the elements in this queue
467 >     */
468 >    public Iterator<E> iterator() {
469 >        return new Itr();
470 >    }
471 >
472 >    private final class Itr implements Iterator<E> {
473 >        /**
474 >         * Index (into queue array) of element to be returned by
475 >         * subsequent call to next.
476 >         */
477 >        private int cursor = 0;
478 >
479 >        /**
480 >         * Index of element returned by most recent call to next,
481 >         * unless that element came from the forgetMeNot list.
482 >         * Set to -1 if element is deleted by a call to remove.
483 >         */
484 >        private int lastRet = -1;
485 >
486 >        /**
487 >         * A queue of elements that were moved from the unvisited portion of
488 >         * the heap into the visited portion as a result of "unlucky" element
489 >         * removals during the iteration.  (Unlucky element removals are those
490 >         * that require a siftup instead of a siftdown.)  We must visit all of
491 >         * the elements in this list to complete the iteration.  We do this
492 >         * after we've completed the "normal" iteration.
493 >         *
494 >         * We expect that most iterations, even those involving removals,
495 >         * will not need to store elements in this field.
496 >         */
497 >        private ArrayDeque<E> forgetMeNot = null;
498 >
499 >        /**
500 >         * Element returned by the most recent call to next iff that
501 >         * element was drawn from the forgetMeNot list.
502 >         */
503 >        private E lastRetElt = null;
504 >
505 >        /**
506 >         * The modCount value that the iterator believes that the backing
507 >         * Queue should have.  If this expectation is violated, the iterator
508 >         * has detected concurrent modification.
509 >         */
510 >        private int expectedModCount = modCount;
511 >
512 >        public boolean hasNext() {
513 >            return cursor < size ||
514 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
515 >        }
516 >
517 >        public E next() {
518 >            if (expectedModCount != modCount)
519 >                throw new ConcurrentModificationException();
520 >            if (cursor < size)
521 >                return (E) queue[lastRet = cursor++];
522 >            if (forgetMeNot != null) {
523 >                lastRet = -1;
524 >                lastRetElt = forgetMeNot.poll();
525 >                if (lastRetElt != null)
526 >                    return lastRetElt;
527 >            }
528 >            throw new NoSuchElementException();
529 >        }
530 >
531 >        public void remove() {
532 >            if (expectedModCount != modCount)
533 >                throw new ConcurrentModificationException();
534 >            if (lastRet != -1) {
535 >                E moved = PriorityQueue.this.removeAt(lastRet);
536 >                lastRet = -1;
537 >                if (moved == null)
538 >                    cursor--;
539 >                else {
540 >                    if (forgetMeNot == null)
541 >                        forgetMeNot = new ArrayDeque<E>();
542 >                    forgetMeNot.add(moved);
543 >                }
544 >            } else if (lastRetElt != null) {
545 >                PriorityQueue.this.removeEq(lastRetElt);
546 >                lastRetElt = null;
547 >            } else {
548 >                throw new IllegalStateException();
549 >            }
550 >            expectedModCount = modCount;
551 >        }
552      }
553  
554 <    public <T> T[] toArray(T[] array) {
554 >    public int size() {
555 >        return size;
556 >    }
557 >
558 >    /**
559 >     * Removes all of the elements from this priority queue.
560 >     * The queue will be empty after this call returns.
561 >     */
562 >    public void clear() {
563 >        modCount++;
564 >        for (int i = 0; i < size; i++)
565 >            queue[i] = null;
566 >        size = 0;
567 >    }
568 >
569 >    public E poll() {
570 >        if (size == 0)
571 >            return null;
572 >        int s = --size;
573 >        modCount++;
574 >        E result = (E) queue[0];
575 >        E x = (E) queue[s];
576 >        queue[s] = null;
577 >        if (s != 0)
578 >            siftDown(0, x);
579 >        return result;
580 >    }
581 >
582 >    /**
583 >     * Removes the ith element from queue.
584 >     *
585 >     * Normally this method leaves the elements at up to i-1,
586 >     * inclusive, untouched.  Under these circumstances, it returns
587 >     * null.  Occasionally, in order to maintain the heap invariant,
588 >     * it must swap a later element of the list with one earlier than
589 >     * i.  Under these circumstances, this method returns the element
590 >     * that was previously at the end of the list and is now at some
591 >     * position before i. This fact is used by iterator.remove so as to
592 >     * avoid missing traversing elements.
593 >     */
594 >    private E removeAt(int i) {
595 >        assert i >= 0 && i < size;
596 >        modCount++;
597 >        int s = --size;
598 >        if (s == i) // removed last element
599 >            queue[i] = null;
600 >        else {
601 >            E moved = (E) queue[s];
602 >            queue[s] = null;
603 >            siftDown(i, moved);
604 >            if (queue[i] == moved) {
605 >                siftUp(i, moved);
606 >                if (queue[i] != moved)
607 >                    return moved;
608 >            }
609 >        }
610          return null;
611      }
612  
613 +    /**
614 +     * Inserts item x at position k, maintaining heap invariant by
615 +     * promoting x up the tree until it is greater than or equal to
616 +     * its parent, or is the root.
617 +     *
618 +     * To simplify and speed up coercions and comparisons. the
619 +     * Comparable and Comparator versions are separated into different
620 +     * methods that are otherwise identical. (Similarly for siftDown.)
621 +     *
622 +     * @param k the position to fill
623 +     * @param x the item to insert
624 +     */
625 +    private void siftUp(int k, E x) {
626 +        if (comparator != null)
627 +            siftUpUsingComparator(k, x);
628 +        else
629 +            siftUpComparable(k, x);
630 +    }
631 +
632 +    private void siftUpComparable(int k, E x) {
633 +        Comparable<? super E> key = (Comparable<? super E>) x;
634 +        while (k > 0) {
635 +            int parent = (k - 1) >>> 1;
636 +            Object e = queue[parent];
637 +            if (key.compareTo((E) e) >= 0)
638 +                break;
639 +            queue[k] = e;
640 +            k = parent;
641 +        }
642 +        queue[k] = key;
643 +    }
644 +
645 +    private void siftUpUsingComparator(int k, E x) {
646 +        while (k > 0) {
647 +            int parent = (k - 1) >>> 1;
648 +            Object e = queue[parent];
649 +            if (comparator.compare(x, (E) e) >= 0)
650 +                break;
651 +            queue[k] = e;
652 +            k = parent;
653 +        }
654 +        queue[k] = x;
655 +    }
656 +
657 +    /**
658 +     * Inserts item x at position k, maintaining heap invariant by
659 +     * demoting x down the tree repeatedly until it is less than or
660 +     * equal to its children or is a leaf.
661 +     *
662 +     * @param k the position to fill
663 +     * @param x the item to insert
664 +     */
665 +    private void siftDown(int k, E x) {
666 +        if (comparator != null)
667 +            siftDownUsingComparator(k, x);
668 +        else
669 +            siftDownComparable(k, x);
670 +    }
671 +
672 +    private void siftDownComparable(int k, E x) {
673 +        Comparable<? super E> key = (Comparable<? super E>)x;
674 +        int half = size >>> 1;        // loop while a non-leaf
675 +        while (k < half) {
676 +            int child = (k << 1) + 1; // assume left child is least
677 +            Object c = queue[child];
678 +            int right = child + 1;
679 +            if (right < size &&
680 +                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
681 +                c = queue[child = right];
682 +            if (key.compareTo((E) c) <= 0)
683 +                break;
684 +            queue[k] = c;
685 +            k = child;
686 +        }
687 +        queue[k] = key;
688 +    }
689 +
690 +    private void siftDownUsingComparator(int k, E x) {
691 +        int half = size >>> 1;
692 +        while (k < half) {
693 +            int child = (k << 1) + 1;
694 +            Object c = queue[child];
695 +            int right = child + 1;
696 +            if (right < size &&
697 +                comparator.compare((E) c, (E) queue[right]) > 0)
698 +                c = queue[child = right];
699 +            if (comparator.compare(x, (E) c) <= 0)
700 +                break;
701 +            queue[k] = c;
702 +            k = child;
703 +        }
704 +        queue[k] = x;
705 +    }
706 +
707 +    /**
708 +     * Establishes the heap invariant (described above) in the entire tree,
709 +     * assuming nothing about the order of the elements prior to the call.
710 +     */
711 +    private void heapify() {
712 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
713 +            siftDown(i, (E) queue[i]);
714 +    }
715 +
716 +    /**
717 +     * Returns the comparator used to order the elements in this
718 +     * queue, or {@code null} if this queue is sorted according to
719 +     * the {@linkplain Comparable natural ordering} of its elements.
720 +     *
721 +     * @return the comparator used to order this queue, or
722 +     *         {@code null} if this queue is sorted according to the
723 +     *         natural ordering of its elements
724 +     */
725 +    public Comparator<? super E> comparator() {
726 +        return comparator;
727 +    }
728 +
729 +    /**
730 +     * Saves the state of the instance to a stream (that
731 +     * is, serializes it).
732 +     *
733 +     * @serialData The length of the array backing the instance is
734 +     *             emitted (int), followed by all of its elements
735 +     *             (each an {@code Object}) in the proper order.
736 +     * @param s the stream
737 +     */
738 +    private void writeObject(java.io.ObjectOutputStream s)
739 +        throws java.io.IOException{
740 +        // Write out element count, and any hidden stuff
741 +        s.defaultWriteObject();
742 +
743 +        // Write out array length, for compatibility with 1.5 version
744 +        s.writeInt(Math.max(2, size + 1));
745 +
746 +        // Write out all elements in the "proper order".
747 +        for (int i = 0; i < size; i++)
748 +            s.writeObject(queue[i]);
749 +    }
750 +
751 +    /**
752 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
753 +     * (that is, deserializes it).
754 +     *
755 +     * @param s the stream
756 +     */
757 +    private void readObject(java.io.ObjectInputStream s)
758 +        throws java.io.IOException, ClassNotFoundException {
759 +        // Read in size, and any hidden stuff
760 +        s.defaultReadObject();
761 +
762 +        // Read in (and discard) array length
763 +        s.readInt();
764 +
765 +        queue = new Object[size];
766 +
767 +        // Read in all elements.
768 +        for (int i = 0; i < size; i++)
769 +            queue[i] = s.readObject();
770 +
771 +        // Elements are guaranteed to be in "proper order", but the
772 +        // spec has never explained what that might be.
773 +        heapify();
774 +    }
775   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines