ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.85 by jsr166, Sat Jan 19 18:18:10 2013 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25  
26 < import java.util.*;
26 > package java.util;
27 > import java.util.stream.Stream;
28 > import java.util.Spliterator;
29 > import java.util.stream.Streams;
30 > import java.util.function.Block;
31  
32   /**
33 < * An unbounded (resizable) priority queue based on a priority
34 < * heap.The take operation returns the least element with respect to
35 < * the given ordering. (If more than one element is tied for least
36 < * value, one of them is arbitrarily chosen to be returned -- no
37 < * guarantees are made for ordering across ties.) Ordering follows the
38 < * java.util.Collection conventions: Either the elements must be
39 < * Comparable, or a Comparator must be supplied. Comparison failures
40 < * throw ClassCastExceptions during insertions and extractions.
41 < **/
42 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
43 <    public PriorityQueue(int initialCapacity) {}
44 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
33 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
34 > * The elements of the priority queue are ordered according to their
35 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
36 > * provided at queue construction time, depending on which constructor is
37 > * used.  A priority queue does not permit {@code null} elements.
38 > * A priority queue relying on natural ordering also does not permit
39 > * insertion of non-comparable objects (doing so may result in
40 > * {@code ClassCastException}).
41 > *
42 > * <p>The <em>head</em> of this queue is the <em>least</em> element
43 > * with respect to the specified ordering.  If multiple elements are
44 > * tied for least value, the head is one of those elements -- ties are
45 > * broken arbitrarily.  The queue retrieval operations {@code poll},
46 > * {@code remove}, {@code peek}, and {@code element} access the
47 > * element at the head of the queue.
48 > *
49 > * <p>A priority queue is unbounded, but has an internal
50 > * <i>capacity</i> governing the size of an array used to store the
51 > * elements on the queue.  It is always at least as large as the queue
52 > * size.  As elements are added to a priority queue, its capacity
53 > * grows automatically.  The details of the growth policy are not
54 > * specified.
55 > *
56 > * <p>This class and its iterator implement all of the
57 > * <em>optional</em> methods of the {@link Collection} and {@link
58 > * Iterator} interfaces.  The Iterator provided in method {@link
59 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
60 > * the priority queue in any particular order. If you need ordered
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 > *
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67 > * java.util.concurrent.PriorityBlockingQueue} class.
68 > *
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueing and dequeing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75 > *
76 > * <p>This class is a member of the
77 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
78 > * Java Collections Framework</a>.
79 > *
80 > * @since 1.5
81 > * @author Josh Bloch, Doug Lea
82 > * @param <E> the type of elements held in this collection
83 > */
84 > public class PriorityQueue<E> extends AbstractQueue<E>
85 >    implements java.io.Serializable {
86  
87 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
87 >    private static final long serialVersionUID = -7720805057305804111L;
88  
89 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
89 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
90  
91 <    public boolean add(E x) {
92 <        return false;
91 >    /**
92 >     * Priority queue represented as a balanced binary heap: the two
93 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
94 >     * priority queue is ordered by comparator, or by the elements'
95 >     * natural ordering, if comparator is null: For each node n in the
96 >     * heap and each descendant d of n, n <= d.  The element with the
97 >     * lowest value is in queue[0], assuming the queue is nonempty.
98 >     */
99 >    transient Object[] queue; // non-private to simplify nested class access
100 >
101 >    /**
102 >     * The number of elements in the priority queue.
103 >     */
104 >    private int size = 0;
105 >
106 >    /**
107 >     * The comparator, or null if priority queue uses elements'
108 >     * natural ordering.
109 >     */
110 >    private final Comparator<? super E> comparator;
111 >
112 >    /**
113 >     * The number of times this priority queue has been
114 >     * <i>structurally modified</i>.  See AbstractList for gory details.
115 >     */
116 >    transient int modCount = 0; // non-private to simplify nested class access
117 >
118 >    /**
119 >     * Creates a {@code PriorityQueue} with the default initial
120 >     * capacity (11) that orders its elements according to their
121 >     * {@linkplain Comparable natural ordering}.
122 >     */
123 >    public PriorityQueue() {
124 >        this(DEFAULT_INITIAL_CAPACITY, null);
125      }
126 <    public boolean offer(E x) {
127 <        return false;
126 >
127 >    /**
128 >     * Creates a {@code PriorityQueue} with the specified initial
129 >     * capacity that orders its elements according to their
130 >     * {@linkplain Comparable natural ordering}.
131 >     *
132 >     * @param initialCapacity the initial capacity for this priority queue
133 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
134 >     *         than 1
135 >     */
136 >    public PriorityQueue(int initialCapacity) {
137 >        this(initialCapacity, null);
138      }
139 <    public boolean remove(Object x) {
140 <        return false;
139 >
140 >    /**
141 >     * Creates a {@code PriorityQueue} with the specified initial capacity
142 >     * that orders its elements according to the specified comparator.
143 >     *
144 >     * @param  initialCapacity the initial capacity for this priority queue
145 >     * @param  comparator the comparator that will be used to order this
146 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
147 >     *         natural ordering} of the elements will be used.
148 >     * @throws IllegalArgumentException if {@code initialCapacity} is
149 >     *         less than 1
150 >     */
151 >    public PriorityQueue(int initialCapacity,
152 >                         Comparator<? super E> comparator) {
153 >        // Note: This restriction of at least one is not actually needed,
154 >        // but continues for 1.5 compatibility
155 >        if (initialCapacity < 1)
156 >            throw new IllegalArgumentException();
157 >        this.queue = new Object[initialCapacity];
158 >        this.comparator = comparator;
159      }
160  
161 <    public E remove() {
162 <        return null;
161 >    /**
162 >     * Creates a {@code PriorityQueue} containing the elements in the
163 >     * specified collection.  If the specified collection is an instance of
164 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
165 >     * priority queue will be ordered according to the same ordering.
166 >     * Otherwise, this priority queue will be ordered according to the
167 >     * {@linkplain Comparable natural ordering} of its elements.
168 >     *
169 >     * @param  c the collection whose elements are to be placed
170 >     *         into this priority queue
171 >     * @throws ClassCastException if elements of the specified collection
172 >     *         cannot be compared to one another according to the priority
173 >     *         queue's ordering
174 >     * @throws NullPointerException if the specified collection or any
175 >     *         of its elements are null
176 >     */
177 >    @SuppressWarnings("unchecked")
178 >    public PriorityQueue(Collection<? extends E> c) {
179 >        if (c instanceof SortedSet<?>) {
180 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
181 >            this.comparator = (Comparator<? super E>) ss.comparator();
182 >            initElementsFromCollection(ss);
183 >        }
184 >        else if (c instanceof PriorityQueue<?>) {
185 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
186 >            this.comparator = (Comparator<? super E>) pq.comparator();
187 >            initFromPriorityQueue(pq);
188 >        }
189 >        else {
190 >            this.comparator = null;
191 >            initFromCollection(c);
192 >        }
193      }
194 <    public Iterator<E> iterator() {
195 <      return null;
194 >
195 >    /**
196 >     * Creates a {@code PriorityQueue} containing the elements in the
197 >     * specified priority queue.  This priority queue will be
198 >     * ordered according to the same ordering as the given priority
199 >     * queue.
200 >     *
201 >     * @param  c the priority queue whose elements are to be placed
202 >     *         into this priority queue
203 >     * @throws ClassCastException if elements of {@code c} cannot be
204 >     *         compared to one another according to {@code c}'s
205 >     *         ordering
206 >     * @throws NullPointerException if the specified priority queue or any
207 >     *         of its elements are null
208 >     */
209 >    @SuppressWarnings("unchecked")
210 >    public PriorityQueue(PriorityQueue<? extends E> c) {
211 >        this.comparator = (Comparator<? super E>) c.comparator();
212 >        initFromPriorityQueue(c);
213      }
214  
215 <    public E element() {
216 <        return null;
215 >    /**
216 >     * Creates a {@code PriorityQueue} containing the elements in the
217 >     * specified sorted set.   This priority queue will be ordered
218 >     * according to the same ordering as the given sorted set.
219 >     *
220 >     * @param  c the sorted set whose elements are to be placed
221 >     *         into this priority queue
222 >     * @throws ClassCastException if elements of the specified sorted
223 >     *         set cannot be compared to one another according to the
224 >     *         sorted set's ordering
225 >     * @throws NullPointerException if the specified sorted set or any
226 >     *         of its elements are null
227 >     */
228 >    @SuppressWarnings("unchecked")
229 >    public PriorityQueue(SortedSet<? extends E> c) {
230 >        this.comparator = (Comparator<? super E>) c.comparator();
231 >        initElementsFromCollection(c);
232      }
233 <    public E poll() {
234 <        return null;
233 >
234 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
235 >        if (c.getClass() == PriorityQueue.class) {
236 >            this.queue = c.toArray();
237 >            this.size = c.size();
238 >        } else {
239 >            initFromCollection(c);
240 >        }
241 >    }
242 >
243 >    private void initElementsFromCollection(Collection<? extends E> c) {
244 >        Object[] a = c.toArray();
245 >        // If c.toArray incorrectly doesn't return Object[], copy it.
246 >        if (a.getClass() != Object[].class)
247 >            a = Arrays.copyOf(a, a.length, Object[].class);
248 >        int len = a.length;
249 >        if (len == 1 || this.comparator != null)
250 >            for (int i = 0; i < len; i++)
251 >                if (a[i] == null)
252 >                    throw new NullPointerException();
253 >        this.queue = a;
254 >        this.size = a.length;
255      }
256 +
257 +    /**
258 +     * Initializes queue array with elements from the given Collection.
259 +     *
260 +     * @param c the collection
261 +     */
262 +    private void initFromCollection(Collection<? extends E> c) {
263 +        initElementsFromCollection(c);
264 +        heapify();
265 +    }
266 +
267 +    /**
268 +     * The maximum size of array to allocate.
269 +     * Some VMs reserve some header words in an array.
270 +     * Attempts to allocate larger arrays may result in
271 +     * OutOfMemoryError: Requested array size exceeds VM limit
272 +     */
273 +    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
274 +
275 +    /**
276 +     * Increases the capacity of the array.
277 +     *
278 +     * @param minCapacity the desired minimum capacity
279 +     */
280 +    private void grow(int minCapacity) {
281 +        int oldCapacity = queue.length;
282 +        // Double size if small; else grow by 50%
283 +        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
284 +                                         (oldCapacity + 2) :
285 +                                         (oldCapacity >> 1));
286 +        // overflow-conscious code
287 +        if (newCapacity - MAX_ARRAY_SIZE > 0)
288 +            newCapacity = hugeCapacity(minCapacity);
289 +        queue = Arrays.copyOf(queue, newCapacity);
290 +    }
291 +
292 +    private static int hugeCapacity(int minCapacity) {
293 +        if (minCapacity < 0) // overflow
294 +            throw new OutOfMemoryError();
295 +        return (minCapacity > MAX_ARRAY_SIZE) ?
296 +            Integer.MAX_VALUE :
297 +            MAX_ARRAY_SIZE;
298 +    }
299 +
300 +    /**
301 +     * Inserts the specified element into this priority queue.
302 +     *
303 +     * @return {@code true} (as specified by {@link Collection#add})
304 +     * @throws ClassCastException if the specified element cannot be
305 +     *         compared with elements currently in this priority queue
306 +     *         according to the priority queue's ordering
307 +     * @throws NullPointerException if the specified element is null
308 +     */
309 +    public boolean add(E e) {
310 +        return offer(e);
311 +    }
312 +
313 +    /**
314 +     * Inserts the specified element into this priority queue.
315 +     *
316 +     * @return {@code true} (as specified by {@link Queue#offer})
317 +     * @throws ClassCastException if the specified element cannot be
318 +     *         compared with elements currently in this priority queue
319 +     *         according to the priority queue's ordering
320 +     * @throws NullPointerException if the specified element is null
321 +     */
322 +    public boolean offer(E e) {
323 +        if (e == null)
324 +            throw new NullPointerException();
325 +        modCount++;
326 +        int i = size;
327 +        if (i >= queue.length)
328 +            grow(i + 1);
329 +        size = i + 1;
330 +        if (i == 0)
331 +            queue[0] = e;
332 +        else
333 +            siftUp(i, e);
334 +        return true;
335 +    }
336 +
337 +    @SuppressWarnings("unchecked")
338      public E peek() {
339 <        return null;
339 >        return (size == 0) ? null : (E) queue[0];
340      }
341  
342 <    public boolean isEmpty() {
342 >    private int indexOf(Object o) {
343 >        if (o != null) {
344 >            for (int i = 0; i < size; i++)
345 >                if (o.equals(queue[i]))
346 >                    return i;
347 >        }
348 >        return -1;
349 >    }
350 >
351 >    /**
352 >     * Removes a single instance of the specified element from this queue,
353 >     * if it is present.  More formally, removes an element {@code e} such
354 >     * that {@code o.equals(e)}, if this queue contains one or more such
355 >     * elements.  Returns {@code true} if and only if this queue contained
356 >     * the specified element (or equivalently, if this queue changed as a
357 >     * result of the call).
358 >     *
359 >     * @param o element to be removed from this queue, if present
360 >     * @return {@code true} if this queue changed as a result of the call
361 >     */
362 >    public boolean remove(Object o) {
363 >        int i = indexOf(o);
364 >        if (i == -1)
365 >            return false;
366 >        else {
367 >            removeAt(i);
368 >            return true;
369 >        }
370 >    }
371 >
372 >    /**
373 >     * Version of remove using reference equality, not equals.
374 >     * Needed by iterator.remove.
375 >     *
376 >     * @param o element to be removed from this queue, if present
377 >     * @return {@code true} if removed
378 >     */
379 >    boolean removeEq(Object o) {
380 >        for (int i = 0; i < size; i++) {
381 >            if (o == queue[i]) {
382 >                removeAt(i);
383 >                return true;
384 >            }
385 >        }
386          return false;
387      }
388 <    public int size() {
389 <        return 0;
388 >
389 >    /**
390 >     * Returns {@code true} if this queue contains the specified element.
391 >     * More formally, returns {@code true} if and only if this queue contains
392 >     * at least one element {@code e} such that {@code o.equals(e)}.
393 >     *
394 >     * @param o object to be checked for containment in this queue
395 >     * @return {@code true} if this queue contains the specified element
396 >     */
397 >    public boolean contains(Object o) {
398 >        return indexOf(o) != -1;
399      }
400 +
401 +    /**
402 +     * Returns an array containing all of the elements in this queue.
403 +     * The elements are in no particular order.
404 +     *
405 +     * <p>The returned array will be "safe" in that no references to it are
406 +     * maintained by this queue.  (In other words, this method must allocate
407 +     * a new array).  The caller is thus free to modify the returned array.
408 +     *
409 +     * <p>This method acts as bridge between array-based and collection-based
410 +     * APIs.
411 +     *
412 +     * @return an array containing all of the elements in this queue
413 +     */
414      public Object[] toArray() {
415 <        return null;
415 >        return Arrays.copyOf(queue, size);
416 >    }
417 >
418 >    /**
419 >     * Returns an array containing all of the elements in this queue; the
420 >     * runtime type of the returned array is that of the specified array.
421 >     * The returned array elements are in no particular order.
422 >     * If the queue fits in the specified array, it is returned therein.
423 >     * Otherwise, a new array is allocated with the runtime type of the
424 >     * specified array and the size of this queue.
425 >     *
426 >     * <p>If the queue fits in the specified array with room to spare
427 >     * (i.e., the array has more elements than the queue), the element in
428 >     * the array immediately following the end of the collection is set to
429 >     * {@code null}.
430 >     *
431 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
432 >     * array-based and collection-based APIs.  Further, this method allows
433 >     * precise control over the runtime type of the output array, and may,
434 >     * under certain circumstances, be used to save allocation costs.
435 >     *
436 >     * <p>Suppose {@code x} is a queue known to contain only strings.
437 >     * The following code can be used to dump the queue into a newly
438 >     * allocated array of {@code String}:
439 >     *
440 >     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
441 >     *
442 >     * Note that {@code toArray(new Object[0])} is identical in function to
443 >     * {@code toArray()}.
444 >     *
445 >     * @param a the array into which the elements of the queue are to
446 >     *          be stored, if it is big enough; otherwise, a new array of the
447 >     *          same runtime type is allocated for this purpose.
448 >     * @return an array containing all of the elements in this queue
449 >     * @throws ArrayStoreException if the runtime type of the specified array
450 >     *         is not a supertype of the runtime type of every element in
451 >     *         this queue
452 >     * @throws NullPointerException if the specified array is null
453 >     */
454 >    @SuppressWarnings("unchecked")
455 >    public <T> T[] toArray(T[] a) {
456 >        final int size = this.size;
457 >        if (a.length < size)
458 >            // Make a new array of a's runtime type, but my contents:
459 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
460 >        System.arraycopy(queue, 0, a, 0, size);
461 >        if (a.length > size)
462 >            a[size] = null;
463 >        return a;
464 >    }
465 >
466 >    /**
467 >     * Returns an iterator over the elements in this queue. The iterator
468 >     * does not return the elements in any particular order.
469 >     *
470 >     * @return an iterator over the elements in this queue
471 >     */
472 >    public Iterator<E> iterator() {
473 >        return new Itr();
474      }
475  
476 <    public <T> T[] toArray(T[] array) {
476 >    private final class Itr implements Iterator<E> {
477 >        /**
478 >         * Index (into queue array) of element to be returned by
479 >         * subsequent call to next.
480 >         */
481 >        private int cursor = 0;
482 >
483 >        /**
484 >         * Index of element returned by most recent call to next,
485 >         * unless that element came from the forgetMeNot list.
486 >         * Set to -1 if element is deleted by a call to remove.
487 >         */
488 >        private int lastRet = -1;
489 >
490 >        /**
491 >         * A queue of elements that were moved from the unvisited portion of
492 >         * the heap into the visited portion as a result of "unlucky" element
493 >         * removals during the iteration.  (Unlucky element removals are those
494 >         * that require a siftup instead of a siftdown.)  We must visit all of
495 >         * the elements in this list to complete the iteration.  We do this
496 >         * after we've completed the "normal" iteration.
497 >         *
498 >         * We expect that most iterations, even those involving removals,
499 >         * will not need to store elements in this field.
500 >         */
501 >        private ArrayDeque<E> forgetMeNot = null;
502 >
503 >        /**
504 >         * Element returned by the most recent call to next iff that
505 >         * element was drawn from the forgetMeNot list.
506 >         */
507 >        private E lastRetElt = null;
508 >
509 >        /**
510 >         * The modCount value that the iterator believes that the backing
511 >         * Queue should have.  If this expectation is violated, the iterator
512 >         * has detected concurrent modification.
513 >         */
514 >        private int expectedModCount = modCount;
515 >
516 >        public boolean hasNext() {
517 >            return cursor < size ||
518 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
519 >        }
520 >
521 >        @SuppressWarnings("unchecked")
522 >        public E next() {
523 >            if (expectedModCount != modCount)
524 >                throw new ConcurrentModificationException();
525 >            if (cursor < size)
526 >                return (E) queue[lastRet = cursor++];
527 >            if (forgetMeNot != null) {
528 >                lastRet = -1;
529 >                lastRetElt = forgetMeNot.poll();
530 >                if (lastRetElt != null)
531 >                    return lastRetElt;
532 >            }
533 >            throw new NoSuchElementException();
534 >        }
535 >
536 >        public void remove() {
537 >            if (expectedModCount != modCount)
538 >                throw new ConcurrentModificationException();
539 >            if (lastRet != -1) {
540 >                E moved = PriorityQueue.this.removeAt(lastRet);
541 >                lastRet = -1;
542 >                if (moved == null)
543 >                    cursor--;
544 >                else {
545 >                    if (forgetMeNot == null)
546 >                        forgetMeNot = new ArrayDeque<E>();
547 >                    forgetMeNot.add(moved);
548 >                }
549 >            } else if (lastRetElt != null) {
550 >                PriorityQueue.this.removeEq(lastRetElt);
551 >                lastRetElt = null;
552 >            } else {
553 >                throw new IllegalStateException();
554 >            }
555 >            expectedModCount = modCount;
556 >        }
557 >    }
558 >
559 >    public int size() {
560 >        return size;
561 >    }
562 >
563 >    /**
564 >     * Removes all of the elements from this priority queue.
565 >     * The queue will be empty after this call returns.
566 >     */
567 >    public void clear() {
568 >        modCount++;
569 >        for (int i = 0; i < size; i++)
570 >            queue[i] = null;
571 >        size = 0;
572 >    }
573 >
574 >    @SuppressWarnings("unchecked")
575 >    public E poll() {
576 >        if (size == 0)
577 >            return null;
578 >        int s = --size;
579 >        modCount++;
580 >        E result = (E) queue[0];
581 >        E x = (E) queue[s];
582 >        queue[s] = null;
583 >        if (s != 0)
584 >            siftDown(0, x);
585 >        return result;
586 >    }
587 >
588 >    /**
589 >     * Removes the ith element from queue.
590 >     *
591 >     * Normally this method leaves the elements at up to i-1,
592 >     * inclusive, untouched.  Under these circumstances, it returns
593 >     * null.  Occasionally, in order to maintain the heap invariant,
594 >     * it must swap a later element of the list with one earlier than
595 >     * i.  Under these circumstances, this method returns the element
596 >     * that was previously at the end of the list and is now at some
597 >     * position before i. This fact is used by iterator.remove so as to
598 >     * avoid missing traversing elements.
599 >     */
600 >    @SuppressWarnings("unchecked")
601 >    private E removeAt(int i) {
602 >        // assert i >= 0 && i < size;
603 >        modCount++;
604 >        int s = --size;
605 >        if (s == i) // removed last element
606 >            queue[i] = null;
607 >        else {
608 >            E moved = (E) queue[s];
609 >            queue[s] = null;
610 >            siftDown(i, moved);
611 >            if (queue[i] == moved) {
612 >                siftUp(i, moved);
613 >                if (queue[i] != moved)
614 >                    return moved;
615 >            }
616 >        }
617          return null;
618      }
619  
620 +    /**
621 +     * Inserts item x at position k, maintaining heap invariant by
622 +     * promoting x up the tree until it is greater than or equal to
623 +     * its parent, or is the root.
624 +     *
625 +     * To simplify and speed up coercions and comparisons. the
626 +     * Comparable and Comparator versions are separated into different
627 +     * methods that are otherwise identical. (Similarly for siftDown.)
628 +     *
629 +     * @param k the position to fill
630 +     * @param x the item to insert
631 +     */
632 +    private void siftUp(int k, E x) {
633 +        if (comparator != null)
634 +            siftUpUsingComparator(k, x);
635 +        else
636 +            siftUpComparable(k, x);
637 +    }
638 +
639 +    @SuppressWarnings("unchecked")
640 +    private void siftUpComparable(int k, E x) {
641 +        Comparable<? super E> key = (Comparable<? super E>) x;
642 +        while (k > 0) {
643 +            int parent = (k - 1) >>> 1;
644 +            Object e = queue[parent];
645 +            if (key.compareTo((E) e) >= 0)
646 +                break;
647 +            queue[k] = e;
648 +            k = parent;
649 +        }
650 +        queue[k] = key;
651 +    }
652 +
653 +    @SuppressWarnings("unchecked")
654 +    private void siftUpUsingComparator(int k, E x) {
655 +        while (k > 0) {
656 +            int parent = (k - 1) >>> 1;
657 +            Object e = queue[parent];
658 +            if (comparator.compare(x, (E) e) >= 0)
659 +                break;
660 +            queue[k] = e;
661 +            k = parent;
662 +        }
663 +        queue[k] = x;
664 +    }
665 +
666 +    /**
667 +     * Inserts item x at position k, maintaining heap invariant by
668 +     * demoting x down the tree repeatedly until it is less than or
669 +     * equal to its children or is a leaf.
670 +     *
671 +     * @param k the position to fill
672 +     * @param x the item to insert
673 +     */
674 +    private void siftDown(int k, E x) {
675 +        if (comparator != null)
676 +            siftDownUsingComparator(k, x);
677 +        else
678 +            siftDownComparable(k, x);
679 +    }
680 +
681 +    @SuppressWarnings("unchecked")
682 +    private void siftDownComparable(int k, E x) {
683 +        Comparable<? super E> key = (Comparable<? super E>)x;
684 +        int half = size >>> 1;        // loop while a non-leaf
685 +        while (k < half) {
686 +            int child = (k << 1) + 1; // assume left child is least
687 +            Object c = queue[child];
688 +            int right = child + 1;
689 +            if (right < size &&
690 +                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
691 +                c = queue[child = right];
692 +            if (key.compareTo((E) c) <= 0)
693 +                break;
694 +            queue[k] = c;
695 +            k = child;
696 +        }
697 +        queue[k] = key;
698 +    }
699 +
700 +    @SuppressWarnings("unchecked")
701 +    private void siftDownUsingComparator(int k, E x) {
702 +        int half = size >>> 1;
703 +        while (k < half) {
704 +            int child = (k << 1) + 1;
705 +            Object c = queue[child];
706 +            int right = child + 1;
707 +            if (right < size &&
708 +                comparator.compare((E) c, (E) queue[right]) > 0)
709 +                c = queue[child = right];
710 +            if (comparator.compare(x, (E) c) <= 0)
711 +                break;
712 +            queue[k] = c;
713 +            k = child;
714 +        }
715 +        queue[k] = x;
716 +    }
717 +
718 +    /**
719 +     * Establishes the heap invariant (described above) in the entire tree,
720 +     * assuming nothing about the order of the elements prior to the call.
721 +     */
722 +    @SuppressWarnings("unchecked")
723 +    private void heapify() {
724 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
725 +            siftDown(i, (E) queue[i]);
726 +    }
727 +
728 +    /**
729 +     * Returns the comparator used to order the elements in this
730 +     * queue, or {@code null} if this queue is sorted according to
731 +     * the {@linkplain Comparable natural ordering} of its elements.
732 +     *
733 +     * @return the comparator used to order this queue, or
734 +     *         {@code null} if this queue is sorted according to the
735 +     *         natural ordering of its elements
736 +     */
737 +    public Comparator<? super E> comparator() {
738 +        return comparator;
739 +    }
740 +
741 +    /**
742 +     * Saves this queue to a stream (that is, serializes it).
743 +     *
744 +     * @serialData The length of the array backing the instance is
745 +     *             emitted (int), followed by all of its elements
746 +     *             (each an {@code Object}) in the proper order.
747 +     * @param s the stream
748 +     */
749 +    private void writeObject(java.io.ObjectOutputStream s)
750 +        throws java.io.IOException {
751 +        // Write out element count, and any hidden stuff
752 +        s.defaultWriteObject();
753 +
754 +        // Write out array length, for compatibility with 1.5 version
755 +        s.writeInt(Math.max(2, size + 1));
756 +
757 +        // Write out all elements in the "proper order".
758 +        for (int i = 0; i < size; i++)
759 +            s.writeObject(queue[i]);
760 +    }
761 +
762 +    /**
763 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
764 +     * (that is, deserializes it).
765 +     *
766 +     * @param s the stream
767 +     */
768 +    private void readObject(java.io.ObjectInputStream s)
769 +        throws java.io.IOException, ClassNotFoundException {
770 +        // Read in size, and any hidden stuff
771 +        s.defaultReadObject();
772 +
773 +        // Read in (and discard) array length
774 +        s.readInt();
775 +
776 +        queue = new Object[size];
777 +
778 +        // Read in all elements.
779 +        for (int i = 0; i < size; i++)
780 +            queue[i] = s.readObject();
781 +
782 +        // Elements are guaranteed to be in "proper order", but the
783 +        // spec has never explained what that might be.
784 +        heapify();
785 +    }
786 +
787 +    // wrapping constructor in method avoids transient javac problems
788 +    final PriorityQueueSpliterator<E> spliterator(int origin, int fence,
789 +                                                  int expectedModCount) {
790 +        return new PriorityQueueSpliterator<E>(this, origin, fence,
791 +                                               expectedModCount);
792 +    }
793 +
794 +    public Stream<E> stream() {
795 +        int flags = Streams.STREAM_IS_SIZED;
796 +        return Streams.stream
797 +            (() -> spliterator(0, size, modCount), flags);
798 +    }
799 +    public Stream<E> parallelStream() {
800 +        int flags = Streams.STREAM_IS_SIZED;
801 +        return Streams.parallelStream
802 +            (() -> spliterator(0, size, modCount), flags);
803 +    }
804 +
805 +    /** Index-based split-by-two Spliterator */
806 +    static final class PriorityQueueSpliterator<E>
807 +        implements Spliterator<E>, Iterator<E> {
808 +        private final PriorityQueue<E> pq;
809 +        private int index;           // current index, modified on advance/split
810 +        private final int fence;     // one past last index
811 +        private final int expectedModCount; // for comodification checks
812 +
813 +        /** Create new spliterator covering the given  range */
814 +        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
815 +                             int expectedModCount) {
816 +            this.pq = pq; this.index = origin; this.fence = fence;
817 +            this.expectedModCount = expectedModCount;
818 +        }
819 +
820 +        public PriorityQueueSpliterator<E> trySplit() {
821 +            int lo = index, mid = (lo + fence) >>> 1;
822 +            return (lo >= mid) ? null :
823 +                new PriorityQueueSpliterator<E>(pq, lo, index = mid,
824 +                                            expectedModCount);
825 +        }
826 +
827 +        public void forEach(Block<? super E> block) {
828 +            Object[] a; int i, hi; // hoist accesses and checks from loop
829 +            if (block == null)
830 +                throw new NullPointerException();
831 +            if ((a = pq.queue).length >= (hi = fence) &&
832 +                (i = index) >= 0 && i < hi) {
833 +                index = hi;
834 +                do {
835 +                    @SuppressWarnings("unchecked") E e = (E) a[i];
836 +                    block.accept(e);
837 +                } while (++i < hi);
838 +                if (pq.modCount != expectedModCount)
839 +                    throw new ConcurrentModificationException();
840 +            }
841 +        }
842 +
843 +        public boolean tryAdvance(Block<? super E> block) {
844 +            if (index >= 0 && index < fence) {
845 +                if (pq.modCount != expectedModCount)
846 +                    throw new ConcurrentModificationException();
847 +                @SuppressWarnings("unchecked") E e =
848 +                    (E)pq.queue[index++];
849 +                block.accept(e);
850 +                return true;
851 +            }
852 +            return false;
853 +        }
854 +
855 +        public long estimateSize() { return (long)(fence - index); }
856 +        public boolean hasExactSize() { return true; }
857 +        public boolean hasExactSplits() { return true; }
858 +
859 +        // Iterator support
860 +        public Iterator<E> iterator() { return this; }
861 +        public void remove() { throw new UnsupportedOperationException(); }
862 +        public boolean hasNext() { return index >= 0 && index < fence; }
863 +
864 +        public E next() {
865 +            if (index < 0 || index >= fence)
866 +                throw new NoSuchElementException();
867 +            if (pq.modCount != expectedModCount)
868 +                throw new ConcurrentModificationException();
869 +            @SuppressWarnings("unchecked") E e =
870 +                (E) pq.queue[index++];
871 +            return e;
872 +        }
873 +    }
874   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines