ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.46 by dl, Mon Dec 29 19:05:19 2003 UTC vs.
Revision 1.109 by jsr166, Wed Jun 1 16:08:04 2016 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28 + import java.util.function.Consumer;
29 +
30   /**
31 < * An unbounded priority {@linkplain Queue queue} based on a priority
32 < * heap.  This queue orders elements according to an order specified
33 < * at construction time, which is specified either according to their
34 < * <i>natural order</i> (see {@link Comparable}), or according to a
35 < * {@link java.util.Comparator}, depending on which constructor is
36 < * used. A priority queue does not permit <tt>null</tt> elements.
37 < * A priority queue relying on natural ordering also does not
38 < * permit insertion of non-comparable objects (doing so may result
19 < * in <tt>ClassCastException</tt>).
31 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 > * The elements of the priority queue are ordered according to their
33 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 > * provided at queue construction time, depending on which constructor is
35 > * used.  A priority queue does not permit {@code null} elements.
36 > * A priority queue relying on natural ordering also does not permit
37 > * insertion of non-comparable objects (doing so may result in
38 > * {@code ClassCastException}).
39   *
40   * <p>The <em>head</em> of this queue is the <em>least</em> element
41   * with respect to the specified ordering.  If multiple elements are
42   * tied for least value, the head is one of those elements -- ties are
43 < * broken arbitrarily.  The queue retrieval operations <tt>poll</tt>,
44 < * <tt>remove</tt>, <tt>peek</tt>, and <tt>element</tt> access the
43 > * broken arbitrarily.  The queue retrieval operations {@code poll},
44 > * {@code remove}, {@code peek}, and {@code element} access the
45   * element at the head of the queue.
46   *
47   * <p>A priority queue is unbounded, but has an internal
# Line 32 | Line 51 | package java.util;
51   * grows automatically.  The details of the growth policy are not
52   * specified.
53   *
54 < * <p>This class implements all of the <em>optional</em> methods of
55 < * the {@link Collection} and {@link Iterator} interfaces.  The
56 < * Iterator provided in method {@link #iterator()} is <em>not</em>
57 < * guaranteed to traverse the elements of the PriorityQueue in any
58 < * particular order. If you need ordered traversal, consider using
59 < * <tt>Arrays.sort(pq.toArray())</tt>.
60 < *
61 < * <p> <strong>Note that this implementation is not synchronized.</strong>
62 < * Multiple threads should not access a <tt>PriorityQueue</tt>
63 < * instance concurrently if any of the threads modifies the list
64 < * structurally. Instead, use the thread-safe {@link
54 > * <p>This class and its iterator implement all of the
55 > * <em>optional</em> methods of the {@link Collection} and {@link
56 > * Iterator} interfaces.  The Iterator provided in method {@link
57 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
58 > * the priority queue in any particular order. If you need ordered
59 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
60 > *
61 > * <p><strong>Note that this implementation is not synchronized.</strong>
62 > * Multiple threads should not access a {@code PriorityQueue}
63 > * instance concurrently if any of the threads modifies the queue.
64 > * Instead, use the thread-safe {@link
65   * java.util.concurrent.PriorityBlockingQueue} class.
66   *
67 < *
68 < * <p>Implementation note: this implementation provides O(log(n)) time
69 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
70 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
71 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
72 < * constant time for the retrieval methods (<tt>peek</tt>,
54 < * <tt>element</tt>, and <tt>size</tt>).
67 > * <p>Implementation note: this implementation provides
68 > * O(log(n)) time for the enqueuing and dequeuing methods
69 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
70 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
71 > * methods; and constant time for the retrieval methods
72 > * ({@code peek}, {@code element}, and {@code size}).
73   *
74   * <p>This class is a member of the
75 < * <a href="{@docRoot}/../guide/collections/index.html">
75 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
76   * Java Collections Framework</a>.
77 + *
78   * @since 1.5
79 < * @version %I%, %G%
80 < * @author Josh Bloch
62 < * @param <E> the type of elements held in this collection
79 > * @author Josh Bloch, Doug Lea
80 > * @param <E> the type of elements held in this queue
81   */
82   public class PriorityQueue<E> extends AbstractQueue<E>
83 <    implements Queue<E>, java.io.Serializable {
83 >    implements java.io.Serializable {
84  
85      private static final long serialVersionUID = -7720805057305804111L;
86  
87      private static final int DEFAULT_INITIAL_CAPACITY = 11;
88  
89      /**
90 <     * Priority queue represented as a balanced binary heap: the two children
91 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
92 <     * ordered by comparator, or by the elements' natural ordering, if
93 <     * comparator is null:  For each node n in the heap and each descendant d
94 <     * of n, n <= d.
95 <     *
78 <     * The element with the lowest value is in queue[1], assuming the queue is
79 <     * nonempty.  (A one-based array is used in preference to the traditional
80 <     * zero-based array to simplify parent and child calculations.)
81 <     *
82 <     * queue.length must be >= 2, even if size == 0.
90 >     * Priority queue represented as a balanced binary heap: the two
91 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
92 >     * priority queue is ordered by comparator, or by the elements'
93 >     * natural ordering, if comparator is null: For each node n in the
94 >     * heap and each descendant d of n, n <= d.  The element with the
95 >     * lowest value is in queue[0], assuming the queue is nonempty.
96       */
97 <    private transient Object[] queue;
97 >    transient Object[] queue; // non-private to simplify nested class access
98  
99      /**
100       * The number of elements in the priority queue.
101       */
102 <    private int size = 0;
102 >    int size;
103  
104      /**
105       * The comparator, or null if priority queue uses elements'
# Line 98 | Line 111 | public class PriorityQueue<E> extends Ab
111       * The number of times this priority queue has been
112       * <i>structurally modified</i>.  See AbstractList for gory details.
113       */
114 <    private transient int modCount = 0;
114 >    transient int modCount;     // non-private to simplify nested class access
115  
116      /**
117 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
118 <     * (11) that orders its elements according to their natural
119 <     * ordering (using <tt>Comparable</tt>).
117 >     * Creates a {@code PriorityQueue} with the default initial
118 >     * capacity (11) that orders its elements according to their
119 >     * {@linkplain Comparable natural ordering}.
120       */
121      public PriorityQueue() {
122          this(DEFAULT_INITIAL_CAPACITY, null);
123      }
124  
125      /**
126 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
127 <     * that orders its elements according to their natural ordering
128 <     * (using <tt>Comparable</tt>).
129 <     *
130 <     * @param initialCapacity the initial capacity for this priority queue.
131 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
132 <     * than 1
126 >     * Creates a {@code PriorityQueue} with the specified initial
127 >     * capacity that orders its elements according to their
128 >     * {@linkplain Comparable natural ordering}.
129 >     *
130 >     * @param initialCapacity the initial capacity for this priority queue
131 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
132 >     *         than 1
133       */
134      public PriorityQueue(int initialCapacity) {
135          this(initialCapacity, null);
136      }
137  
138      /**
139 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
139 >     * Creates a {@code PriorityQueue} with the default initial capacity and
140 >     * whose elements are ordered according to the specified comparator.
141 >     *
142 >     * @param  comparator the comparator that will be used to order this
143 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
144 >     *         natural ordering} of the elements will be used.
145 >     * @since 1.8
146 >     */
147 >    public PriorityQueue(Comparator<? super E> comparator) {
148 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
149 >    }
150 >
151 >    /**
152 >     * Creates a {@code PriorityQueue} with the specified initial capacity
153       * that orders its elements according to the specified comparator.
154       *
155 <     * @param initialCapacity the initial capacity for this priority queue.
156 <     * @param comparator the comparator used to order this priority queue.
157 <     * If <tt>null</tt> then the order depends on the elements' natural
158 <     * ordering.
159 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
160 <     * than 1
155 >     * @param  initialCapacity the initial capacity for this priority queue
156 >     * @param  comparator the comparator that will be used to order this
157 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
158 >     *         natural ordering} of the elements will be used.
159 >     * @throws IllegalArgumentException if {@code initialCapacity} is
160 >     *         less than 1
161       */
162 <    public PriorityQueue(int initialCapacity,
162 >    public PriorityQueue(int initialCapacity,
163                           Comparator<? super E> comparator) {
164 +        // Note: This restriction of at least one is not actually needed,
165 +        // but continues for 1.5 compatibility
166          if (initialCapacity < 1)
167              throw new IllegalArgumentException();
168 <        this.queue = new Object[initialCapacity + 1];
168 >        this.queue = new Object[initialCapacity];
169          this.comparator = comparator;
170      }
171  
172      /**
173 <     * Common code to initialize underlying queue array across
174 <     * constructors below.
173 >     * Creates a {@code PriorityQueue} containing the elements in the
174 >     * specified collection.  If the specified collection is an instance of
175 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
176 >     * priority queue will be ordered according to the same ordering.
177 >     * Otherwise, this priority queue will be ordered according to the
178 >     * {@linkplain Comparable natural ordering} of its elements.
179 >     *
180 >     * @param  c the collection whose elements are to be placed
181 >     *         into this priority queue
182 >     * @throws ClassCastException if elements of the specified collection
183 >     *         cannot be compared to one another according to the priority
184 >     *         queue's ordering
185 >     * @throws NullPointerException if the specified collection or any
186 >     *         of its elements are null
187       */
188 <    private void initializeArray(Collection<? extends E> c) {
189 <        int sz = c.size();
190 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
191 <                                            Integer.MAX_VALUE - 1);
192 <        if (initialCapacity < 1)
193 <            initialCapacity = 1;
194 <
195 <        this.queue = new Object[initialCapacity + 1];
188 >    @SuppressWarnings("unchecked")
189 >    public PriorityQueue(Collection<? extends E> c) {
190 >        if (c instanceof SortedSet<?>) {
191 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
192 >            this.comparator = (Comparator<? super E>) ss.comparator();
193 >            initElementsFromCollection(ss);
194 >        }
195 >        else if (c instanceof PriorityQueue<?>) {
196 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
197 >            this.comparator = (Comparator<? super E>) pq.comparator();
198 >            initFromPriorityQueue(pq);
199 >        }
200 >        else {
201 >            this.comparator = null;
202 >            initFromCollection(c);
203 >        }
204      }
205  
206      /**
207 <     * Initially fill elements of the queue array under the
208 <     * knowledge that it is sorted or is another PQ, in which
209 <     * case we can just place the elements in the order presented.
207 >     * Creates a {@code PriorityQueue} containing the elements in the
208 >     * specified priority queue.  This priority queue will be
209 >     * ordered according to the same ordering as the given priority
210 >     * queue.
211 >     *
212 >     * @param  c the priority queue whose elements are to be placed
213 >     *         into this priority queue
214 >     * @throws ClassCastException if elements of {@code c} cannot be
215 >     *         compared to one another according to {@code c}'s
216 >     *         ordering
217 >     * @throws NullPointerException if the specified priority queue or any
218 >     *         of its elements are null
219       */
220 <    private void fillFromSorted(Collection<? extends E> c) {
221 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
222 <            queue[++size] = i.next();
220 >    @SuppressWarnings("unchecked")
221 >    public PriorityQueue(PriorityQueue<? extends E> c) {
222 >        this.comparator = (Comparator<? super E>) c.comparator();
223 >        initFromPriorityQueue(c);
224      }
225  
226      /**
227 <     * Initially fill elements of the queue array that is not to our knowledge
228 <     * sorted, so we must rearrange the elements to guarantee the heap
229 <     * invariant.
227 >     * Creates a {@code PriorityQueue} containing the elements in the
228 >     * specified sorted set.   This priority queue will be ordered
229 >     * according to the same ordering as the given sorted set.
230 >     *
231 >     * @param  c the sorted set whose elements are to be placed
232 >     *         into this priority queue
233 >     * @throws ClassCastException if elements of the specified sorted
234 >     *         set cannot be compared to one another according to the
235 >     *         sorted set's ordering
236 >     * @throws NullPointerException if the specified sorted set or any
237 >     *         of its elements are null
238       */
239 <    private void fillFromUnsorted(Collection<? extends E> c) {
240 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
241 <            queue[++size] = i.next();
242 <        heapify();
239 >    @SuppressWarnings("unchecked")
240 >    public PriorityQueue(SortedSet<? extends E> c) {
241 >        this.comparator = (Comparator<? super E>) c.comparator();
242 >        initElementsFromCollection(c);
243      }
244  
245 <    /**
246 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
247 <     * specified collection.  The priority queue has an initial
248 <     * capacity of 110% of the size of the specified collection or 1
183 <     * if the collection is empty.  If the specified collection is an
184 <     * instance of a {@link java.util.SortedSet} or is another
185 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
186 <     * according to the same comparator, or according to its elements'
187 <     * natural order if the collection is sorted according to its
188 <     * elements' natural order.  Otherwise, the priority queue is
189 <     * ordered according to its elements' natural order.
190 <     *
191 <     * @param c the collection whose elements are to be placed
192 <     *        into this priority queue.
193 <     * @throws ClassCastException if elements of the specified collection
194 <     *         cannot be compared to one another according to the priority
195 <     *         queue's ordering.
196 <     * @throws NullPointerException if <tt>c</tt> or any element within it
197 <     * is <tt>null</tt>
198 <     */
199 <    public PriorityQueue(Collection<? extends E> c) {
200 <        initializeArray(c);
201 <        if (c instanceof SortedSet) {
202 <            SortedSet<? extends E> s = (SortedSet<? extends E>)c;
203 <            comparator = (Comparator<? super E>)s.comparator();
204 <            fillFromSorted(s);
205 <        } else if (c instanceof PriorityQueue) {
206 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
207 <            comparator = (Comparator<? super E>)s.comparator();
208 <            fillFromSorted(s);
245 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
246 >        if (c.getClass() == PriorityQueue.class) {
247 >            this.queue = c.toArray();
248 >            this.size = c.size();
249          } else {
250 <            comparator = null;
211 <            fillFromUnsorted(c);
250 >            initFromCollection(c);
251          }
252      }
253  
254 +    private void initElementsFromCollection(Collection<? extends E> c) {
255 +        Object[] a = c.toArray();
256 +        // If c.toArray incorrectly doesn't return Object[], copy it.
257 +        if (a.getClass() != Object[].class)
258 +            a = Arrays.copyOf(a, a.length, Object[].class);
259 +        int len = a.length;
260 +        if (len == 1 || this.comparator != null)
261 +            for (Object e : a)
262 +                if (e == null)
263 +                    throw new NullPointerException();
264 +        this.queue = a;
265 +        this.size = a.length;
266 +    }
267 +
268      /**
269 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
217 <     * specified collection.  The priority queue has an initial
218 <     * capacity of 110% of the size of the specified collection or 1
219 <     * if the collection is empty.  This priority queue will be sorted
220 <     * according to the same comparator as the given collection, or
221 <     * according to its elements' natural order if the collection is
222 <     * sorted according to its elements' natural order.
269 >     * Initializes queue array with elements from the given Collection.
270       *
271 <     * @param c the collection whose elements are to be placed
225 <     *        into this priority queue.
226 <     * @throws ClassCastException if elements of the specified collection
227 <     *         cannot be compared to one another according to the priority
228 <     *         queue's ordering.
229 <     * @throws NullPointerException if <tt>c</tt> or any element within it
230 <     * is <tt>null</tt>
271 >     * @param c the collection
272       */
273 <    public PriorityQueue(PriorityQueue<? extends E> c) {
274 <        initializeArray(c);
275 <        comparator = (Comparator<? super E>)c.comparator();
235 <        fillFromSorted(c);
273 >    private void initFromCollection(Collection<? extends E> c) {
274 >        initElementsFromCollection(c);
275 >        heapify();
276      }
277  
278      /**
279 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
280 <     * specified collection.  The priority queue has an initial
281 <     * capacity of 110% of the size of the specified collection or 1
282 <     * if the collection is empty.  This priority queue will be sorted
283 <     * according to the same comparator as the given collection, or
284 <     * according to its elements' natural order if the collection is
285 <     * sorted according to its elements' natural order.
279 >     * The maximum size of array to allocate.
280 >     * Some VMs reserve some header words in an array.
281 >     * Attempts to allocate larger arrays may result in
282 >     * OutOfMemoryError: Requested array size exceeds VM limit
283 >     */
284 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
285 >
286 >    /**
287 >     * Increases the capacity of the array.
288       *
289 <     * @param c the collection whose elements are to be placed
248 <     *        into this priority queue.
249 <     * @throws ClassCastException if elements of the specified collection
250 <     *         cannot be compared to one another according to the priority
251 <     *         queue's ordering.
252 <     * @throws NullPointerException if <tt>c</tt> or any element within it
253 <     * is <tt>null</tt>
289 >     * @param minCapacity the desired minimum capacity
290       */
291 <    public PriorityQueue(SortedSet<? extends E> c) {
292 <        initializeArray(c);
293 <        comparator = (Comparator<? super E>)c.comparator();
294 <        fillFromSorted(c);
291 >    private void grow(int minCapacity) {
292 >        int oldCapacity = queue.length;
293 >        // Double size if small; else grow by 50%
294 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
295 >                                         (oldCapacity + 2) :
296 >                                         (oldCapacity >> 1));
297 >        // overflow-conscious code
298 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
299 >            newCapacity = hugeCapacity(minCapacity);
300 >        queue = Arrays.copyOf(queue, newCapacity);
301 >    }
302 >
303 >    private static int hugeCapacity(int minCapacity) {
304 >        if (minCapacity < 0) // overflow
305 >            throw new OutOfMemoryError();
306 >        return (minCapacity > MAX_ARRAY_SIZE) ?
307 >            Integer.MAX_VALUE :
308 >            MAX_ARRAY_SIZE;
309      }
310  
311      /**
312 <     * Resize array, if necessary, to be able to hold given index
312 >     * Inserts the specified element into this priority queue.
313 >     *
314 >     * @return {@code true} (as specified by {@link Collection#add})
315 >     * @throws ClassCastException if the specified element cannot be
316 >     *         compared with elements currently in this priority queue
317 >     *         according to the priority queue's ordering
318 >     * @throws NullPointerException if the specified element is null
319       */
320 <    private void grow(int index) {
321 <        int newlen = queue.length;
266 <        if (index < newlen) // don't need to grow
267 <            return;
268 <        if (index == Integer.MAX_VALUE)
269 <            throw new OutOfMemoryError();
270 <        while (newlen <= index) {
271 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
272 <                newlen = Integer.MAX_VALUE;
273 <            else
274 <                newlen <<= 2;
275 <        }
276 <        Object[] newQueue = new Object[newlen];
277 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
278 <        queue = newQueue;
320 >    public boolean add(E e) {
321 >        return offer(e);
322      }
280            
323  
324      /**
325       * Inserts the specified element into this priority queue.
326       *
327 <     * @return <tt>true</tt>
328 <     * @throws ClassCastException if the specified element cannot be compared
329 <     * with elements currently in the priority queue according
330 <     * to the priority queue's ordering.
331 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
327 >     * @return {@code true} (as specified by {@link Queue#offer})
328 >     * @throws ClassCastException if the specified element cannot be
329 >     *         compared with elements currently in this priority queue
330 >     *         according to the priority queue's ordering
331 >     * @throws NullPointerException if the specified element is null
332       */
333 <    public boolean offer(E o) {
334 <        if (o == null)
333 >    public boolean offer(E e) {
334 >        if (e == null)
335              throw new NullPointerException();
336          modCount++;
337 <        ++size;
338 <
339 <        // Grow backing store if necessary
340 <        if (size >= queue.length)
341 <            grow(size);
300 <
301 <        queue[size] = o;
302 <        fixUp(size);
337 >        int i = size;
338 >        if (i >= queue.length)
339 >            grow(i + 1);
340 >        siftUp(i, e);
341 >        size = i + 1;
342          return true;
343      }
344  
345 +    @SuppressWarnings("unchecked")
346      public E peek() {
347 <        if (size == 0)
308 <            return null;
309 <        return (E) queue[1];
347 >        return (size == 0) ? null : (E) queue[0];
348      }
349  
350 <    // Collection Methods - the first two override to update docs
350 >    private int indexOf(Object o) {
351 >        if (o != null) {
352 >            for (int i = 0; i < size; i++)
353 >                if (o.equals(queue[i]))
354 >                    return i;
355 >        }
356 >        return -1;
357 >    }
358  
359      /**
360 <     * Adds the specified element to this queue.
361 <     * @return <tt>true</tt> (as per the general contract of
362 <     * <tt>Collection.add</tt>).
360 >     * Removes a single instance of the specified element from this queue,
361 >     * if it is present.  More formally, removes an element {@code e} such
362 >     * that {@code o.equals(e)}, if this queue contains one or more such
363 >     * elements.  Returns {@code true} if and only if this queue contained
364 >     * the specified element (or equivalently, if this queue changed as a
365 >     * result of the call).
366       *
367 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
368 <     * @throws ClassCastException if the specified element cannot be compared
321 <     * with elements currently in the priority queue according
322 <     * to the priority queue's ordering.
367 >     * @param o element to be removed from this queue, if present
368 >     * @return {@code true} if this queue changed as a result of the call
369       */
324    public boolean add(E o) {
325        return offer(o);
326    }
327
370      public boolean remove(Object o) {
371 <        if (o == null)
371 >        int i = indexOf(o);
372 >        if (i == -1)
373              return false;
374 +        else {
375 +            removeAt(i);
376 +            return true;
377 +        }
378 +    }
379  
380 <        if (comparator == null) {
381 <            for (int i = 1; i <= size; i++) {
382 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
383 <                    removeAt(i);
384 <                    return true;
385 <                }
386 <            }
387 <        } else {
388 <            for (int i = 1; i <= size; i++) {
389 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
390 <                    removeAt(i);
391 <                    return true;
344 <                }
380 >    /**
381 >     * Version of remove using reference equality, not equals.
382 >     * Needed by iterator.remove.
383 >     *
384 >     * @param o element to be removed from this queue, if present
385 >     * @return {@code true} if removed
386 >     */
387 >    boolean removeEq(Object o) {
388 >        for (int i = 0; i < size; i++) {
389 >            if (o == queue[i]) {
390 >                removeAt(i);
391 >                return true;
392              }
393          }
394          return false;
395      }
396  
397      /**
398 +     * Returns {@code true} if this queue contains the specified element.
399 +     * More formally, returns {@code true} if and only if this queue contains
400 +     * at least one element {@code e} such that {@code o.equals(e)}.
401 +     *
402 +     * @param o object to be checked for containment in this queue
403 +     * @return {@code true} if this queue contains the specified element
404 +     */
405 +    public boolean contains(Object o) {
406 +        return indexOf(o) >= 0;
407 +    }
408 +
409 +    /**
410 +     * Returns an array containing all of the elements in this queue.
411 +     * The elements are in no particular order.
412 +     *
413 +     * <p>The returned array will be "safe" in that no references to it are
414 +     * maintained by this queue.  (In other words, this method must allocate
415 +     * a new array).  The caller is thus free to modify the returned array.
416 +     *
417 +     * <p>This method acts as bridge between array-based and collection-based
418 +     * APIs.
419 +     *
420 +     * @return an array containing all of the elements in this queue
421 +     */
422 +    public Object[] toArray() {
423 +        return Arrays.copyOf(queue, size);
424 +    }
425 +
426 +    /**
427 +     * Returns an array containing all of the elements in this queue; the
428 +     * runtime type of the returned array is that of the specified array.
429 +     * The returned array elements are in no particular order.
430 +     * If the queue fits in the specified array, it is returned therein.
431 +     * Otherwise, a new array is allocated with the runtime type of the
432 +     * specified array and the size of this queue.
433 +     *
434 +     * <p>If the queue fits in the specified array with room to spare
435 +     * (i.e., the array has more elements than the queue), the element in
436 +     * the array immediately following the end of the collection is set to
437 +     * {@code null}.
438 +     *
439 +     * <p>Like the {@link #toArray()} method, this method acts as bridge between
440 +     * array-based and collection-based APIs.  Further, this method allows
441 +     * precise control over the runtime type of the output array, and may,
442 +     * under certain circumstances, be used to save allocation costs.
443 +     *
444 +     * <p>Suppose {@code x} is a queue known to contain only strings.
445 +     * The following code can be used to dump the queue into a newly
446 +     * allocated array of {@code String}:
447 +     *
448 +     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
449 +     *
450 +     * Note that {@code toArray(new Object[0])} is identical in function to
451 +     * {@code toArray()}.
452 +     *
453 +     * @param a the array into which the elements of the queue are to
454 +     *          be stored, if it is big enough; otherwise, a new array of the
455 +     *          same runtime type is allocated for this purpose.
456 +     * @return an array containing all of the elements in this queue
457 +     * @throws ArrayStoreException if the runtime type of the specified array
458 +     *         is not a supertype of the runtime type of every element in
459 +     *         this queue
460 +     * @throws NullPointerException if the specified array is null
461 +     */
462 +    @SuppressWarnings("unchecked")
463 +    public <T> T[] toArray(T[] a) {
464 +        final int size = this.size;
465 +        if (a.length < size)
466 +            // Make a new array of a's runtime type, but my contents:
467 +            return (T[]) Arrays.copyOf(queue, size, a.getClass());
468 +        System.arraycopy(queue, 0, a, 0, size);
469 +        if (a.length > size)
470 +            a[size] = null;
471 +        return a;
472 +    }
473 +
474 +    /**
475       * Returns an iterator over the elements in this queue. The iterator
476       * does not return the elements in any particular order.
477       *
478 <     * @return an iterator over the elements in this queue.
478 >     * @return an iterator over the elements in this queue
479       */
480      public Iterator<E> iterator() {
481          return new Itr();
482      }
483  
484 <    private class Itr implements Iterator<E> {
361 <
484 >    private final class Itr implements Iterator<E> {
485          /**
486           * Index (into queue array) of element to be returned by
487           * subsequent call to next.
488           */
489 <        private int cursor = 1;
489 >        private int cursor;
490  
491          /**
492           * Index of element returned by most recent call to next,
493           * unless that element came from the forgetMeNot list.
494 <         * Reset to 0 if element is deleted by a call to remove.
372 <         */
373 <        private int lastRet = 0;
374 <
375 <        /**
376 <         * The modCount value that the iterator believes that the backing
377 <         * List should have.  If this expectation is violated, the iterator
378 <         * has detected concurrent modification.
494 >         * Set to -1 if element is deleted by a call to remove.
495           */
496 <        private int expectedModCount = modCount;
496 >        private int lastRet = -1;
497  
498          /**
499 <         * A list of elements that were moved from the unvisited portion of
499 >         * A queue of elements that were moved from the unvisited portion of
500           * the heap into the visited portion as a result of "unlucky" element
501           * removals during the iteration.  (Unlucky element removals are those
502 <         * that require a fixup instead of a fixdown.)  We must visit all of
502 >         * that require a siftup instead of a siftdown.)  We must visit all of
503           * the elements in this list to complete the iteration.  We do this
504           * after we've completed the "normal" iteration.
505           *
506           * We expect that most iterations, even those involving removals,
507 <         * will not use need to store elements in this field.
507 >         * will not need to store elements in this field.
508           */
509 <        private ArrayList<E> forgetMeNot = null;
509 >        private ArrayDeque<E> forgetMeNot;
510  
511          /**
512           * Element returned by the most recent call to next iff that
513           * element was drawn from the forgetMeNot list.
514           */
515 <        private Object lastRetElt = null;
515 >        private E lastRetElt;
516 >
517 >        /**
518 >         * The modCount value that the iterator believes that the backing
519 >         * Queue should have.  If this expectation is violated, the iterator
520 >         * has detected concurrent modification.
521 >         */
522 >        private int expectedModCount = modCount;
523  
524          public boolean hasNext() {
525 <            return cursor <= size || forgetMeNot != null;
525 >            return cursor < size ||
526 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
527          }
528  
529 +        @SuppressWarnings("unchecked")
530          public E next() {
531 <            checkForComodification();
532 <            E result;
533 <            if (cursor <= size) {
534 <                result = (E) queue[cursor];
535 <                lastRet = cursor++;
536 <            }
537 <            else if (forgetMeNot == null)
538 <                throw new NoSuchElementException();
539 <            else {
415 <                int remaining = forgetMeNot.size();
416 <                result = forgetMeNot.remove(remaining - 1);
417 <                if (remaining == 1)
418 <                    forgetMeNot = null;
419 <                lastRet = 0;
420 <                lastRetElt = result;
531 >            if (expectedModCount != modCount)
532 >                throw new ConcurrentModificationException();
533 >            if (cursor < size)
534 >                return (E) queue[lastRet = cursor++];
535 >            if (forgetMeNot != null) {
536 >                lastRet = -1;
537 >                lastRetElt = forgetMeNot.poll();
538 >                if (lastRetElt != null)
539 >                    return lastRetElt;
540              }
541 <            return result;
541 >            throw new NoSuchElementException();
542          }
543  
544          public void remove() {
545 <            checkForComodification();
546 <
547 <            if (lastRet != 0) {
545 >            if (expectedModCount != modCount)
546 >                throw new ConcurrentModificationException();
547 >            if (lastRet != -1) {
548                  E moved = PriorityQueue.this.removeAt(lastRet);
549 <                lastRet = 0;
550 <                if (moved == null) {
549 >                lastRet = -1;
550 >                if (moved == null)
551                      cursor--;
552 <                } else {
552 >                else {
553                      if (forgetMeNot == null)
554 <                        forgetMeNot = new ArrayList<E>();
554 >                        forgetMeNot = new ArrayDeque<>();
555                      forgetMeNot.add(moved);
556                  }
557              } else if (lastRetElt != null) {
558 <                PriorityQueue.this.remove(lastRetElt);
558 >                PriorityQueue.this.removeEq(lastRetElt);
559                  lastRetElt = null;
560              } else {
561                  throw new IllegalStateException();
562              }
444
563              expectedModCount = modCount;
564          }
447
448        final void checkForComodification() {
449            if (modCount != expectedModCount)
450                throw new ConcurrentModificationException();
451        }
565      }
566  
567      public int size() {
# Line 456 | Line 569 | public class PriorityQueue<E> extends Ab
569      }
570  
571      /**
572 <     * Remove all elements from the priority queue.
572 >     * Removes all of the elements from this priority queue.
573 >     * The queue will be empty after this call returns.
574       */
575      public void clear() {
576          modCount++;
577 <
464 <        // Null out element references to prevent memory leak
465 <        for (int i=1; i<=size; i++)
577 >        for (int i = 0; i < size; i++)
578              queue[i] = null;
467
579          size = 0;
580      }
581  
582 +    @SuppressWarnings("unchecked")
583      public E poll() {
584          if (size == 0)
585              return null;
586 +        int s = --size;
587          modCount++;
588 <
589 <        E result = (E) queue[1];
590 <        queue[1] = queue[size];
591 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
592 <        if (size > 1)
480 <            fixDown(1);
481 <
588 >        E result = (E) queue[0];
589 >        E x = (E) queue[s];
590 >        queue[s] = null;
591 >        if (s != 0)
592 >            siftDown(0, x);
593          return result;
594      }
595  
596      /**
597 <     * Removes and returns the ith element from queue.  (Recall that queue
487 <     * is one-based, so 1 <= i <= size.)
597 >     * Removes the ith element from queue.
598       *
599 <     * Normally this method leaves the elements at positions from 1 up to i-1,
600 <     * inclusive, untouched.  Under these circumstances, it returns null.
601 <     * Occasionally, in order to maintain the heap invariant, it must move
602 <     * the last element of the list to some index in the range [2, i-1],
603 <     * and move the element previously at position (i/2) to position i.
604 <     * Under these circumstances, this method returns the element that was
605 <     * previously at the end of the list and is now at some position between
606 <     * 2 and i-1 inclusive.
607 <     */
608 <    private E removeAt(int i) {
609 <        assert i > 0 && i <= size;
599 >     * Normally this method leaves the elements at up to i-1,
600 >     * inclusive, untouched.  Under these circumstances, it returns
601 >     * null.  Occasionally, in order to maintain the heap invariant,
602 >     * it must swap a later element of the list with one earlier than
603 >     * i.  Under these circumstances, this method returns the element
604 >     * that was previously at the end of the list and is now at some
605 >     * position before i. This fact is used by iterator.remove so as to
606 >     * avoid missing traversing elements.
607 >     */
608 >    @SuppressWarnings("unchecked")
609 >    E removeAt(int i) {
610 >        // assert i >= 0 && i < size;
611          modCount++;
612 <
613 <        E moved = (E) queue[size];
614 <        queue[i] = moved;
615 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
616 <        if (i <= size) {
617 <            fixDown(i);
612 >        int s = --size;
613 >        if (s == i) // removed last element
614 >            queue[i] = null;
615 >        else {
616 >            E moved = (E) queue[s];
617 >            queue[s] = null;
618 >            siftDown(i, moved);
619              if (queue[i] == moved) {
620 <                fixUp(i);
620 >                siftUp(i, moved);
621                  if (queue[i] != moved)
622                      return moved;
623              }
# Line 514 | Line 626 | public class PriorityQueue<E> extends Ab
626      }
627  
628      /**
629 <     * Establishes the heap invariant (described above) assuming the heap
630 <     * satisfies the invariant except possibly for the leaf-node indexed by k
631 <     * (which may have a nextExecutionTime less than its parent's).
632 <     *
633 <     * This method functions by "promoting" queue[k] up the hierarchy
634 <     * (by swapping it with its parent) repeatedly until queue[k]
635 <     * is greater than or equal to its parent.
636 <     */
637 <    private void fixUp(int k) {
638 <        if (comparator == null) {
639 <            while (k > 1) {
640 <                int j = k >> 1;
641 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
642 <                    break;
643 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
644 <                k = j;
645 <            }
646 <        } else {
647 <            while (k > 1) {
648 <                int j = k >>> 1;
649 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
650 <                    break;
651 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
652 <                k = j;
653 <            }
629 >     * Inserts item x at position k, maintaining heap invariant by
630 >     * promoting x up the tree until it is greater than or equal to
631 >     * its parent, or is the root.
632 >     *
633 >     * To simplify and speed up coercions and comparisons. the
634 >     * Comparable and Comparator versions are separated into different
635 >     * methods that are otherwise identical. (Similarly for siftDown.)
636 >     *
637 >     * @param k the position to fill
638 >     * @param x the item to insert
639 >     */
640 >    private void siftUp(int k, E x) {
641 >        if (comparator != null)
642 >            siftUpUsingComparator(k, x);
643 >        else
644 >            siftUpComparable(k, x);
645 >    }
646 >
647 >    @SuppressWarnings("unchecked")
648 >    private void siftUpComparable(int k, E x) {
649 >        Comparable<? super E> key = (Comparable<? super E>) x;
650 >        while (k > 0) {
651 >            int parent = (k - 1) >>> 1;
652 >            Object e = queue[parent];
653 >            if (key.compareTo((E) e) >= 0)
654 >                break;
655 >            queue[k] = e;
656 >            k = parent;
657 >        }
658 >        queue[k] = key;
659 >    }
660 >
661 >    @SuppressWarnings("unchecked")
662 >    private void siftUpUsingComparator(int k, E x) {
663 >        while (k > 0) {
664 >            int parent = (k - 1) >>> 1;
665 >            Object e = queue[parent];
666 >            if (comparator.compare(x, (E) e) >= 0)
667 >                break;
668 >            queue[k] = e;
669 >            k = parent;
670          }
671 +        queue[k] = x;
672      }
673  
674      /**
675 <     * Establishes the heap invariant (described above) in the subtree
676 <     * rooted at k, which is assumed to satisfy the heap invariant except
677 <     * possibly for node k itself (which may be greater than its children).
678 <     *
679 <     * This method functions by "demoting" queue[k] down the hierarchy
680 <     * (by swapping it with its smaller child) repeatedly until queue[k]
681 <     * is less than or equal to its children.
682 <     */
683 <    private void fixDown(int k) {
684 <        int j;
685 <        if (comparator == null) {
686 <            while ((j = k << 1) <= size && (j > 0)) {
687 <                if (j<size &&
688 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
689 <                    j++; // j indexes smallest kid
690 <
691 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
692 <                    break;
693 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
694 <                k = j;
695 <            }
696 <        } else {
697 <            while ((j = k << 1) <= size && (j > 0)) {
698 <                if (j<size &&
699 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
700 <                    j++; // j indexes smallest kid
701 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
702 <                    break;
703 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
575 <                k = j;
576 <            }
675 >     * Inserts item x at position k, maintaining heap invariant by
676 >     * demoting x down the tree repeatedly until it is less than or
677 >     * equal to its children or is a leaf.
678 >     *
679 >     * @param k the position to fill
680 >     * @param x the item to insert
681 >     */
682 >    private void siftDown(int k, E x) {
683 >        if (comparator != null)
684 >            siftDownUsingComparator(k, x);
685 >        else
686 >            siftDownComparable(k, x);
687 >    }
688 >
689 >    @SuppressWarnings("unchecked")
690 >    private void siftDownComparable(int k, E x) {
691 >        Comparable<? super E> key = (Comparable<? super E>)x;
692 >        int half = size >>> 1;        // loop while a non-leaf
693 >        while (k < half) {
694 >            int child = (k << 1) + 1; // assume left child is least
695 >            Object c = queue[child];
696 >            int right = child + 1;
697 >            if (right < size &&
698 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
699 >                c = queue[child = right];
700 >            if (key.compareTo((E) c) <= 0)
701 >                break;
702 >            queue[k] = c;
703 >            k = child;
704          }
705 +        queue[k] = key;
706 +    }
707 +
708 +    @SuppressWarnings("unchecked")
709 +    private void siftDownUsingComparator(int k, E x) {
710 +        int half = size >>> 1;
711 +        while (k < half) {
712 +            int child = (k << 1) + 1;
713 +            Object c = queue[child];
714 +            int right = child + 1;
715 +            if (right < size &&
716 +                comparator.compare((E) c, (E) queue[right]) > 0)
717 +                c = queue[child = right];
718 +            if (comparator.compare(x, (E) c) <= 0)
719 +                break;
720 +            queue[k] = c;
721 +            k = child;
722 +        }
723 +        queue[k] = x;
724      }
725  
726      /**
727       * Establishes the heap invariant (described above) in the entire tree,
728       * assuming nothing about the order of the elements prior to the call.
729       */
730 +    @SuppressWarnings("unchecked")
731      private void heapify() {
732 <        for (int i = size/2; i >= 1; i--)
733 <            fixDown(i);
732 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
733 >            siftDown(i, (E) queue[i]);
734      }
735  
736      /**
737 <     * Returns the comparator used to order this collection, or <tt>null</tt>
738 <     * if this collection is sorted according to its elements natural ordering
739 <     * (using <tt>Comparable</tt>).
737 >     * Returns the comparator used to order the elements in this
738 >     * queue, or {@code null} if this queue is sorted according to
739 >     * the {@linkplain Comparable natural ordering} of its elements.
740       *
741 <     * @return the comparator used to order this collection, or <tt>null</tt>
742 <     * if this collection is sorted according to its elements natural ordering.
741 >     * @return the comparator used to order this queue, or
742 >     *         {@code null} if this queue is sorted according to the
743 >     *         natural ordering of its elements
744       */
745      public Comparator<? super E> comparator() {
746          return comparator;
747      }
748  
749      /**
750 <     * Save the state of the instance to a stream (that
603 <     * is, serialize it).
750 >     * Saves this queue to a stream (that is, serializes it).
751       *
752       * @serialData The length of the array backing the instance is
753 <     * emitted (int), followed by all of its elements (each an
754 <     * <tt>Object</tt>) in the proper order.
753 >     *             emitted (int), followed by all of its elements
754 >     *             (each an {@code Object}) in the proper order.
755       * @param s the stream
756 +     * @throws java.io.IOException if an I/O error occurs
757       */
758      private void writeObject(java.io.ObjectOutputStream s)
759 <        throws java.io.IOException{
759 >        throws java.io.IOException {
760          // Write out element count, and any hidden stuff
761          s.defaultWriteObject();
762  
763 <        // Write out array length
764 <        s.writeInt(queue.length);
763 >        // Write out array length, for compatibility with 1.5 version
764 >        s.writeInt(Math.max(2, size + 1));
765  
766 <        // Write out all elements in the proper order.
767 <        for (int i=1; i<=size; i++)
766 >        // Write out all elements in the "proper order".
767 >        for (int i = 0; i < size; i++)
768              s.writeObject(queue[i]);
769      }
770  
771      /**
772 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
773 <     * deserialize it).
772 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
773 >     * (that is, deserializes it).
774 >     *
775       * @param s the stream
776 +     * @throws ClassNotFoundException if the class of a serialized object
777 +     *         could not be found
778 +     * @throws java.io.IOException if an I/O error occurs
779       */
780      private void readObject(java.io.ObjectInputStream s)
781          throws java.io.IOException, ClassNotFoundException {
782          // Read in size, and any hidden stuff
783          s.defaultReadObject();
784  
785 <        // Read in array length and allocate array
786 <        int arrayLength = s.readInt();
787 <        queue = new Object[arrayLength];
788 <
789 <        // Read in all elements in the proper order.
790 <        for (int i=1; i<=size; i++)
791 <            queue[i] = (E) s.readObject();
785 >        // Read in (and discard) array length
786 >        s.readInt();
787 >
788 >        queue = new Object[size];
789 >
790 >        // Read in all elements.
791 >        for (int i = 0; i < size; i++)
792 >            queue[i] = s.readObject();
793 >
794 >        // Elements are guaranteed to be in "proper order", but the
795 >        // spec has never explained what that might be.
796 >        heapify();
797      }
798  
799 +    /**
800 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
801 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
802 +     * queue.
803 +     *
804 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
805 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
806 +     * Overriding implementations should document the reporting of additional
807 +     * characteristic values.
808 +     *
809 +     * @return a {@code Spliterator} over the elements in this queue
810 +     * @since 1.8
811 +     */
812 +    public final Spliterator<E> spliterator() {
813 +        return new PriorityQueueSpliterator<>(this, 0, -1, 0);
814 +    }
815 +
816 +    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
817 +        /*
818 +         * This is very similar to ArrayList Spliterator, except for
819 +         * extra null checks.
820 +         */
821 +        private final PriorityQueue<E> pq;
822 +        private int index;            // current index, modified on advance/split
823 +        private int fence;            // -1 until first use
824 +        private int expectedModCount; // initialized when fence set
825 +
826 +        /** Creates new spliterator covering the given range. */
827 +        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
828 +                                 int expectedModCount) {
829 +            this.pq = pq;
830 +            this.index = origin;
831 +            this.fence = fence;
832 +            this.expectedModCount = expectedModCount;
833 +        }
834 +
835 +        private int getFence() { // initialize fence to size on first use
836 +            int hi;
837 +            if ((hi = fence) < 0) {
838 +                expectedModCount = pq.modCount;
839 +                hi = fence = pq.size;
840 +            }
841 +            return hi;
842 +        }
843 +
844 +        public PriorityQueueSpliterator<E> trySplit() {
845 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 +            return (lo >= mid) ? null :
847 +                new PriorityQueueSpliterator<>(pq, lo, index = mid,
848 +                                               expectedModCount);
849 +        }
850 +
851 +        @SuppressWarnings("unchecked")
852 +        public void forEachRemaining(Consumer<? super E> action) {
853 +            int i, hi, mc; // hoist accesses and checks from loop
854 +            PriorityQueue<E> q; Object[] a;
855 +            if (action == null)
856 +                throw new NullPointerException();
857 +            if ((q = pq) != null && (a = q.queue) != null) {
858 +                if ((hi = fence) < 0) {
859 +                    mc = q.modCount;
860 +                    hi = q.size;
861 +                }
862 +                else
863 +                    mc = expectedModCount;
864 +                if ((i = index) >= 0 && (index = hi) <= a.length) {
865 +                    for (E e;; ++i) {
866 +                        if (i < hi) {
867 +                            if ((e = (E) a[i]) == null) // must be CME
868 +                                break;
869 +                            action.accept(e);
870 +                        }
871 +                        else if (q.modCount != mc)
872 +                            break;
873 +                        else
874 +                            return;
875 +                    }
876 +                }
877 +            }
878 +            throw new ConcurrentModificationException();
879 +        }
880 +
881 +        public boolean tryAdvance(Consumer<? super E> action) {
882 +            if (action == null)
883 +                throw new NullPointerException();
884 +            int hi = getFence(), lo = index;
885 +            if (lo >= 0 && lo < hi) {
886 +                index = lo + 1;
887 +                @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
888 +                if (e == null)
889 +                    throw new ConcurrentModificationException();
890 +                action.accept(e);
891 +                if (pq.modCount != expectedModCount)
892 +                    throw new ConcurrentModificationException();
893 +                return true;
894 +            }
895 +            return false;
896 +        }
897 +
898 +        public long estimateSize() {
899 +            return (long) (getFence() - index);
900 +        }
901 +
902 +        public int characteristics() {
903 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
904 +        }
905 +    }
906   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines