ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.13 by dl, Mon Jul 28 10:08:24 2003 UTC vs.
Revision 1.110 by jsr166, Wed Aug 24 21:46:18 2016 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 >
28 > import java.util.function.Consumer;
29  
30   /**
31 < * An unbounded priority queue based on a priority heap.  This queue orders
32 < * elements according to an order specified at construction time, which is
33 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}:
34 < * elements are ordered
35 < * either according to their <i>natural order</i> (see {@link Comparable}), or
36 < * according to a {@link Comparator}, depending on which constructor is used.
37 < * The <em>head</em> of this queue is the least element with respect to the
38 < * specified ordering. If multiple elements are tied for least value, the
39 < * head is one of those elements. A priority queue does not permit
40 < * <tt>null</tt> elements.
41 < *
42 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
43 < * return the head of the queue.
44 < *
45 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
46 < * not delete, the head of the queue.
47 < *
48 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
49 < * size of the array used internally to store the elements on the
50 < * queue.  It is always at least as large as the queue size.  As
51 < * elements are added to a priority queue, its capacity grows
52 < * automatically.  The details of the growth policy are not specified.
53 < *
54 < * <p>Implementation note: this implementation provides O(log(n)) time
55 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
56 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
57 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
58 < * constant time for the retrieval methods (<tt>peek</tt>,
59 < * <tt>element</tt>, and <tt>size</tt>).
31 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 > * The elements of the priority queue are ordered according to their
33 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 > * provided at queue construction time, depending on which constructor is
35 > * used.  A priority queue does not permit {@code null} elements.
36 > * A priority queue relying on natural ordering also does not permit
37 > * insertion of non-comparable objects (doing so may result in
38 > * {@code ClassCastException}).
39 > *
40 > * <p>The <em>head</em> of this queue is the <em>least</em> element
41 > * with respect to the specified ordering.  If multiple elements are
42 > * tied for least value, the head is one of those elements -- ties are
43 > * broken arbitrarily.  The queue retrieval operations {@code poll},
44 > * {@code remove}, {@code peek}, and {@code element} access the
45 > * element at the head of the queue.
46 > *
47 > * <p>A priority queue is unbounded, but has an internal
48 > * <i>capacity</i> governing the size of an array used to store the
49 > * elements on the queue.  It is always at least as large as the queue
50 > * size.  As elements are added to a priority queue, its capacity
51 > * grows automatically.  The details of the growth policy are not
52 > * specified.
53 > *
54 > * <p>This class and its iterator implement all of the
55 > * <em>optional</em> methods of the {@link Collection} and {@link
56 > * Iterator} interfaces.  The Iterator provided in method {@link
57 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
58 > * the priority queue in any particular order. If you need ordered
59 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
60 > *
61 > * <p><strong>Note that this implementation is not synchronized.</strong>
62 > * Multiple threads should not access a {@code PriorityQueue}
63 > * instance concurrently if any of the threads modifies the queue.
64 > * Instead, use the thread-safe {@link
65 > * java.util.concurrent.PriorityBlockingQueue} class.
66 > *
67 > * <p>Implementation note: this implementation provides
68 > * O(log(n)) time for the enqueuing and dequeuing methods
69 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
70 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
71 > * methods; and constant time for the retrieval methods
72 > * ({@code peek}, {@code element}, and {@code size}).
73   *
74   * <p>This class is a member of the
75 < * <a href="{@docRoot}/../guide/collections/index.html">
75 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
76   * Java Collections Framework</a>.
77 + *
78   * @since 1.5
79 < * @author Josh Bloch
79 > * @author Josh Bloch, Doug Lea
80 > * @param <E> the type of elements held in this queue
81   */
82   public class PriorityQueue<E> extends AbstractQueue<E>
83 <    implements Queue<E>, java.io.Serializable {
83 >    implements java.io.Serializable {
84 >
85 >    private static final long serialVersionUID = -7720805057305804111L;
86  
87      private static final int DEFAULT_INITIAL_CAPACITY = 11;
88  
89      /**
90 <     * Priority queue represented as a balanced binary heap: the two children
91 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
92 <     * ordered by comparator, or by the elements' natural ordering, if
93 <     * comparator is null:  For each node n in the heap and each descendant d
94 <     * of n, n <= d.
95 <     *
52 <     * The element with the lowest value is in queue[1], assuming the queue is
53 <     * nonempty.  (A one-based array is used in preference to the traditional
54 <     * zero-based array to simplify parent and child calculations.)
55 <     *
56 <     * queue.length must be >= 2, even if size == 0.
90 >     * Priority queue represented as a balanced binary heap: the two
91 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
92 >     * priority queue is ordered by comparator, or by the elements'
93 >     * natural ordering, if comparator is null: For each node n in the
94 >     * heap and each descendant d of n, n <= d.  The element with the
95 >     * lowest value is in queue[0], assuming the queue is nonempty.
96       */
97 <    private transient E[] queue;
97 >    transient Object[] queue; // non-private to simplify nested class access
98  
99      /**
100       * The number of elements in the priority queue.
101       */
102 <    private int size = 0;
102 >    int size;
103  
104      /**
105       * The comparator, or null if priority queue uses elements'
106       * natural ordering.
107       */
108 <    private final Comparator<E> comparator;
108 >    private final Comparator<? super E> comparator;
109  
110      /**
111       * The number of times this priority queue has been
112       * <i>structurally modified</i>.  See AbstractList for gory details.
113       */
114 <    private transient int modCount = 0;
114 >    transient int modCount;     // non-private to simplify nested class access
115  
116      /**
117 <     * Create a <tt>PriorityQueue</tt> with the default initial capacity
118 <     * (11) that orders its elements according to their natural
119 <     * ordering (using <tt>Comparable</tt>.)
117 >     * Creates a {@code PriorityQueue} with the default initial
118 >     * capacity (11) that orders its elements according to their
119 >     * {@linkplain Comparable natural ordering}.
120       */
121      public PriorityQueue() {
122          this(DEFAULT_INITIAL_CAPACITY, null);
123      }
124  
125      /**
126 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
127 <     * that orders its elements according to their natural ordering
128 <     * (using <tt>Comparable</tt>.)
129 <     *
130 <     * @param initialCapacity the initial capacity for this priority queue.
126 >     * Creates a {@code PriorityQueue} with the specified initial
127 >     * capacity that orders its elements according to their
128 >     * {@linkplain Comparable natural ordering}.
129 >     *
130 >     * @param initialCapacity the initial capacity for this priority queue
131 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
132 >     *         than 1
133       */
134      public PriorityQueue(int initialCapacity) {
135          this(initialCapacity, null);
136      }
137  
138      /**
139 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
140 <     * that orders its elements according to the specified comparator.
139 >     * Creates a {@code PriorityQueue} with the default initial capacity and
140 >     * whose elements are ordered according to the specified comparator.
141       *
142 <     * @param initialCapacity the initial capacity for this priority queue.
143 <     * @param comparator the comparator used to order this priority queue.
144 <     * If <tt>null</tt> then the order depends on the elements' natural
145 <     * ordering.
142 >     * @param  comparator the comparator that will be used to order this
143 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
144 >     *         natural ordering} of the elements will be used.
145 >     * @since 1.8
146       */
147 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
147 >    public PriorityQueue(Comparator<? super E> comparator) {
148 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
149 >    }
150 >
151 >    /**
152 >     * Creates a {@code PriorityQueue} with the specified initial capacity
153 >     * that orders its elements according to the specified comparator.
154 >     *
155 >     * @param  initialCapacity the initial capacity for this priority queue
156 >     * @param  comparator the comparator that will be used to order this
157 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
158 >     *         natural ordering} of the elements will be used.
159 >     * @throws IllegalArgumentException if {@code initialCapacity} is
160 >     *         less than 1
161 >     */
162 >    public PriorityQueue(int initialCapacity,
163 >                         Comparator<? super E> comparator) {
164 >        // Note: This restriction of at least one is not actually needed,
165 >        // but continues for 1.5 compatibility
166          if (initialCapacity < 1)
167 <            initialCapacity = 1;
168 <        queue = (E[]) new Object[initialCapacity + 1];
167 >            throw new IllegalArgumentException();
168 >        this.queue = new Object[initialCapacity];
169          this.comparator = comparator;
170      }
171  
172      /**
173 <     * Create a <tt>PriorityQueue</tt> containing the elements in the specified
174 <     * collection.  The priority queue has an initial capacity of 110% of the
175 <     * size of the specified collection. If the specified collection
176 <     * implements the {@link Sorted} interface, the priority queue will be
177 <     * sorted according to the same comparator, or according to its elements'
178 <     * natural order if the collection is sorted according to its elements'
120 <     * natural order.  If the specified collection does not implement
121 <     * <tt>Sorted</tt>, the priority queue is ordered according to
122 <     * its elements' natural order.
173 >     * Creates a {@code PriorityQueue} containing the elements in the
174 >     * specified collection.  If the specified collection is an instance of
175 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
176 >     * priority queue will be ordered according to the same ordering.
177 >     * Otherwise, this priority queue will be ordered according to the
178 >     * {@linkplain Comparable natural ordering} of its elements.
179       *
180 <     * @param initialElements the collection whose elements are to be placed
181 <     *        into this priority queue.
180 >     * @param  c the collection whose elements are to be placed
181 >     *         into this priority queue
182       * @throws ClassCastException if elements of the specified collection
183       *         cannot be compared to one another according to the priority
184 <     *         queue's ordering.
185 <     * @throws NullPointerException if the specified collection or an
186 <     *         element of the specified collection is <tt>null</tt>.
187 <     */
188 <    public PriorityQueue(Collection<E> initialElements) {
189 <        int sz = initialElements.size();
190 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
191 <                                            Integer.MAX_VALUE - 1);
192 <        if (initialCapacity < 1)
193 <            initialCapacity = 1;
194 <        queue = (E[]) new Object[initialCapacity + 1];
184 >     *         queue's ordering
185 >     * @throws NullPointerException if the specified collection or any
186 >     *         of its elements are null
187 >     */
188 >    @SuppressWarnings("unchecked")
189 >    public PriorityQueue(Collection<? extends E> c) {
190 >        if (c instanceof SortedSet<?>) {
191 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
192 >            this.comparator = (Comparator<? super E>) ss.comparator();
193 >            initElementsFromCollection(ss);
194 >        }
195 >        else if (c instanceof PriorityQueue<?>) {
196 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
197 >            this.comparator = (Comparator<? super E>) pq.comparator();
198 >            initFromPriorityQueue(pq);
199 >        }
200 >        else {
201 >            this.comparator = null;
202 >            initFromCollection(c);
203 >        }
204 >    }
205  
206 <        if (initialElements instanceof Sorted) {
207 <            comparator = ((Sorted)initialElements).comparator();
208 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
209 <                queue[++size] = i.next();
206 >    /**
207 >     * Creates a {@code PriorityQueue} containing the elements in the
208 >     * specified priority queue.  This priority queue will be
209 >     * ordered according to the same ordering as the given priority
210 >     * queue.
211 >     *
212 >     * @param  c the priority queue whose elements are to be placed
213 >     *         into this priority queue
214 >     * @throws ClassCastException if elements of {@code c} cannot be
215 >     *         compared to one another according to {@code c}'s
216 >     *         ordering
217 >     * @throws NullPointerException if the specified priority queue or any
218 >     *         of its elements are null
219 >     */
220 >    @SuppressWarnings("unchecked")
221 >    public PriorityQueue(PriorityQueue<? extends E> c) {
222 >        this.comparator = (Comparator<? super E>) c.comparator();
223 >        initFromPriorityQueue(c);
224 >    }
225 >
226 >    /**
227 >     * Creates a {@code PriorityQueue} containing the elements in the
228 >     * specified sorted set.   This priority queue will be ordered
229 >     * according to the same ordering as the given sorted set.
230 >     *
231 >     * @param  c the sorted set whose elements are to be placed
232 >     *         into this priority queue
233 >     * @throws ClassCastException if elements of the specified sorted
234 >     *         set cannot be compared to one another according to the
235 >     *         sorted set's ordering
236 >     * @throws NullPointerException if the specified sorted set or any
237 >     *         of its elements are null
238 >     */
239 >    @SuppressWarnings("unchecked")
240 >    public PriorityQueue(SortedSet<? extends E> c) {
241 >        this.comparator = (Comparator<? super E>) c.comparator();
242 >        initElementsFromCollection(c);
243 >    }
244 >
245 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
246 >        if (c.getClass() == PriorityQueue.class) {
247 >            this.queue = c.toArray();
248 >            this.size = c.size();
249          } else {
250 <            comparator = null;
146 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
147 <                add(i.next());
250 >            initFromCollection(c);
251          }
252      }
253  
254 <    // Queue Methods
254 >    private void initElementsFromCollection(Collection<? extends E> c) {
255 >        Object[] a = c.toArray();
256 >        // If c.toArray incorrectly doesn't return Object[], copy it.
257 >        if (a.getClass() != Object[].class)
258 >            a = Arrays.copyOf(a, a.length, Object[].class);
259 >        int len = a.length;
260 >        if (len == 1 || this.comparator != null)
261 >            for (Object e : a)
262 >                if (e == null)
263 >                    throw new NullPointerException();
264 >        this.queue = a;
265 >        this.size = a.length;
266 >    }
267  
268      /**
269 <     * Add the specified element to this priority queue.
269 >     * Initializes queue array with elements from the given Collection.
270       *
271 <     * @param element the element to add.
157 <     * @return <tt>true</tt>
158 <     * @throws ClassCastException if the specified element cannot be compared
159 <     * with elements currently in the priority queue according
160 <     * to the priority queue's ordering.
161 <     * @throws NullPointerException if the specified element is null.
271 >     * @param c the collection
272       */
273 <    public boolean offer(E element) {
274 <        if (element == null)
275 <            throw new NullPointerException();
276 <        modCount++;
167 <        ++size;
273 >    private void initFromCollection(Collection<? extends E> c) {
274 >        initElementsFromCollection(c);
275 >        heapify();
276 >    }
277  
278 <        // Grow backing store if necessary
279 <        while (size >= queue.length) {
280 <            E[] newQueue = (E[]) new Object[2 * queue.length];
281 <            System.arraycopy(queue, 0, newQueue, 0, queue.length);
282 <            queue = newQueue;
283 <        }
278 >    /**
279 >     * The maximum size of array to allocate.
280 >     * Some VMs reserve some header words in an array.
281 >     * Attempts to allocate larger arrays may result in
282 >     * OutOfMemoryError: Requested array size exceeds VM limit
283 >     */
284 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
285  
286 <        queue[size] = element;
287 <        fixUp(size);
288 <        return true;
286 >    /**
287 >     * Increases the capacity of the array.
288 >     *
289 >     * @param minCapacity the desired minimum capacity
290 >     */
291 >    private void grow(int minCapacity) {
292 >        int oldCapacity = queue.length;
293 >        // Double size if small; else grow by 50%
294 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
295 >                                         (oldCapacity + 2) :
296 >                                         (oldCapacity >> 1));
297 >        // overflow-conscious code
298 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
299 >            newCapacity = hugeCapacity(minCapacity);
300 >        queue = Arrays.copyOf(queue, newCapacity);
301      }
302  
303 <    public E poll() {
304 <        if (size == 0)
305 <            return null;
306 <        return remove(1);
303 >    private static int hugeCapacity(int minCapacity) {
304 >        if (minCapacity < 0) // overflow
305 >            throw new OutOfMemoryError();
306 >        return (minCapacity > MAX_ARRAY_SIZE) ?
307 >            Integer.MAX_VALUE :
308 >            MAX_ARRAY_SIZE;
309      }
310  
311 <    public E peek() {
312 <        return queue[1];
311 >    /**
312 >     * Inserts the specified element into this priority queue.
313 >     *
314 >     * @return {@code true} (as specified by {@link Collection#add})
315 >     * @throws ClassCastException if the specified element cannot be
316 >     *         compared with elements currently in this priority queue
317 >     *         according to the priority queue's ordering
318 >     * @throws NullPointerException if the specified element is null
319 >     */
320 >    public boolean add(E e) {
321 >        return offer(e);
322      }
323  
191    // Collection Methods
192
193    // these first two override just to get the throws docs
194
324      /**
325 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
325 >     * Inserts the specified element into this priority queue.
326 >     *
327 >     * @return {@code true} (as specified by {@link Queue#offer})
328 >     * @throws ClassCastException if the specified element cannot be
329 >     *         compared with elements currently in this priority queue
330 >     *         according to the priority queue's ordering
331 >     * @throws NullPointerException if the specified element is null
332       */
333 <    public boolean add(E element) {
334 <        return super.add(element);
333 >    public boolean offer(E e) {
334 >        if (e == null)
335 >            throw new NullPointerException();
336 >        modCount++;
337 >        int i = size;
338 >        if (i >= queue.length)
339 >            grow(i + 1);
340 >        siftUp(i, e);
341 >        size = i + 1;
342 >        return true;
343 >    }
344 >
345 >    @SuppressWarnings("unchecked")
346 >    public E peek() {
347 >        return (size == 0) ? null : (E) queue[0];
348      }
349  
350 <    //    /**
351 <    //     * @throws NullPointerException if any element is <tt>null</tt>.
352 <    //     */
353 <    //    public boolean addAll(Collection c) {
354 <    //        return super.addAll(c);
355 <    //    }
350 >    private int indexOf(Object o) {
351 >        if (o != null) {
352 >            for (int i = 0; i < size; i++)
353 >                if (o.equals(queue[i]))
354 >                    return i;
355 >        }
356 >        return -1;
357 >    }
358  
359      /**
360 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
360 >     * Removes a single instance of the specified element from this queue,
361 >     * if it is present.  More formally, removes an element {@code e} such
362 >     * that {@code o.equals(e)}, if this queue contains one or more such
363 >     * elements.  Returns {@code true} if and only if this queue contained
364 >     * the specified element (or equivalently, if this queue changed as a
365 >     * result of the call).
366 >     *
367 >     * @param o element to be removed from this queue, if present
368 >     * @return {@code true} if this queue changed as a result of the call
369       */
370      public boolean remove(Object o) {
371 <        if (o == null)
372 <            throw new NullPointerException();
371 >        int i = indexOf(o);
372 >        if (i == -1)
373 >            return false;
374 >        else {
375 >            removeAt(i);
376 >            return true;
377 >        }
378 >    }
379  
380 <        if (comparator == null) {
381 <            for (int i = 1; i <= size; i++) {
382 <                if (((Comparable)queue[i]).compareTo(o) == 0) {
383 <                    remove(i);
384 <                    return true;
385 <                }
386 <            }
387 <        } else {
388 <            for (int i = 1; i <= size; i++) {
389 <                if (comparator.compare(queue[i], (E)o) == 0) {
390 <                    remove(i);
391 <                    return true;
228 <                }
380 >    /**
381 >     * Version of remove using reference equality, not equals.
382 >     * Needed by iterator.remove.
383 >     *
384 >     * @param o element to be removed from this queue, if present
385 >     * @return {@code true} if removed
386 >     */
387 >    boolean removeEq(Object o) {
388 >        for (int i = 0; i < size; i++) {
389 >            if (o == queue[i]) {
390 >                removeAt(i);
391 >                return true;
392              }
393          }
394          return false;
395      }
396  
397      /**
398 <     * Returns an iterator over the elements in this priority queue.  The
399 <     * elements of the priority queue will be returned by this iterator in the
400 <     * order specified by the queue, which is to say the order they would be
401 <     * returned by repeated calls to <tt>poll</tt>.
398 >     * Returns {@code true} if this queue contains the specified element.
399 >     * More formally, returns {@code true} if and only if this queue contains
400 >     * at least one element {@code e} such that {@code o.equals(e)}.
401 >     *
402 >     * @param o object to be checked for containment in this queue
403 >     * @return {@code true} if this queue contains the specified element
404 >     */
405 >    public boolean contains(Object o) {
406 >        return indexOf(o) >= 0;
407 >    }
408 >
409 >    /**
410 >     * Returns an array containing all of the elements in this queue.
411 >     * The elements are in no particular order.
412 >     *
413 >     * <p>The returned array will be "safe" in that no references to it are
414 >     * maintained by this queue.  (In other words, this method must allocate
415 >     * a new array).  The caller is thus free to modify the returned array.
416 >     *
417 >     * <p>This method acts as bridge between array-based and collection-based
418 >     * APIs.
419 >     *
420 >     * @return an array containing all of the elements in this queue
421 >     */
422 >    public Object[] toArray() {
423 >        return Arrays.copyOf(queue, size);
424 >    }
425 >
426 >    /**
427 >     * Returns an array containing all of the elements in this queue; the
428 >     * runtime type of the returned array is that of the specified array.
429 >     * The returned array elements are in no particular order.
430 >     * If the queue fits in the specified array, it is returned therein.
431 >     * Otherwise, a new array is allocated with the runtime type of the
432 >     * specified array and the size of this queue.
433 >     *
434 >     * <p>If the queue fits in the specified array with room to spare
435 >     * (i.e., the array has more elements than the queue), the element in
436 >     * the array immediately following the end of the collection is set to
437 >     * {@code null}.
438 >     *
439 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
440 >     * array-based and collection-based APIs.  Further, this method allows
441 >     * precise control over the runtime type of the output array, and may,
442 >     * under certain circumstances, be used to save allocation costs.
443 >     *
444 >     * <p>Suppose {@code x} is a queue known to contain only strings.
445 >     * The following code can be used to dump the queue into a newly
446 >     * allocated array of {@code String}:
447 >     *
448 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
449 >     *
450 >     * Note that {@code toArray(new Object[0])} is identical in function to
451 >     * {@code toArray()}.
452 >     *
453 >     * @param a the array into which the elements of the queue are to
454 >     *          be stored, if it is big enough; otherwise, a new array of the
455 >     *          same runtime type is allocated for this purpose.
456 >     * @return an array containing all of the elements in this queue
457 >     * @throws ArrayStoreException if the runtime type of the specified array
458 >     *         is not a supertype of the runtime type of every element in
459 >     *         this queue
460 >     * @throws NullPointerException if the specified array is null
461 >     */
462 >    @SuppressWarnings("unchecked")
463 >    public <T> T[] toArray(T[] a) {
464 >        final int size = this.size;
465 >        if (a.length < size)
466 >            // Make a new array of a's runtime type, but my contents:
467 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
468 >        System.arraycopy(queue, 0, a, 0, size);
469 >        if (a.length > size)
470 >            a[size] = null;
471 >        return a;
472 >    }
473 >
474 >    /**
475 >     * Returns an iterator over the elements in this queue. The iterator
476 >     * does not return the elements in any particular order.
477       *
478 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
478 >     * @return an iterator over the elements in this queue
479       */
480      public Iterator<E> iterator() {
481          return new Itr();
482      }
483  
484 <    private class Itr implements Iterator<E> {
484 >    private final class Itr implements Iterator<E> {
485          /**
486           * Index (into queue array) of element to be returned by
487           * subsequent call to next.
488           */
489 <        private int cursor = 1;
489 >        private int cursor;
490 >
491 >        /**
492 >         * Index of element returned by most recent call to next,
493 >         * unless that element came from the forgetMeNot list.
494 >         * Set to -1 if element is deleted by a call to remove.
495 >         */
496 >        private int lastRet = -1;
497 >
498 >        /**
499 >         * A queue of elements that were moved from the unvisited portion of
500 >         * the heap into the visited portion as a result of "unlucky" element
501 >         * removals during the iteration.  (Unlucky element removals are those
502 >         * that require a siftup instead of a siftdown.)  We must visit all of
503 >         * the elements in this list to complete the iteration.  We do this
504 >         * after we've completed the "normal" iteration.
505 >         *
506 >         * We expect that most iterations, even those involving removals,
507 >         * will not need to store elements in this field.
508 >         */
509 >        private ArrayDeque<E> forgetMeNot;
510  
511          /**
512 <         * Index of element returned by most recent call to next or
513 <         * previous.  Reset to 0 if this element is deleted by a call
256 <         * to remove.
512 >         * Element returned by the most recent call to next iff that
513 >         * element was drawn from the forgetMeNot list.
514           */
515 <        private int lastRet = 0;
515 >        private E lastRetElt;
516  
517          /**
518           * The modCount value that the iterator believes that the backing
519 <         * List should have.  If this expectation is violated, the iterator
519 >         * Queue should have.  If this expectation is violated, the iterator
520           * has detected concurrent modification.
521           */
522          private int expectedModCount = modCount;
523  
524          public boolean hasNext() {
525 <            return cursor <= size;
525 >            return cursor < size ||
526 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
527          }
528  
529 +        @SuppressWarnings("unchecked")
530          public E next() {
531 <            checkForComodification();
532 <            if (cursor > size)
533 <                throw new NoSuchElementException();
534 <            E result = queue[cursor];
535 <            lastRet = cursor++;
536 <            return result;
531 >            if (expectedModCount != modCount)
532 >                throw new ConcurrentModificationException();
533 >            if (cursor < size)
534 >                return (E) queue[lastRet = cursor++];
535 >            if (forgetMeNot != null) {
536 >                lastRet = -1;
537 >                lastRetElt = forgetMeNot.poll();
538 >                if (lastRetElt != null)
539 >                    return lastRetElt;
540 >            }
541 >            throw new NoSuchElementException();
542          }
543  
544          public void remove() {
545 <            if (lastRet == 0)
545 >            if (expectedModCount != modCount)
546 >                throw new ConcurrentModificationException();
547 >            if (lastRet != -1) {
548 >                E moved = PriorityQueue.this.removeAt(lastRet);
549 >                lastRet = -1;
550 >                if (moved == null)
551 >                    cursor--;
552 >                else {
553 >                    if (forgetMeNot == null)
554 >                        forgetMeNot = new ArrayDeque<>();
555 >                    forgetMeNot.add(moved);
556 >                }
557 >            } else if (lastRetElt != null) {
558 >                PriorityQueue.this.removeEq(lastRetElt);
559 >                lastRetElt = null;
560 >            } else {
561                  throw new IllegalStateException();
562 <            checkForComodification();
284 <
285 <            PriorityQueue.this.remove(lastRet);
286 <            if (lastRet < cursor)
287 <                cursor--;
288 <            lastRet = 0;
562 >            }
563              expectedModCount = modCount;
564          }
291
292        final void checkForComodification() {
293            if (modCount != expectedModCount)
294                throw new ConcurrentModificationException();
295        }
565      }
566  
298    /**
299     * Returns the number of elements in this priority queue.
300     *
301     * @return the number of elements in this priority queue.
302     */
567      public int size() {
568          return size;
569      }
570  
571      /**
572 <     * Remove all elements from the priority queue.
572 >     * Removes all of the elements from this priority queue.
573 >     * The queue will be empty after this call returns.
574       */
575      public void clear() {
576          modCount++;
577 <
313 <        // Null out element references to prevent memory leak
314 <        for (int i=1; i<=size; i++)
577 >        for (int i = 0; i < size; i++)
578              queue[i] = null;
316
579          size = 0;
580      }
581  
582 <    /**
583 <     * Removes and returns the ith element from queue.  Recall
584 <     * that queue is one-based, so 1 <= i <= size.
585 <     *
586 <     * XXX: Could further special-case i==size, but is it worth it?
325 <     * XXX: Could special-case i==0, but is it worth it?
326 <     */
327 <    private E remove(int i) {
328 <        assert i <= size;
582 >    @SuppressWarnings("unchecked")
583 >    public E poll() {
584 >        if (size == 0)
585 >            return null;
586 >        int s = --size;
587          modCount++;
588 <
589 <        E result = queue[i];
590 <        queue[i] = queue[size];
591 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
592 <        if (i <= size)
335 <            fixDown(i);
588 >        E result = (E) queue[0];
589 >        E x = (E) queue[s];
590 >        queue[s] = null;
591 >        if (s != 0)
592 >            siftDown(0, x);
593          return result;
594      }
595  
596      /**
597 <     * Establishes the heap invariant (described above) assuming the heap
598 <     * satisfies the invariant except possibly for the leaf-node indexed by k
599 <     * (which may have a nextExecutionTime less than its parent's).
600 <     *
601 <     * This method functions by "promoting" queue[k] up the hierarchy
602 <     * (by swapping it with its parent) repeatedly until queue[k]
603 <     * is greater than or equal to its parent.
604 <     */
605 <    private void fixUp(int k) {
606 <        if (comparator == null) {
607 <            while (k > 1) {
608 <                int j = k >> 1;
609 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
610 <                    break;
611 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
612 <                k = j;
613 <            }
614 <        } else {
615 <            while (k > 1) {
616 <                int j = k >> 1;
617 <                if (comparator.compare(queue[j], queue[k]) <= 0)
618 <                    break;
619 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
620 <                k = j;
597 >     * Removes the ith element from queue.
598 >     *
599 >     * Normally this method leaves the elements at up to i-1,
600 >     * inclusive, untouched.  Under these circumstances, it returns
601 >     * null.  Occasionally, in order to maintain the heap invariant,
602 >     * it must swap a later element of the list with one earlier than
603 >     * i.  Under these circumstances, this method returns the element
604 >     * that was previously at the end of the list and is now at some
605 >     * position before i. This fact is used by iterator.remove so as to
606 >     * avoid missing traversing elements.
607 >     */
608 >    @SuppressWarnings("unchecked")
609 >    E removeAt(int i) {
610 >        // assert i >= 0 && i < size;
611 >        modCount++;
612 >        int s = --size;
613 >        if (s == i) // removed last element
614 >            queue[i] = null;
615 >        else {
616 >            E moved = (E) queue[s];
617 >            queue[s] = null;
618 >            siftDown(i, moved);
619 >            if (queue[i] == moved) {
620 >                siftUp(i, moved);
621 >                if (queue[i] != moved)
622 >                    return moved;
623              }
624          }
625 +        return null;
626      }
627  
628      /**
629 <     * Establishes the heap invariant (described above) in the subtree
630 <     * rooted at k, which is assumed to satisfy the heap invariant except
631 <     * possibly for node k itself (which may be greater than its children).
632 <     *
633 <     * This method functions by "demoting" queue[k] down the hierarchy
634 <     * (by swapping it with its smaller child) repeatedly until queue[k]
635 <     * is less than or equal to its children.
636 <     */
637 <    private void fixDown(int k) {
638 <        int j;
639 <        if (comparator == null) {
640 <            while ((j = k << 1) <= size) {
641 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
642 <                    j++; // j indexes smallest kid
643 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
644 <                    break;
645 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
646 <                k = j;
647 <            }
648 <        } else {
649 <            while ((j = k << 1) <= size) {
650 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
651 <                    j++; // j indexes smallest kid
652 <                if (comparator.compare(queue[k], queue[j]) <= 0)
653 <                    break;
654 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
655 <                k = j;
656 <            }
629 >     * Inserts item x at position k, maintaining heap invariant by
630 >     * promoting x up the tree until it is greater than or equal to
631 >     * its parent, or is the root.
632 >     *
633 >     * To simplify and speed up coercions and comparisons. the
634 >     * Comparable and Comparator versions are separated into different
635 >     * methods that are otherwise identical. (Similarly for siftDown.)
636 >     *
637 >     * @param k the position to fill
638 >     * @param x the item to insert
639 >     */
640 >    private void siftUp(int k, E x) {
641 >        if (comparator != null)
642 >            siftUpUsingComparator(k, x);
643 >        else
644 >            siftUpComparable(k, x);
645 >    }
646 >
647 >    @SuppressWarnings("unchecked")
648 >    private void siftUpComparable(int k, E x) {
649 >        Comparable<? super E> key = (Comparable<? super E>) x;
650 >        while (k > 0) {
651 >            int parent = (k - 1) >>> 1;
652 >            Object e = queue[parent];
653 >            if (key.compareTo((E) e) >= 0)
654 >                break;
655 >            queue[k] = e;
656 >            k = parent;
657          }
658 +        queue[k] = key;
659      }
660  
661 <    public Comparator comparator() {
661 >    @SuppressWarnings("unchecked")
662 >    private void siftUpUsingComparator(int k, E x) {
663 >        while (k > 0) {
664 >            int parent = (k - 1) >>> 1;
665 >            Object e = queue[parent];
666 >            if (comparator.compare(x, (E) e) >= 0)
667 >                break;
668 >            queue[k] = e;
669 >            k = parent;
670 >        }
671 >        queue[k] = x;
672 >    }
673 >
674 >    /**
675 >     * Inserts item x at position k, maintaining heap invariant by
676 >     * demoting x down the tree repeatedly until it is less than or
677 >     * equal to its children or is a leaf.
678 >     *
679 >     * @param k the position to fill
680 >     * @param x the item to insert
681 >     */
682 >    private void siftDown(int k, E x) {
683 >        if (comparator != null)
684 >            siftDownUsingComparator(k, x);
685 >        else
686 >            siftDownComparable(k, x);
687 >    }
688 >
689 >    @SuppressWarnings("unchecked")
690 >    private void siftDownComparable(int k, E x) {
691 >        Comparable<? super E> key = (Comparable<? super E>)x;
692 >        int half = size >>> 1;        // loop while a non-leaf
693 >        while (k < half) {
694 >            int child = (k << 1) + 1; // assume left child is least
695 >            Object c = queue[child];
696 >            int right = child + 1;
697 >            if (right < size &&
698 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
699 >                c = queue[child = right];
700 >            if (key.compareTo((E) c) <= 0)
701 >                break;
702 >            queue[k] = c;
703 >            k = child;
704 >        }
705 >        queue[k] = key;
706 >    }
707 >
708 >    @SuppressWarnings("unchecked")
709 >    private void siftDownUsingComparator(int k, E x) {
710 >        int half = size >>> 1;
711 >        while (k < half) {
712 >            int child = (k << 1) + 1;
713 >            Object c = queue[child];
714 >            int right = child + 1;
715 >            if (right < size &&
716 >                comparator.compare((E) c, (E) queue[right]) > 0)
717 >                c = queue[child = right];
718 >            if (comparator.compare(x, (E) c) <= 0)
719 >                break;
720 >            queue[k] = c;
721 >            k = child;
722 >        }
723 >        queue[k] = x;
724 >    }
725 >
726 >    /**
727 >     * Establishes the heap invariant (described above) in the entire tree,
728 >     * assuming nothing about the order of the elements prior to the call.
729 >     */
730 >    @SuppressWarnings("unchecked")
731 >    private void heapify() {
732 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
733 >            siftDown(i, (E) queue[i]);
734 >    }
735 >
736 >    /**
737 >     * Returns the comparator used to order the elements in this
738 >     * queue, or {@code null} if this queue is sorted according to
739 >     * the {@linkplain Comparable natural ordering} of its elements.
740 >     *
741 >     * @return the comparator used to order this queue, or
742 >     *         {@code null} if this queue is sorted according to the
743 >     *         natural ordering of its elements
744 >     */
745 >    public Comparator<? super E> comparator() {
746          return comparator;
747      }
748  
749      /**
750 <     * Save the state of the instance to a stream (that
406 <     * is, serialize it).
750 >     * Saves this queue to a stream (that is, serializes it).
751       *
408     * @serialData The length of the array backing the instance is
409     * emitted (int), followed by all of its elements (each an
410     * <tt>Object</tt>) in the proper order.
752       * @param s the stream
753 +     * @throws java.io.IOException if an I/O error occurs
754 +     * @serialData The length of the array backing the instance is
755 +     *             emitted (int), followed by all of its elements
756 +     *             (each an {@code Object}) in the proper order.
757       */
758 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
759 <        throws java.io.IOException{
758 >    private void writeObject(java.io.ObjectOutputStream s)
759 >        throws java.io.IOException {
760          // Write out element count, and any hidden stuff
761          s.defaultWriteObject();
762  
763 <        // Write out array length
764 <        s.writeInt(queue.length);
763 >        // Write out array length, for compatibility with 1.5 version
764 >        s.writeInt(Math.max(2, size + 1));
765  
766 <        // Write out all elements in the proper order.
767 <        for (int i=0; i<size; i++)
766 >        // Write out all elements in the "proper order".
767 >        for (int i = 0; i < size; i++)
768              s.writeObject(queue[i]);
769      }
770  
771      /**
772 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
773 <     * deserialize it).
772 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
773 >     * (that is, deserializes it).
774 >     *
775       * @param s the stream
776 +     * @throws ClassNotFoundException if the class of a serialized object
777 +     *         could not be found
778 +     * @throws java.io.IOException if an I/O error occurs
779       */
780 <    private synchronized void readObject(java.io.ObjectInputStream s)
780 >    private void readObject(java.io.ObjectInputStream s)
781          throws java.io.IOException, ClassNotFoundException {
782          // Read in size, and any hidden stuff
783          s.defaultReadObject();
784  
785 <        // Read in array length and allocate array
786 <        int arrayLength = s.readInt();
787 <        queue = (E[]) new Object[arrayLength];
788 <
789 <        // Read in all elements in the proper order.
790 <        for (int i=0; i<size; i++)
791 <            queue[i] = (E)s.readObject();
785 >        // Read in (and discard) array length
786 >        s.readInt();
787 >
788 >        queue = new Object[size];
789 >
790 >        // Read in all elements.
791 >        for (int i = 0; i < size; i++)
792 >            queue[i] = s.readObject();
793 >
794 >        // Elements are guaranteed to be in "proper order", but the
795 >        // spec has never explained what that might be.
796 >        heapify();
797      }
798  
799 < }
799 >    /**
800 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
801 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
802 >     * queue.
803 >     *
804 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
805 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
806 >     * Overriding implementations should document the reporting of additional
807 >     * characteristic values.
808 >     *
809 >     * @return a {@code Spliterator} over the elements in this queue
810 >     * @since 1.8
811 >     */
812 >    public final Spliterator<E> spliterator() {
813 >        return new PriorityQueueSpliterator<>(this, 0, -1, 0);
814 >    }
815 >
816 >    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
817 >        /*
818 >         * This is very similar to ArrayList Spliterator, except for
819 >         * extra null checks.
820 >         */
821 >        private final PriorityQueue<E> pq;
822 >        private int index;            // current index, modified on advance/split
823 >        private int fence;            // -1 until first use
824 >        private int expectedModCount; // initialized when fence set
825 >
826 >        /** Creates new spliterator covering the given range. */
827 >        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
828 >                                 int expectedModCount) {
829 >            this.pq = pq;
830 >            this.index = origin;
831 >            this.fence = fence;
832 >            this.expectedModCount = expectedModCount;
833 >        }
834 >
835 >        private int getFence() { // initialize fence to size on first use
836 >            int hi;
837 >            if ((hi = fence) < 0) {
838 >                expectedModCount = pq.modCount;
839 >                hi = fence = pq.size;
840 >            }
841 >            return hi;
842 >        }
843 >
844 >        public PriorityQueueSpliterator<E> trySplit() {
845 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 >            return (lo >= mid) ? null :
847 >                new PriorityQueueSpliterator<>(pq, lo, index = mid,
848 >                                               expectedModCount);
849 >        }
850 >
851 >        @SuppressWarnings("unchecked")
852 >        public void forEachRemaining(Consumer<? super E> action) {
853 >            int i, hi, mc; // hoist accesses and checks from loop
854 >            PriorityQueue<E> q; Object[] a;
855 >            if (action == null)
856 >                throw new NullPointerException();
857 >            if ((q = pq) != null && (a = q.queue) != null) {
858 >                if ((hi = fence) < 0) {
859 >                    mc = q.modCount;
860 >                    hi = q.size;
861 >                }
862 >                else
863 >                    mc = expectedModCount;
864 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
865 >                    for (E e;; ++i) {
866 >                        if (i < hi) {
867 >                            if ((e = (E) a[i]) == null) // must be CME
868 >                                break;
869 >                            action.accept(e);
870 >                        }
871 >                        else if (q.modCount != mc)
872 >                            break;
873 >                        else
874 >                            return;
875 >                    }
876 >                }
877 >            }
878 >            throw new ConcurrentModificationException();
879 >        }
880 >
881 >        public boolean tryAdvance(Consumer<? super E> action) {
882 >            if (action == null)
883 >                throw new NullPointerException();
884 >            int hi = getFence(), lo = index;
885 >            if (lo >= 0 && lo < hi) {
886 >                index = lo + 1;
887 >                @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
888 >                if (e == null)
889 >                    throw new ConcurrentModificationException();
890 >                action.accept(e);
891 >                if (pq.modCount != expectedModCount)
892 >                    throw new ConcurrentModificationException();
893 >                return true;
894 >            }
895 >            return false;
896 >        }
897  
898 +        public long estimateSize() {
899 +            return (long) (getFence() - index);
900 +        }
901 +
902 +        public int characteristics() {
903 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
904 +        }
905 +    }
906 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines