ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.4 by tim, Mon May 19 02:45:07 2003 UTC vs.
Revision 1.107 by jsr166, Sun Sep 20 16:20:21 2015 UTC

# Line 1 | Line 1
1 package java.util;
2
1   /*
2 < * Todo
2 > * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16   *
17 < *   1) Make it serializable.
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26 + package java.util;
27 +
28 + import java.util.function.Consumer;
29 +
30   /**
31 < * An unbounded priority queue based on a priority heap.  This queue orders
32 < * elements according to the order specified at creation time.  This order is
33 < * specified as for {@link TreeSet} and {@link TreeMap}: Elements are ordered
34 < * either according to their <i>natural order</i> (see {@link Comparable}), or
35 < * according to a {@link Comparator}, depending on which constructor is used.
36 < * The {@link #peek}, {@link #poll}, and {@link #remove} methods return the
37 < * minimal element with respect to the specified ordering.  If multiple
38 < * these elements are tied for least value, no guarantees are made as to
39 < * which of elements is returned.
40 < *
41 < * <p>Each priority queue has a <i>capacity</i>.  The capacity is the size of
42 < * the array used to store the elements on the queue.  It is always at least
43 < * as large as the queue size.  As elements are added to a priority list,
44 < * its capacity grows automatically.  The details of the growth policy are not
31 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 > * The elements of the priority queue are ordered according to their
33 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 > * provided at queue construction time, depending on which constructor is
35 > * used.  A priority queue does not permit {@code null} elements.
36 > * A priority queue relying on natural ordering also does not permit
37 > * insertion of non-comparable objects (doing so may result in
38 > * {@code ClassCastException}).
39 > *
40 > * <p>The <em>head</em> of this queue is the <em>least</em> element
41 > * with respect to the specified ordering.  If multiple elements are
42 > * tied for least value, the head is one of those elements -- ties are
43 > * broken arbitrarily.  The queue retrieval operations {@code poll},
44 > * {@code remove}, {@code peek}, and {@code element} access the
45 > * element at the head of the queue.
46 > *
47 > * <p>A priority queue is unbounded, but has an internal
48 > * <i>capacity</i> governing the size of an array used to store the
49 > * elements on the queue.  It is always at least as large as the queue
50 > * size.  As elements are added to a priority queue, its capacity
51 > * grows automatically.  The details of the growth policy are not
52   * specified.
53   *
54 < *<p>Implementation note: this implementation provides O(log(n)) time for
55 < * the <tt>offer</tt>, <tt>poll</tt>, <tt>remove()</tt> and <tt>add</tt>
56 < * methods; linear time for the <tt>remove(Object)</tt> and
57 < * <tt>contains</tt> methods; and constant time for the <tt>peek</tt>,
58 < * <tt>element</tt>, and <tt>size</tt> methods.
54 > * <p>This class and its iterator implement all of the
55 > * <em>optional</em> methods of the {@link Collection} and {@link
56 > * Iterator} interfaces.  The Iterator provided in method {@link
57 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
58 > * the priority queue in any particular order. If you need ordered
59 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
60 > *
61 > * <p><strong>Note that this implementation is not synchronized.</strong>
62 > * Multiple threads should not access a {@code PriorityQueue}
63 > * instance concurrently if any of the threads modifies the queue.
64 > * Instead, use the thread-safe {@link
65 > * java.util.concurrent.PriorityBlockingQueue} class.
66 > *
67 > * <p>Implementation note: this implementation provides
68 > * O(log(n)) time for the enqueuing and dequeuing methods
69 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
70 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
71 > * methods; and constant time for the retrieval methods
72 > * ({@code peek}, {@code element}, and {@code size}).
73   *
74   * <p>This class is a member of the
75 < * <a href="{@docRoot}/../guide/collections/index.html">
75 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
76   * Java Collections Framework</a>.
77 + *
78 + * @since 1.5
79 + * @author Josh Bloch, Doug Lea
80 + * @param <E> the type of elements held in this queue
81   */
82   public class PriorityQueue<E> extends AbstractQueue<E>
83 <                              implements Queue<E>
84 < {
83 >    implements java.io.Serializable {
84 >
85 >    private static final long serialVersionUID = -7720805057305804111L;
86 >
87      private static final int DEFAULT_INITIAL_CAPACITY = 11;
88  
89      /**
90 <     * Priority queue represented as a balanced binary heap: the two children
91 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
92 <     * ordered by comparator, or by the elements' natural ordering, if
93 <     * comparator is null:  For each node n in the heap, and each descendant
94 <     * of n, d, n <= d.
95 <     *
48 <     * The element with the lowest value is in queue[1] (assuming the queue is
49 <     * nonempty). A one-based array is used in preference to the traditional
50 <     * zero-based array to simplify parent and child calculations.
51 <     *
52 <     * queue.length must be >= 2, even if size == 0.
90 >     * Priority queue represented as a balanced binary heap: the two
91 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
92 >     * priority queue is ordered by comparator, or by the elements'
93 >     * natural ordering, if comparator is null: For each node n in the
94 >     * heap and each descendant d of n, n <= d.  The element with the
95 >     * lowest value is in queue[0], assuming the queue is nonempty.
96       */
97 <    private E[] queue;
97 >    transient Object[] queue; // non-private to simplify nested class access
98  
99      /**
100       * The number of elements in the priority queue.
101       */
102 <    private int size = 0;
102 >    int size;
103  
104      /**
105       * The comparator, or null if priority queue uses elements'
106       * natural ordering.
107       */
108 <    private final Comparator<E> comparator;
108 >    private final Comparator<? super E> comparator;
109  
110      /**
111       * The number of times this priority queue has been
112       * <i>structurally modified</i>.  See AbstractList for gory details.
113       */
114 <    private int modCount = 0;
114 >    transient int modCount;     // non-private to simplify nested class access
115  
116      /**
117 <     * Create a new priority queue with the default initial capacity (11)
118 <     * that orders its elements according to their natural ordering.
117 >     * Creates a {@code PriorityQueue} with the default initial
118 >     * capacity (11) that orders its elements according to their
119 >     * {@linkplain Comparable natural ordering}.
120       */
121      public PriorityQueue() {
122 <        this(DEFAULT_INITIAL_CAPACITY);
122 >        this(DEFAULT_INITIAL_CAPACITY, null);
123      }
124  
125      /**
126 <     * Create a new priority queue with the specified initial capacity
127 <     * that orders its elements according to their natural ordering.
126 >     * Creates a {@code PriorityQueue} with the specified initial
127 >     * capacity that orders its elements according to their
128 >     * {@linkplain Comparable natural ordering}.
129       *
130 <     * @param initialCapacity the initial capacity for this priority queue.
130 >     * @param initialCapacity the initial capacity for this priority queue
131 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
132 >     *         than 1
133       */
134      public PriorityQueue(int initialCapacity) {
135          this(initialCapacity, null);
136      }
137  
138      /**
139 <     * Create a new priority queue with the specified initial capacity (11)
140 <     * that orders its elements according to the specified comparator.
139 >     * Creates a {@code PriorityQueue} with the default initial capacity and
140 >     * whose elements are ordered according to the specified comparator.
141       *
142 <     * @param initialCapacity the initial capacity for this priority queue.
143 <     * @param comparator the comparator used to order this priority queue.
142 >     * @param  comparator the comparator that will be used to order this
143 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
144 >     *         natural ordering} of the elements will be used.
145 >     * @since 1.8
146       */
147 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
147 >    public PriorityQueue(Comparator<? super E> comparator) {
148 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
149 >    }
150 >
151 >    /**
152 >     * Creates a {@code PriorityQueue} with the specified initial capacity
153 >     * that orders its elements according to the specified comparator.
154 >     *
155 >     * @param  initialCapacity the initial capacity for this priority queue
156 >     * @param  comparator the comparator that will be used to order this
157 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
158 >     *         natural ordering} of the elements will be used.
159 >     * @throws IllegalArgumentException if {@code initialCapacity} is
160 >     *         less than 1
161 >     */
162 >    public PriorityQueue(int initialCapacity,
163 >                         Comparator<? super E> comparator) {
164 >        // Note: This restriction of at least one is not actually needed,
165 >        // but continues for 1.5 compatibility
166          if (initialCapacity < 1)
167 <            initialCapacity = 1;
168 <        queue = new E[initialCapacity + 1];
167 >            throw new IllegalArgumentException();
168 >        this.queue = new Object[initialCapacity];
169          this.comparator = comparator;
170      }
171  
172      /**
173 <     * Create a new priority queue containing the elements in the specified
174 <     * collection.  The priority queue has an initial capacity of 110% of the
175 <     * size of the specified collection. If the specified collection
176 <     * implements the {@link Sorted} interface, the priority queue will be
177 <     * sorted according to the same comparator, or according to its elements'
178 <     * natural order if the collection is sorted according to its elements'
112 <     * natural order.  If the specified collection does not implement the
113 <     * <tt>Sorted</tt> interface, the priority queue is ordered according to
114 <     * its elements' natural order.
173 >     * Creates a {@code PriorityQueue} containing the elements in the
174 >     * specified collection.  If the specified collection is an instance of
175 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
176 >     * priority queue will be ordered according to the same ordering.
177 >     * Otherwise, this priority queue will be ordered according to the
178 >     * {@linkplain Comparable natural ordering} of its elements.
179       *
180 <     * @param initialElements the collection whose elements are to be placed
181 <     *        into this priority queue.
180 >     * @param  c the collection whose elements are to be placed
181 >     *         into this priority queue
182       * @throws ClassCastException if elements of the specified collection
183       *         cannot be compared to one another according to the priority
184 <     *         queue's ordering.
185 <     * @throws NullPointerException if the specified collection or an
186 <     *         element of the specified collection is <tt>null</tt>.
187 <     */
188 <    public PriorityQueue(Collection<E> initialElements) {
189 <        int sz = initialElements.size();
190 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
191 <                                            Integer.MAX_VALUE - 1);
192 <        if (initialCapacity < 1)
193 <            initialCapacity = 1;
194 <        queue = new E[initialCapacity + 1];
184 >     *         queue's ordering
185 >     * @throws NullPointerException if the specified collection or any
186 >     *         of its elements are null
187 >     */
188 >    @SuppressWarnings("unchecked")
189 >    public PriorityQueue(Collection<? extends E> c) {
190 >        if (c instanceof SortedSet<?>) {
191 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
192 >            this.comparator = (Comparator<? super E>) ss.comparator();
193 >            initElementsFromCollection(ss);
194 >        }
195 >        else if (c instanceof PriorityQueue<?>) {
196 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
197 >            this.comparator = (Comparator<? super E>) pq.comparator();
198 >            initFromPriorityQueue(pq);
199 >        }
200 >        else {
201 >            this.comparator = null;
202 >            initFromCollection(c);
203 >        }
204 >    }
205 >
206 >    /**
207 >     * Creates a {@code PriorityQueue} containing the elements in the
208 >     * specified priority queue.  This priority queue will be
209 >     * ordered according to the same ordering as the given priority
210 >     * queue.
211 >     *
212 >     * @param  c the priority queue whose elements are to be placed
213 >     *         into this priority queue
214 >     * @throws ClassCastException if elements of {@code c} cannot be
215 >     *         compared to one another according to {@code c}'s
216 >     *         ordering
217 >     * @throws NullPointerException if the specified priority queue or any
218 >     *         of its elements are null
219 >     */
220 >    @SuppressWarnings("unchecked")
221 >    public PriorityQueue(PriorityQueue<? extends E> c) {
222 >        this.comparator = (Comparator<? super E>) c.comparator();
223 >        initFromPriorityQueue(c);
224 >    }
225  
226 <        if (initialElements instanceof Sorted) {
227 <            comparator = ((Sorted)initialElements).comparator();
228 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
229 <                queue[++size] = i.next();
226 >    /**
227 >     * Creates a {@code PriorityQueue} containing the elements in the
228 >     * specified sorted set.   This priority queue will be ordered
229 >     * according to the same ordering as the given sorted set.
230 >     *
231 >     * @param  c the sorted set whose elements are to be placed
232 >     *         into this priority queue
233 >     * @throws ClassCastException if elements of the specified sorted
234 >     *         set cannot be compared to one another according to the
235 >     *         sorted set's ordering
236 >     * @throws NullPointerException if the specified sorted set or any
237 >     *         of its elements are null
238 >     */
239 >    @SuppressWarnings("unchecked")
240 >    public PriorityQueue(SortedSet<? extends E> c) {
241 >        this.comparator = (Comparator<? super E>) c.comparator();
242 >        initElementsFromCollection(c);
243 >    }
244 >
245 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
246 >        if (c.getClass() == PriorityQueue.class) {
247 >            this.queue = c.toArray();
248 >            this.size = c.size();
249          } else {
250 <            comparator = null;
138 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
139 <                add(i.next());
250 >            initFromCollection(c);
251          }
252      }
253  
254 <    // Queue Methods
254 >    private void initElementsFromCollection(Collection<? extends E> c) {
255 >        Object[] a = c.toArray();
256 >        // If c.toArray incorrectly doesn't return Object[], copy it.
257 >        if (a.getClass() != Object[].class)
258 >            a = Arrays.copyOf(a, a.length, Object[].class);
259 >        int len = a.length;
260 >        if (len == 1 || this.comparator != null)
261 >            for (Object e : a)
262 >                if (e == null)
263 >                    throw new NullPointerException();
264 >        this.queue = a;
265 >        this.size = a.length;
266 >    }
267  
268      /**
269 <     * Remove and return the minimal element from this priority queue if
147 <     * it contains one or more elements, otherwise <tt>null</tt>.  The term
148 <     * <i>minimal</i> is defined according to this priority queue's order.
269 >     * Initializes queue array with elements from the given Collection.
270       *
271 <     * @return the minimal element from this priority queue if it contains
151 <     *         one or more elements, otherwise <tt>null</tt>.
271 >     * @param c the collection
272       */
273 <    public E poll() {
274 <        if (size == 0)
275 <            return null;
156 <        return remove(1);
273 >    private void initFromCollection(Collection<? extends E> c) {
274 >        initElementsFromCollection(c);
275 >        heapify();
276      }
277  
278      /**
279 <     * Return, but do not remove, the minimal element from the priority queue,
280 <     * or <tt>null</tt> if the queue is empty.  The term <i>minimal</i> is
281 <     * defined according to this priority queue's order.  This method returns
282 <     * the same object reference that would be returned by by the
283 <     * <tt>poll</tt> method.  The two methods differ in that this method
284 <     * does not remove the element from the priority queue.
279 >     * The maximum size of array to allocate.
280 >     * Some VMs reserve some header words in an array.
281 >     * Attempts to allocate larger arrays may result in
282 >     * OutOfMemoryError: Requested array size exceeds VM limit
283 >     */
284 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
285 >
286 >    /**
287 >     * Increases the capacity of the array.
288       *
289 <     * @return the minimal element from this priority queue if it contains
168 <     *         one or more elements, otherwise <tt>null</tt>.
289 >     * @param minCapacity the desired minimum capacity
290       */
291 +    private void grow(int minCapacity) {
292 +        int oldCapacity = queue.length;
293 +        // Double size if small; else grow by 50%
294 +        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
295 +                                         (oldCapacity + 2) :
296 +                                         (oldCapacity >> 1));
297 +        // overflow-conscious code
298 +        if (newCapacity - MAX_ARRAY_SIZE > 0)
299 +            newCapacity = hugeCapacity(minCapacity);
300 +        queue = Arrays.copyOf(queue, newCapacity);
301 +    }
302 +
303 +    private static int hugeCapacity(int minCapacity) {
304 +        if (minCapacity < 0) // overflow
305 +            throw new OutOfMemoryError();
306 +        return (minCapacity > MAX_ARRAY_SIZE) ?
307 +            Integer.MAX_VALUE :
308 +            MAX_ARRAY_SIZE;
309 +    }
310 +
311 +    /**
312 +     * Inserts the specified element into this priority queue.
313 +     *
314 +     * @return {@code true} (as specified by {@link Collection#add})
315 +     * @throws ClassCastException if the specified element cannot be
316 +     *         compared with elements currently in this priority queue
317 +     *         according to the priority queue's ordering
318 +     * @throws NullPointerException if the specified element is null
319 +     */
320 +    public boolean add(E e) {
321 +        return offer(e);
322 +    }
323 +
324 +    /**
325 +     * Inserts the specified element into this priority queue.
326 +     *
327 +     * @return {@code true} (as specified by {@link Queue#offer})
328 +     * @throws ClassCastException if the specified element cannot be
329 +     *         compared with elements currently in this priority queue
330 +     *         according to the priority queue's ordering
331 +     * @throws NullPointerException if the specified element is null
332 +     */
333 +    public boolean offer(E e) {
334 +        if (e == null)
335 +            throw new NullPointerException();
336 +        modCount++;
337 +        int i = size;
338 +        if (i >= queue.length)
339 +            grow(i + 1);
340 +        size = i + 1;
341 +        if (i == 0)
342 +            queue[0] = e;
343 +        else
344 +            siftUp(i, e);
345 +        return true;
346 +    }
347 +
348 +    @SuppressWarnings("unchecked")
349      public E peek() {
350 <        return queue[1];
350 >        return (size == 0) ? null : (E) queue[0];
351      }
352  
353 <    // Collection Methods
353 >    private int indexOf(Object o) {
354 >        if (o != null) {
355 >            for (int i = 0; i < size; i++)
356 >                if (o.equals(queue[i]))
357 >                    return i;
358 >        }
359 >        return -1;
360 >    }
361  
362      /**
363 <     * Removes a single instance of the specified element from this priority
364 <     * queue, if it is present.  Returns true if this collection contained the
365 <     * specified element (or equivalently, if this collection changed as a
363 >     * Removes a single instance of the specified element from this queue,
364 >     * if it is present.  More formally, removes an element {@code e} such
365 >     * that {@code o.equals(e)}, if this queue contains one or more such
366 >     * elements.  Returns {@code true} if and only if this queue contained
367 >     * the specified element (or equivalently, if this queue changed as a
368       * result of the call).
369       *
370 <     * @param o element to be removed from this collection, if present.
371 <     * @return <tt>true</tt> if this collection changed as a result of the
184 <     *         call
185 <     * @throws ClassCastException if the specified element cannot be compared
186 <     *            with elements currently in the priority queue according
187 <     *            to the priority queue's ordering.
188 <     * @throws NullPointerException if the specified element is null.
370 >     * @param o element to be removed from this queue, if present
371 >     * @return {@code true} if this queue changed as a result of the call
372       */
373 <    public boolean remove(Object element) {
374 <        if (element == null)
375 <            throw new NullPointerException();
373 >    public boolean remove(Object o) {
374 >        int i = indexOf(o);
375 >        if (i == -1)
376 >            return false;
377 >        else {
378 >            removeAt(i);
379 >            return true;
380 >        }
381 >    }
382  
383 <        if (comparator == null) {
384 <            for (int i = 1; i <= size; i++) {
385 <                if (((Comparable)queue[i]).compareTo(element) == 0) {
386 <                    remove(i);
387 <                    return true;
388 <                }
389 <            }
390 <        } else {
391 <            for (int i = 1; i <= size; i++) {
392 <                if (comparator.compare(queue[i], (E) element) == 0) {
393 <                    remove(i);
394 <                    return true;
206 <                }
383 >    /**
384 >     * Version of remove using reference equality, not equals.
385 >     * Needed by iterator.remove.
386 >     *
387 >     * @param o element to be removed from this queue, if present
388 >     * @return {@code true} if removed
389 >     */
390 >    boolean removeEq(Object o) {
391 >        for (int i = 0; i < size; i++) {
392 >            if (o == queue[i]) {
393 >                removeAt(i);
394 >                return true;
395              }
396          }
397          return false;
398      }
399  
400      /**
401 <     * Returns an iterator over the elements in this priority queue.  The
402 <     * first element returned by this iterator is the same element that
403 <     * would be returned by a call to <tt>peek</tt>.
401 >     * Returns {@code true} if this queue contains the specified element.
402 >     * More formally, returns {@code true} if and only if this queue contains
403 >     * at least one element {@code e} such that {@code o.equals(e)}.
404       *
405 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
405 >     * @param o object to be checked for containment in this queue
406 >     * @return {@code true} if this queue contains the specified element
407 >     */
408 >    public boolean contains(Object o) {
409 >        return indexOf(o) >= 0;
410 >    }
411 >
412 >    /**
413 >     * Returns an array containing all of the elements in this queue.
414 >     * The elements are in no particular order.
415 >     *
416 >     * <p>The returned array will be "safe" in that no references to it are
417 >     * maintained by this queue.  (In other words, this method must allocate
418 >     * a new array).  The caller is thus free to modify the returned array.
419 >     *
420 >     * <p>This method acts as bridge between array-based and collection-based
421 >     * APIs.
422 >     *
423 >     * @return an array containing all of the elements in this queue
424 >     */
425 >    public Object[] toArray() {
426 >        return Arrays.copyOf(queue, size);
427 >    }
428 >
429 >    /**
430 >     * Returns an array containing all of the elements in this queue; the
431 >     * runtime type of the returned array is that of the specified array.
432 >     * The returned array elements are in no particular order.
433 >     * If the queue fits in the specified array, it is returned therein.
434 >     * Otherwise, a new array is allocated with the runtime type of the
435 >     * specified array and the size of this queue.
436 >     *
437 >     * <p>If the queue fits in the specified array with room to spare
438 >     * (i.e., the array has more elements than the queue), the element in
439 >     * the array immediately following the end of the collection is set to
440 >     * {@code null}.
441 >     *
442 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
443 >     * array-based and collection-based APIs.  Further, this method allows
444 >     * precise control over the runtime type of the output array, and may,
445 >     * under certain circumstances, be used to save allocation costs.
446 >     *
447 >     * <p>Suppose {@code x} is a queue known to contain only strings.
448 >     * The following code can be used to dump the queue into a newly
449 >     * allocated array of {@code String}:
450 >     *
451 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
452 >     *
453 >     * Note that {@code toArray(new Object[0])} is identical in function to
454 >     * {@code toArray()}.
455 >     *
456 >     * @param a the array into which the elements of the queue are to
457 >     *          be stored, if it is big enough; otherwise, a new array of the
458 >     *          same runtime type is allocated for this purpose.
459 >     * @return an array containing all of the elements in this queue
460 >     * @throws ArrayStoreException if the runtime type of the specified array
461 >     *         is not a supertype of the runtime type of every element in
462 >     *         this queue
463 >     * @throws NullPointerException if the specified array is null
464 >     */
465 >    @SuppressWarnings("unchecked")
466 >    public <T> T[] toArray(T[] a) {
467 >        final int size = this.size;
468 >        if (a.length < size)
469 >            // Make a new array of a's runtime type, but my contents:
470 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
471 >        System.arraycopy(queue, 0, a, 0, size);
472 >        if (a.length > size)
473 >            a[size] = null;
474 >        return a;
475 >    }
476 >
477 >    /**
478 >     * Returns an iterator over the elements in this queue. The iterator
479 >     * does not return the elements in any particular order.
480 >     *
481 >     * @return an iterator over the elements in this queue
482       */
483      public Iterator<E> iterator() {
484          return new Itr();
485      }
486  
487 <    private class Itr implements Iterator<E> {
487 >    private final class Itr implements Iterator<E> {
488          /**
489           * Index (into queue array) of element to be returned by
490           * subsequent call to next.
491           */
492 <        int cursor = 1;
492 >        private int cursor;
493 >
494 >        /**
495 >         * Index of element returned by most recent call to next,
496 >         * unless that element came from the forgetMeNot list.
497 >         * Set to -1 if element is deleted by a call to remove.
498 >         */
499 >        private int lastRet = -1;
500 >
501 >        /**
502 >         * A queue of elements that were moved from the unvisited portion of
503 >         * the heap into the visited portion as a result of "unlucky" element
504 >         * removals during the iteration.  (Unlucky element removals are those
505 >         * that require a siftup instead of a siftdown.)  We must visit all of
506 >         * the elements in this list to complete the iteration.  We do this
507 >         * after we've completed the "normal" iteration.
508 >         *
509 >         * We expect that most iterations, even those involving removals,
510 >         * will not need to store elements in this field.
511 >         */
512 >        private ArrayDeque<E> forgetMeNot;
513  
514          /**
515 <         * Index of element returned by most recent call to next or
516 <         * previous.  Reset to 0 if this element is deleted by a call
233 <         * to remove.
515 >         * Element returned by the most recent call to next iff that
516 >         * element was drawn from the forgetMeNot list.
517           */
518 <        int lastRet = 0;
518 >        private E lastRetElt;
519  
520          /**
521           * The modCount value that the iterator believes that the backing
522 <         * List should have.  If this expectation is violated, the iterator
522 >         * Queue should have.  If this expectation is violated, the iterator
523           * has detected concurrent modification.
524           */
525 <        int expectedModCount = modCount;
525 >        private int expectedModCount = modCount;
526  
527          public boolean hasNext() {
528 <            return cursor <= size;
528 >            return cursor < size ||
529 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
530          }
531  
532 +        @SuppressWarnings("unchecked")
533          public E next() {
534 <            checkForComodification();
535 <            if (cursor > size)
536 <                throw new NoSuchElementException();
537 <            E result = queue[cursor];
538 <            lastRet = cursor++;
539 <            return result;
534 >            if (expectedModCount != modCount)
535 >                throw new ConcurrentModificationException();
536 >            if (cursor < size)
537 >                return (E) queue[lastRet = cursor++];
538 >            if (forgetMeNot != null) {
539 >                lastRet = -1;
540 >                lastRetElt = forgetMeNot.poll();
541 >                if (lastRetElt != null)
542 >                    return lastRetElt;
543 >            }
544 >            throw new NoSuchElementException();
545          }
546  
547          public void remove() {
548 <            if (lastRet == 0)
548 >            if (expectedModCount != modCount)
549 >                throw new ConcurrentModificationException();
550 >            if (lastRet != -1) {
551 >                E moved = PriorityQueue.this.removeAt(lastRet);
552 >                lastRet = -1;
553 >                if (moved == null)
554 >                    cursor--;
555 >                else {
556 >                    if (forgetMeNot == null)
557 >                        forgetMeNot = new ArrayDeque<>();
558 >                    forgetMeNot.add(moved);
559 >                }
560 >            } else if (lastRetElt != null) {
561 >                PriorityQueue.this.removeEq(lastRetElt);
562 >                lastRetElt = null;
563 >            } else {
564                  throw new IllegalStateException();
565 <            checkForComodification();
261 <
262 <            PriorityQueue.this.remove(lastRet);
263 <            if (lastRet < cursor)
264 <                cursor--;
265 <            lastRet = 0;
565 >            }
566              expectedModCount = modCount;
567          }
568 +    }
569  
570 <        final void checkForComodification() {
571 <            if (modCount != expectedModCount)
271 <                throw new ConcurrentModificationException();
272 <        }
570 >    public int size() {
571 >        return size;
572      }
573  
574      /**
575 <     * Returns the number of elements in this priority queue.
576 <     *
278 <     * @return the number of elements in this priority queue.
575 >     * Removes all of the elements from this priority queue.
576 >     * The queue will be empty after this call returns.
577       */
578 <    public int size() {
579 <        return size;
578 >    public void clear() {
579 >        modCount++;
580 >        for (int i = 0; i < size; i++)
581 >            queue[i] = null;
582 >        size = 0;
583 >    }
584 >
585 >    @SuppressWarnings("unchecked")
586 >    public E poll() {
587 >        if (size == 0)
588 >            return null;
589 >        int s = --size;
590 >        modCount++;
591 >        E result = (E) queue[0];
592 >        E x = (E) queue[s];
593 >        queue[s] = null;
594 >        if (s != 0)
595 >            siftDown(0, x);
596 >        return result;
597      }
598  
599      /**
600 <     * Add the specified element to this priority queue.
600 >     * Removes the ith element from queue.
601       *
602 <     * @param element the element to add.
603 <     * @return true
604 <     * @throws ClassCastException if the specified element cannot be compared
605 <     *            with elements currently in the priority queue according
606 <     *            to the priority queue's ordering.
607 <     * @throws NullPointerException if the specified element is null.
608 <     */
609 <    public boolean offer(E element) {
610 <        if (element == null)
611 <            throw new NullPointerException();
602 >     * Normally this method leaves the elements at up to i-1,
603 >     * inclusive, untouched.  Under these circumstances, it returns
604 >     * null.  Occasionally, in order to maintain the heap invariant,
605 >     * it must swap a later element of the list with one earlier than
606 >     * i.  Under these circumstances, this method returns the element
607 >     * that was previously at the end of the list and is now at some
608 >     * position before i. This fact is used by iterator.remove so as to
609 >     * avoid missing traversing elements.
610 >     */
611 >    @SuppressWarnings("unchecked")
612 >    E removeAt(int i) {
613 >        // assert i >= 0 && i < size;
614          modCount++;
615 +        int s = --size;
616 +        if (s == i) // removed last element
617 +            queue[i] = null;
618 +        else {
619 +            E moved = (E) queue[s];
620 +            queue[s] = null;
621 +            siftDown(i, moved);
622 +            if (queue[i] == moved) {
623 +                siftUp(i, moved);
624 +                if (queue[i] != moved)
625 +                    return moved;
626 +            }
627 +        }
628 +        return null;
629 +    }
630  
631 <        // Grow backing store if necessary
632 <        if (++size == queue.length) {
633 <            E[] newQueue = new E[2 * queue.length];
634 <            System.arraycopy(queue, 0, newQueue, 0, size);
635 <            queue = newQueue;
631 >    /**
632 >     * Inserts item x at position k, maintaining heap invariant by
633 >     * promoting x up the tree until it is greater than or equal to
634 >     * its parent, or is the root.
635 >     *
636 >     * To simplify and speed up coercions and comparisons. the
637 >     * Comparable and Comparator versions are separated into different
638 >     * methods that are otherwise identical. (Similarly for siftDown.)
639 >     *
640 >     * @param k the position to fill
641 >     * @param x the item to insert
642 >     */
643 >    private void siftUp(int k, E x) {
644 >        if (comparator != null)
645 >            siftUpUsingComparator(k, x);
646 >        else
647 >            siftUpComparable(k, x);
648 >    }
649 >
650 >    @SuppressWarnings("unchecked")
651 >    private void siftUpComparable(int k, E x) {
652 >        Comparable<? super E> key = (Comparable<? super E>) x;
653 >        while (k > 0) {
654 >            int parent = (k - 1) >>> 1;
655 >            Object e = queue[parent];
656 >            if (key.compareTo((E) e) >= 0)
657 >                break;
658 >            queue[k] = e;
659 >            k = parent;
660          }
661 +        queue[k] = key;
662 +    }
663  
664 <        queue[size] = element;
665 <        fixUp(size);
666 <        return true;
664 >    @SuppressWarnings("unchecked")
665 >    private void siftUpUsingComparator(int k, E x) {
666 >        while (k > 0) {
667 >            int parent = (k - 1) >>> 1;
668 >            Object e = queue[parent];
669 >            if (comparator.compare(x, (E) e) >= 0)
670 >                break;
671 >            queue[k] = e;
672 >            k = parent;
673 >        }
674 >        queue[k] = x;
675      }
676  
677      /**
678 <     * Remove all elements from the priority queue.
678 >     * Inserts item x at position k, maintaining heap invariant by
679 >     * demoting x down the tree repeatedly until it is less than or
680 >     * equal to its children or is a leaf.
681 >     *
682 >     * @param k the position to fill
683 >     * @param x the item to insert
684 >     */
685 >    private void siftDown(int k, E x) {
686 >        if (comparator != null)
687 >            siftDownUsingComparator(k, x);
688 >        else
689 >            siftDownComparable(k, x);
690 >    }
691 >
692 >    @SuppressWarnings("unchecked")
693 >    private void siftDownComparable(int k, E x) {
694 >        Comparable<? super E> key = (Comparable<? super E>)x;
695 >        int half = size >>> 1;        // loop while a non-leaf
696 >        while (k < half) {
697 >            int child = (k << 1) + 1; // assume left child is least
698 >            Object c = queue[child];
699 >            int right = child + 1;
700 >            if (right < size &&
701 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
702 >                c = queue[child = right];
703 >            if (key.compareTo((E) c) <= 0)
704 >                break;
705 >            queue[k] = c;
706 >            k = child;
707 >        }
708 >        queue[k] = key;
709 >    }
710 >
711 >    @SuppressWarnings("unchecked")
712 >    private void siftDownUsingComparator(int k, E x) {
713 >        int half = size >>> 1;
714 >        while (k < half) {
715 >            int child = (k << 1) + 1;
716 >            Object c = queue[child];
717 >            int right = child + 1;
718 >            if (right < size &&
719 >                comparator.compare((E) c, (E) queue[right]) > 0)
720 >                c = queue[child = right];
721 >            if (comparator.compare(x, (E) c) <= 0)
722 >                break;
723 >            queue[k] = c;
724 >            k = child;
725 >        }
726 >        queue[k] = x;
727 >    }
728 >
729 >    /**
730 >     * Establishes the heap invariant (described above) in the entire tree,
731 >     * assuming nothing about the order of the elements prior to the call.
732       */
733 <    public void clear() {
734 <        modCount++;
733 >    @SuppressWarnings("unchecked")
734 >    private void heapify() {
735 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
736 >            siftDown(i, (E) queue[i]);
737 >    }
738  
739 <        // Null out element references to prevent memory leak
740 <        for (int i=1; i<=size; i++)
741 <            queue[i] = null;
739 >    /**
740 >     * Returns the comparator used to order the elements in this
741 >     * queue, or {@code null} if this queue is sorted according to
742 >     * the {@linkplain Comparable natural ordering} of its elements.
743 >     *
744 >     * @return the comparator used to order this queue, or
745 >     *         {@code null} if this queue is sorted according to the
746 >     *         natural ordering of its elements
747 >     */
748 >    public Comparator<? super E> comparator() {
749 >        return comparator;
750 >    }
751  
752 <        size = 0;
752 >    /**
753 >     * Saves this queue to a stream (that is, serializes it).
754 >     *
755 >     * @serialData The length of the array backing the instance is
756 >     *             emitted (int), followed by all of its elements
757 >     *             (each an {@code Object}) in the proper order.
758 >     * @param s the stream
759 >     * @throws java.io.IOException if an I/O error occurs
760 >     */
761 >    private void writeObject(java.io.ObjectOutputStream s)
762 >        throws java.io.IOException {
763 >        // Write out element count, and any hidden stuff
764 >        s.defaultWriteObject();
765 >
766 >        // Write out array length, for compatibility with 1.5 version
767 >        s.writeInt(Math.max(2, size + 1));
768 >
769 >        // Write out all elements in the "proper order".
770 >        for (int i = 0; i < size; i++)
771 >            s.writeObject(queue[i]);
772      }
773  
774      /**
775 <     * Removes and returns the ith element from queue.  Recall
776 <     * that queue is one-based, so 1 <= i <= size.
775 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
776 >     * (that is, deserializes it).
777       *
778 <     * XXX: Could further special-case i==size, but is it worth it?
779 <     * XXX: Could special-case i==0, but is it worth it?
778 >     * @param s the stream
779 >     * @throws ClassNotFoundException if the class of a serialized object
780 >     *         could not be found
781 >     * @throws java.io.IOException if an I/O error occurs
782       */
783 <    private E remove(int i) {
784 <        assert i <= size;
785 <        modCount++;
783 >    private void readObject(java.io.ObjectInputStream s)
784 >        throws java.io.IOException, ClassNotFoundException {
785 >        // Read in size, and any hidden stuff
786 >        s.defaultReadObject();
787  
788 <        E result = queue[i];
789 <        queue[i] = queue[size];
790 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
791 <        if (i <= size)
792 <            fixDown(i);
793 <        return result;
788 >        // Read in (and discard) array length
789 >        s.readInt();
790 >
791 >        queue = new Object[size];
792 >
793 >        // Read in all elements.
794 >        for (int i = 0; i < size; i++)
795 >            queue[i] = s.readObject();
796 >
797 >        // Elements are guaranteed to be in "proper order", but the
798 >        // spec has never explained what that might be.
799 >        heapify();
800      }
801  
802      /**
803 <     * Establishes the heap invariant (described above) assuming the heap
804 <     * satisfies the invariant except possibly for the leaf-node indexed by k
805 <     * (which may have a nextExecutionTime less than its parent's).
806 <     *
807 <     * This method functions by "promoting" queue[k] up the hierarchy
808 <     * (by swapping it with its parent) repeatedly until queue[k]
809 <     * is greater than or equal to its parent.
810 <     */
811 <    private void fixUp(int k) {
812 <        if (comparator == null) {
813 <            while (k > 1) {
814 <                int j = k >> 1;
815 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
816 <                    break;
817 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
818 <                k = j;
819 <            }
820 <        } else {
821 <            while (k > 1) {
822 <                int j = k >> 1;
823 <                if (comparator.compare(queue[j], queue[k]) <= 0)
824 <                    break;
825 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
826 <                k = j;
803 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
804 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
805 >     * queue.
806 >     *
807 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809 >     * Overriding implementations should document the reporting of additional
810 >     * characteristic values.
811 >     *
812 >     * @return a {@code Spliterator} over the elements in this queue
813 >     * @since 1.8
814 >     */
815 >    public final Spliterator<E> spliterator() {
816 >        return new PriorityQueueSpliterator<>(this, 0, -1, 0);
817 >    }
818 >
819 >    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
820 >        /*
821 >         * This is very similar to ArrayList Spliterator, except for
822 >         * extra null checks.
823 >         */
824 >        private final PriorityQueue<E> pq;
825 >        private int index;            // current index, modified on advance/split
826 >        private int fence;            // -1 until first use
827 >        private int expectedModCount; // initialized when fence set
828 >
829 >        /** Creates new spliterator covering the given range */
830 >        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
831 >                                 int expectedModCount) {
832 >            this.pq = pq;
833 >            this.index = origin;
834 >            this.fence = fence;
835 >            this.expectedModCount = expectedModCount;
836 >        }
837 >
838 >        private int getFence() { // initialize fence to size on first use
839 >            int hi;
840 >            if ((hi = fence) < 0) {
841 >                expectedModCount = pq.modCount;
842 >                hi = fence = pq.size;
843              }
844 +            return hi;
845          }
370    }
846  
847 <    /**
848 <     * Establishes the heap invariant (described above) in the subtree
849 <     * rooted at k, which is assumed to satisfy the heap invariant except
850 <     * possibly for node k itself (which may be greater than its children).
851 <     *
852 <     * This method functions by "demoting" queue[k] down the hierarchy
853 <     * (by swapping it with its smaller child) repeatedly until queue[k]
854 <     * is less than or equal to its children.
855 <     */
856 <    private void fixDown(int k) {
857 <        int j;
858 <        if (comparator == null) {
859 <            while ((j = k << 1) <= size) {
860 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
861 <                    j++; // j indexes smallest kid
862 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
863 <                    break;
864 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
865 <                k = j;
847 >        public PriorityQueueSpliterator<E> trySplit() {
848 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
849 >            return (lo >= mid) ? null :
850 >                new PriorityQueueSpliterator<>(pq, lo, index = mid,
851 >                                               expectedModCount);
852 >        }
853 >
854 >        @SuppressWarnings("unchecked")
855 >        public void forEachRemaining(Consumer<? super E> action) {
856 >            int i, hi, mc; // hoist accesses and checks from loop
857 >            PriorityQueue<E> q; Object[] a;
858 >            if (action == null)
859 >                throw new NullPointerException();
860 >            if ((q = pq) != null && (a = q.queue) != null) {
861 >                if ((hi = fence) < 0) {
862 >                    mc = q.modCount;
863 >                    hi = q.size;
864 >                }
865 >                else
866 >                    mc = expectedModCount;
867 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
868 >                    for (E e;; ++i) {
869 >                        if (i < hi) {
870 >                            if ((e = (E) a[i]) == null) // must be CME
871 >                                break;
872 >                            action.accept(e);
873 >                        }
874 >                        else if (q.modCount != mc)
875 >                            break;
876 >                        else
877 >                            return;
878 >                    }
879 >                }
880              }
881 <        } else {
882 <            while ((j = k << 1) <= size) {
883 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
884 <                    j++; // j indexes smallest kid
885 <                if (comparator.compare(queue[k], queue[j]) <= 0)
886 <                    break;
887 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
888 <                k = j;
881 >            throw new ConcurrentModificationException();
882 >        }
883 >
884 >        public boolean tryAdvance(Consumer<? super E> action) {
885 >            if (action == null)
886 >                throw new NullPointerException();
887 >            int hi = getFence(), lo = index;
888 >            if (lo >= 0 && lo < hi) {
889 >                index = lo + 1;
890 >                @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
891 >                if (e == null)
892 >                    throw new ConcurrentModificationException();
893 >                action.accept(e);
894 >                if (pq.modCount != expectedModCount)
895 >                    throw new ConcurrentModificationException();
896 >                return true;
897              }
898 +            return false;
899          }
402    }
900  
901 <    /**
902 <     * Returns the comparator associated with this priority queue, or
903 <     * <tt>null</tt> if it uses its elements' natural ordering.
904 <     *
905 <     * @return the comparator associated with this priority queue, or
906 <     *         <tt>null</tt> if it uses its elements' natural ordering.
907 <     */
411 <    Comparator<E> comparator() {
412 <        return comparator;
901 >        public long estimateSize() {
902 >            return (long) (getFence() - index);
903 >        }
904 >
905 >        public int characteristics() {
906 >            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
907 >        }
908      }
909   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines