ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.113 by jsr166, Wed Nov 30 03:31:47 2016 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 + *
5 + * This code is free software; you can redistribute it and/or modify it
6 + * under the terms of the GNU General Public License version 2 only, as
7 + * published by the Free Software Foundation.  Oracle designates this
8 + * particular file as subject to the "Classpath" exception as provided
9 + * by Oracle in the LICENSE file that accompanied this code.
10 + *
11 + * This code is distributed in the hope that it will be useful, but WITHOUT
12 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 + * version 2 for more details (a copy is included in the LICENSE file that
15 + * accompanied this code).
16 + *
17 + * You should have received a copy of the GNU General Public License version
18 + * 2 along with this work; if not, write to the Free Software Foundation,
19 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 + *
21 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 + * or visit www.oracle.com if you need additional information or have any
23 + * questions.
24 + */
25 +
26   package java.util;
27  
28 < import java.util.*;
28 > import java.util.function.Consumer;
29  
30   /**
31 < * An unbounded (resizable) priority queue based on a priority
32 < * heap.The take operation returns the least element with respect to
33 < * the given ordering. (If more than one element is tied for least
34 < * value, one of them is arbitrarily chosen to be returned -- no
35 < * guarantees are made for ordering across ties.) Ordering follows the
36 < * java.util.Collection conventions: Either the elements must be
37 < * Comparable, or a Comparator must be supplied. Comparison failures
38 < * throw ClassCastExceptions during insertions and extractions.
39 < **/
40 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
41 <    public PriorityQueue(int initialCapacity) {}
42 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
31 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 > * The elements of the priority queue are ordered according to their
33 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 > * provided at queue construction time, depending on which constructor is
35 > * used.  A priority queue does not permit {@code null} elements.
36 > * A priority queue relying on natural ordering also does not permit
37 > * insertion of non-comparable objects (doing so may result in
38 > * {@code ClassCastException}).
39 > *
40 > * <p>The <em>head</em> of this queue is the <em>least</em> element
41 > * with respect to the specified ordering.  If multiple elements are
42 > * tied for least value, the head is one of those elements -- ties are
43 > * broken arbitrarily.  The queue retrieval operations {@code poll},
44 > * {@code remove}, {@code peek}, and {@code element} access the
45 > * element at the head of the queue.
46 > *
47 > * <p>A priority queue is unbounded, but has an internal
48 > * <i>capacity</i> governing the size of an array used to store the
49 > * elements on the queue.  It is always at least as large as the queue
50 > * size.  As elements are added to a priority queue, its capacity
51 > * grows automatically.  The details of the growth policy are not
52 > * specified.
53 > *
54 > * <p>This class and its iterator implement all of the
55 > * <em>optional</em> methods of the {@link Collection} and {@link
56 > * Iterator} interfaces.  The Iterator provided in method {@link
57 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
58 > * are <em>not</em> guaranteed to traverse the elements of
59 > * the priority queue in any particular order. If you need ordered
60 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
61 > *
62 > * <p><strong>Note that this implementation is not synchronized.</strong>
63 > * Multiple threads should not access a {@code PriorityQueue}
64 > * instance concurrently if any of the threads modifies the queue.
65 > * Instead, use the thread-safe {@link
66 > * java.util.concurrent.PriorityBlockingQueue} class.
67 > *
68 > * <p>Implementation note: this implementation provides
69 > * O(log(n)) time for the enqueuing and dequeuing methods
70 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
71 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
72 > * methods; and constant time for the retrieval methods
73 > * ({@code peek}, {@code element}, and {@code size}).
74 > *
75 > * <p>This class is a member of the
76 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
77 > * Java Collections Framework</a>.
78 > *
79 > * @since 1.5
80 > * @author Josh Bloch, Doug Lea
81 > * @param <E> the type of elements held in this queue
82 > */
83 > public class PriorityQueue<E> extends AbstractQueue<E>
84 >    implements java.io.Serializable {
85  
86 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
86 >    private static final long serialVersionUID = -7720805057305804111L;
87  
88 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
88 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
89  
90 <    public boolean add(E x) {
91 <        return false;
90 >    /**
91 >     * Priority queue represented as a balanced binary heap: the two
92 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
93 >     * priority queue is ordered by comparator, or by the elements'
94 >     * natural ordering, if comparator is null: For each node n in the
95 >     * heap and each descendant d of n, n <= d.  The element with the
96 >     * lowest value is in queue[0], assuming the queue is nonempty.
97 >     */
98 >    transient Object[] queue; // non-private to simplify nested class access
99 >
100 >    /**
101 >     * The number of elements in the priority queue.
102 >     */
103 >    int size;
104 >
105 >    /**
106 >     * The comparator, or null if priority queue uses elements'
107 >     * natural ordering.
108 >     */
109 >    private final Comparator<? super E> comparator;
110 >
111 >    /**
112 >     * The number of times this priority queue has been
113 >     * <i>structurally modified</i>.  See AbstractList for gory details.
114 >     */
115 >    transient int modCount;     // non-private to simplify nested class access
116 >
117 >    /**
118 >     * Creates a {@code PriorityQueue} with the default initial
119 >     * capacity (11) that orders its elements according to their
120 >     * {@linkplain Comparable natural ordering}.
121 >     */
122 >    public PriorityQueue() {
123 >        this(DEFAULT_INITIAL_CAPACITY, null);
124      }
125 <    public boolean offer(E x) {
126 <        return false;
125 >
126 >    /**
127 >     * Creates a {@code PriorityQueue} with the specified initial
128 >     * capacity that orders its elements according to their
129 >     * {@linkplain Comparable natural ordering}.
130 >     *
131 >     * @param initialCapacity the initial capacity for this priority queue
132 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
133 >     *         than 1
134 >     */
135 >    public PriorityQueue(int initialCapacity) {
136 >        this(initialCapacity, null);
137      }
138 <    public boolean remove(Object x) {
139 <        return false;
138 >
139 >    /**
140 >     * Creates a {@code PriorityQueue} with the default initial capacity and
141 >     * whose elements are ordered according to the specified comparator.
142 >     *
143 >     * @param  comparator the comparator that will be used to order this
144 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
145 >     *         natural ordering} of the elements will be used.
146 >     * @since 1.8
147 >     */
148 >    public PriorityQueue(Comparator<? super E> comparator) {
149 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
150      }
151  
152 <    public E remove() {
153 <        return null;
152 >    /**
153 >     * Creates a {@code PriorityQueue} with the specified initial capacity
154 >     * that orders its elements according to the specified comparator.
155 >     *
156 >     * @param  initialCapacity the initial capacity for this priority queue
157 >     * @param  comparator the comparator that will be used to order this
158 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
159 >     *         natural ordering} of the elements will be used.
160 >     * @throws IllegalArgumentException if {@code initialCapacity} is
161 >     *         less than 1
162 >     */
163 >    public PriorityQueue(int initialCapacity,
164 >                         Comparator<? super E> comparator) {
165 >        // Note: This restriction of at least one is not actually needed,
166 >        // but continues for 1.5 compatibility
167 >        if (initialCapacity < 1)
168 >            throw new IllegalArgumentException();
169 >        this.queue = new Object[initialCapacity];
170 >        this.comparator = comparator;
171      }
172 <    public Iterator<E> iterator() {
173 <      return null;
172 >
173 >    /**
174 >     * Creates a {@code PriorityQueue} containing the elements in the
175 >     * specified collection.  If the specified collection is an instance of
176 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
177 >     * priority queue will be ordered according to the same ordering.
178 >     * Otherwise, this priority queue will be ordered according to the
179 >     * {@linkplain Comparable natural ordering} of its elements.
180 >     *
181 >     * @param  c the collection whose elements are to be placed
182 >     *         into this priority queue
183 >     * @throws ClassCastException if elements of the specified collection
184 >     *         cannot be compared to one another according to the priority
185 >     *         queue's ordering
186 >     * @throws NullPointerException if the specified collection or any
187 >     *         of its elements are null
188 >     */
189 >    @SuppressWarnings("unchecked")
190 >    public PriorityQueue(Collection<? extends E> c) {
191 >        if (c instanceof SortedSet<?>) {
192 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
193 >            this.comparator = (Comparator<? super E>) ss.comparator();
194 >            initElementsFromCollection(ss);
195 >        }
196 >        else if (c instanceof PriorityQueue<?>) {
197 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
198 >            this.comparator = (Comparator<? super E>) pq.comparator();
199 >            initFromPriorityQueue(pq);
200 >        }
201 >        else {
202 >            this.comparator = null;
203 >            initFromCollection(c);
204 >        }
205      }
206  
207 <    public E element() {
208 <        return null;
207 >    /**
208 >     * Creates a {@code PriorityQueue} containing the elements in the
209 >     * specified priority queue.  This priority queue will be
210 >     * ordered according to the same ordering as the given priority
211 >     * queue.
212 >     *
213 >     * @param  c the priority queue whose elements are to be placed
214 >     *         into this priority queue
215 >     * @throws ClassCastException if elements of {@code c} cannot be
216 >     *         compared to one another according to {@code c}'s
217 >     *         ordering
218 >     * @throws NullPointerException if the specified priority queue or any
219 >     *         of its elements are null
220 >     */
221 >    @SuppressWarnings("unchecked")
222 >    public PriorityQueue(PriorityQueue<? extends E> c) {
223 >        this.comparator = (Comparator<? super E>) c.comparator();
224 >        initFromPriorityQueue(c);
225      }
226 <    public E poll() {
227 <        return null;
226 >
227 >    /**
228 >     * Creates a {@code PriorityQueue} containing the elements in the
229 >     * specified sorted set.   This priority queue will be ordered
230 >     * according to the same ordering as the given sorted set.
231 >     *
232 >     * @param  c the sorted set whose elements are to be placed
233 >     *         into this priority queue
234 >     * @throws ClassCastException if elements of the specified sorted
235 >     *         set cannot be compared to one another according to the
236 >     *         sorted set's ordering
237 >     * @throws NullPointerException if the specified sorted set or any
238 >     *         of its elements are null
239 >     */
240 >    @SuppressWarnings("unchecked")
241 >    public PriorityQueue(SortedSet<? extends E> c) {
242 >        this.comparator = (Comparator<? super E>) c.comparator();
243 >        initElementsFromCollection(c);
244 >    }
245 >
246 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
247 >        if (c.getClass() == PriorityQueue.class) {
248 >            this.queue = c.toArray();
249 >            this.size = c.size();
250 >        } else {
251 >            initFromCollection(c);
252 >        }
253 >    }
254 >
255 >    private void initElementsFromCollection(Collection<? extends E> c) {
256 >        Object[] a = c.toArray();
257 >        // If c.toArray incorrectly doesn't return Object[], copy it.
258 >        if (a.getClass() != Object[].class)
259 >            a = Arrays.copyOf(a, a.length, Object[].class);
260 >        int len = a.length;
261 >        if (len == 1 || this.comparator != null)
262 >            for (Object e : a)
263 >                if (e == null)
264 >                    throw new NullPointerException();
265 >        this.queue = a;
266 >        this.size = a.length;
267 >    }
268 >
269 >    /**
270 >     * Initializes queue array with elements from the given Collection.
271 >     *
272 >     * @param c the collection
273 >     */
274 >    private void initFromCollection(Collection<? extends E> c) {
275 >        initElementsFromCollection(c);
276 >        heapify();
277 >    }
278 >
279 >    /**
280 >     * The maximum size of array to allocate.
281 >     * Some VMs reserve some header words in an array.
282 >     * Attempts to allocate larger arrays may result in
283 >     * OutOfMemoryError: Requested array size exceeds VM limit
284 >     */
285 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
286 >
287 >    /**
288 >     * Increases the capacity of the array.
289 >     *
290 >     * @param minCapacity the desired minimum capacity
291 >     */
292 >    private void grow(int minCapacity) {
293 >        int oldCapacity = queue.length;
294 >        // Double size if small; else grow by 50%
295 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
296 >                                         (oldCapacity + 2) :
297 >                                         (oldCapacity >> 1));
298 >        // overflow-conscious code
299 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
300 >            newCapacity = hugeCapacity(minCapacity);
301 >        queue = Arrays.copyOf(queue, newCapacity);
302 >    }
303 >
304 >    private static int hugeCapacity(int minCapacity) {
305 >        if (minCapacity < 0) // overflow
306 >            throw new OutOfMemoryError();
307 >        return (minCapacity > MAX_ARRAY_SIZE) ?
308 >            Integer.MAX_VALUE :
309 >            MAX_ARRAY_SIZE;
310 >    }
311 >
312 >    /**
313 >     * Inserts the specified element into this priority queue.
314 >     *
315 >     * @return {@code true} (as specified by {@link Collection#add})
316 >     * @throws ClassCastException if the specified element cannot be
317 >     *         compared with elements currently in this priority queue
318 >     *         according to the priority queue's ordering
319 >     * @throws NullPointerException if the specified element is null
320 >     */
321 >    public boolean add(E e) {
322 >        return offer(e);
323 >    }
324 >
325 >    /**
326 >     * Inserts the specified element into this priority queue.
327 >     *
328 >     * @return {@code true} (as specified by {@link Queue#offer})
329 >     * @throws ClassCastException if the specified element cannot be
330 >     *         compared with elements currently in this priority queue
331 >     *         according to the priority queue's ordering
332 >     * @throws NullPointerException if the specified element is null
333 >     */
334 >    public boolean offer(E e) {
335 >        if (e == null)
336 >            throw new NullPointerException();
337 >        modCount++;
338 >        int i = size;
339 >        if (i >= queue.length)
340 >            grow(i + 1);
341 >        siftUp(i, e);
342 >        size = i + 1;
343 >        return true;
344      }
345 +
346 +    @SuppressWarnings("unchecked")
347      public E peek() {
348 <        return null;
348 >        return (size == 0) ? null : (E) queue[0];
349 >    }
350 >
351 >    private int indexOf(Object o) {
352 >        if (o != null) {
353 >            for (int i = 0; i < size; i++)
354 >                if (o.equals(queue[i]))
355 >                    return i;
356 >        }
357 >        return -1;
358 >    }
359 >
360 >    /**
361 >     * Removes a single instance of the specified element from this queue,
362 >     * if it is present.  More formally, removes an element {@code e} such
363 >     * that {@code o.equals(e)}, if this queue contains one or more such
364 >     * elements.  Returns {@code true} if and only if this queue contained
365 >     * the specified element (or equivalently, if this queue changed as a
366 >     * result of the call).
367 >     *
368 >     * @param o element to be removed from this queue, if present
369 >     * @return {@code true} if this queue changed as a result of the call
370 >     */
371 >    public boolean remove(Object o) {
372 >        int i = indexOf(o);
373 >        if (i == -1)
374 >            return false;
375 >        else {
376 >            removeAt(i);
377 >            return true;
378 >        }
379      }
380  
381 <    public boolean isEmpty() {
381 >    /**
382 >     * Version of remove using reference equality, not equals.
383 >     * Needed by iterator.remove.
384 >     *
385 >     * @param o element to be removed from this queue, if present
386 >     * @return {@code true} if removed
387 >     */
388 >    boolean removeEq(Object o) {
389 >        for (int i = 0; i < size; i++) {
390 >            if (o == queue[i]) {
391 >                removeAt(i);
392 >                return true;
393 >            }
394 >        }
395          return false;
396      }
397 <    public int size() {
398 <        return 0;
397 >
398 >    /**
399 >     * Returns {@code true} if this queue contains the specified element.
400 >     * More formally, returns {@code true} if and only if this queue contains
401 >     * at least one element {@code e} such that {@code o.equals(e)}.
402 >     *
403 >     * @param o object to be checked for containment in this queue
404 >     * @return {@code true} if this queue contains the specified element
405 >     */
406 >    public boolean contains(Object o) {
407 >        return indexOf(o) >= 0;
408      }
409 +
410 +    /**
411 +     * Returns an array containing all of the elements in this queue.
412 +     * The elements are in no particular order.
413 +     *
414 +     * <p>The returned array will be "safe" in that no references to it are
415 +     * maintained by this queue.  (In other words, this method must allocate
416 +     * a new array).  The caller is thus free to modify the returned array.
417 +     *
418 +     * <p>This method acts as bridge between array-based and collection-based
419 +     * APIs.
420 +     *
421 +     * @return an array containing all of the elements in this queue
422 +     */
423      public Object[] toArray() {
424 <        return null;
424 >        return Arrays.copyOf(queue, size);
425 >    }
426 >
427 >    /**
428 >     * Returns an array containing all of the elements in this queue; the
429 >     * runtime type of the returned array is that of the specified array.
430 >     * The returned array elements are in no particular order.
431 >     * If the queue fits in the specified array, it is returned therein.
432 >     * Otherwise, a new array is allocated with the runtime type of the
433 >     * specified array and the size of this queue.
434 >     *
435 >     * <p>If the queue fits in the specified array with room to spare
436 >     * (i.e., the array has more elements than the queue), the element in
437 >     * the array immediately following the end of the collection is set to
438 >     * {@code null}.
439 >     *
440 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
441 >     * array-based and collection-based APIs.  Further, this method allows
442 >     * precise control over the runtime type of the output array, and may,
443 >     * under certain circumstances, be used to save allocation costs.
444 >     *
445 >     * <p>Suppose {@code x} is a queue known to contain only strings.
446 >     * The following code can be used to dump the queue into a newly
447 >     * allocated array of {@code String}:
448 >     *
449 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
450 >     *
451 >     * Note that {@code toArray(new Object[0])} is identical in function to
452 >     * {@code toArray()}.
453 >     *
454 >     * @param a the array into which the elements of the queue are to
455 >     *          be stored, if it is big enough; otherwise, a new array of the
456 >     *          same runtime type is allocated for this purpose.
457 >     * @return an array containing all of the elements in this queue
458 >     * @throws ArrayStoreException if the runtime type of the specified array
459 >     *         is not a supertype of the runtime type of every element in
460 >     *         this queue
461 >     * @throws NullPointerException if the specified array is null
462 >     */
463 >    @SuppressWarnings("unchecked")
464 >    public <T> T[] toArray(T[] a) {
465 >        final int size = this.size;
466 >        if (a.length < size)
467 >            // Make a new array of a's runtime type, but my contents:
468 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
469 >        System.arraycopy(queue, 0, a, 0, size);
470 >        if (a.length > size)
471 >            a[size] = null;
472 >        return a;
473 >    }
474 >
475 >    /**
476 >     * Returns an iterator over the elements in this queue. The iterator
477 >     * does not return the elements in any particular order.
478 >     *
479 >     * @return an iterator over the elements in this queue
480 >     */
481 >    public Iterator<E> iterator() {
482 >        return new Itr();
483 >    }
484 >
485 >    private final class Itr implements Iterator<E> {
486 >        /**
487 >         * Index (into queue array) of element to be returned by
488 >         * subsequent call to next.
489 >         */
490 >        private int cursor;
491 >
492 >        /**
493 >         * Index of element returned by most recent call to next,
494 >         * unless that element came from the forgetMeNot list.
495 >         * Set to -1 if element is deleted by a call to remove.
496 >         */
497 >        private int lastRet = -1;
498 >
499 >        /**
500 >         * A queue of elements that were moved from the unvisited portion of
501 >         * the heap into the visited portion as a result of "unlucky" element
502 >         * removals during the iteration.  (Unlucky element removals are those
503 >         * that require a siftup instead of a siftdown.)  We must visit all of
504 >         * the elements in this list to complete the iteration.  We do this
505 >         * after we've completed the "normal" iteration.
506 >         *
507 >         * We expect that most iterations, even those involving removals,
508 >         * will not need to store elements in this field.
509 >         */
510 >        private ArrayDeque<E> forgetMeNot;
511 >
512 >        /**
513 >         * Element returned by the most recent call to next iff that
514 >         * element was drawn from the forgetMeNot list.
515 >         */
516 >        private E lastRetElt;
517 >
518 >        /**
519 >         * The modCount value that the iterator believes that the backing
520 >         * Queue should have.  If this expectation is violated, the iterator
521 >         * has detected concurrent modification.
522 >         */
523 >        private int expectedModCount = modCount;
524 >
525 >        public boolean hasNext() {
526 >            return cursor < size ||
527 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
528 >        }
529 >
530 >        @SuppressWarnings("unchecked")
531 >        public E next() {
532 >            if (expectedModCount != modCount)
533 >                throw new ConcurrentModificationException();
534 >            if (cursor < size)
535 >                return (E) queue[lastRet = cursor++];
536 >            if (forgetMeNot != null) {
537 >                lastRet = -1;
538 >                lastRetElt = forgetMeNot.poll();
539 >                if (lastRetElt != null)
540 >                    return lastRetElt;
541 >            }
542 >            throw new NoSuchElementException();
543 >        }
544 >
545 >        public void remove() {
546 >            if (expectedModCount != modCount)
547 >                throw new ConcurrentModificationException();
548 >            if (lastRet != -1) {
549 >                E moved = PriorityQueue.this.removeAt(lastRet);
550 >                lastRet = -1;
551 >                if (moved == null)
552 >                    cursor--;
553 >                else {
554 >                    if (forgetMeNot == null)
555 >                        forgetMeNot = new ArrayDeque<>();
556 >                    forgetMeNot.add(moved);
557 >                }
558 >            } else if (lastRetElt != null) {
559 >                PriorityQueue.this.removeEq(lastRetElt);
560 >                lastRetElt = null;
561 >            } else {
562 >                throw new IllegalStateException();
563 >            }
564 >            expectedModCount = modCount;
565 >        }
566      }
567  
568 <    public <T> T[] toArray(T[] array) {
568 >    public int size() {
569 >        return size;
570 >    }
571 >
572 >    /**
573 >     * Removes all of the elements from this priority queue.
574 >     * The queue will be empty after this call returns.
575 >     */
576 >    public void clear() {
577 >        modCount++;
578 >        for (int i = 0; i < size; i++)
579 >            queue[i] = null;
580 >        size = 0;
581 >    }
582 >
583 >    @SuppressWarnings("unchecked")
584 >    public E poll() {
585 >        if (size == 0)
586 >            return null;
587 >        int s = --size;
588 >        modCount++;
589 >        E result = (E) queue[0];
590 >        E x = (E) queue[s];
591 >        queue[s] = null;
592 >        if (s != 0)
593 >            siftDown(0, x);
594 >        return result;
595 >    }
596 >
597 >    /**
598 >     * Removes the ith element from queue.
599 >     *
600 >     * Normally this method leaves the elements at up to i-1,
601 >     * inclusive, untouched.  Under these circumstances, it returns
602 >     * null.  Occasionally, in order to maintain the heap invariant,
603 >     * it must swap a later element of the list with one earlier than
604 >     * i.  Under these circumstances, this method returns the element
605 >     * that was previously at the end of the list and is now at some
606 >     * position before i. This fact is used by iterator.remove so as to
607 >     * avoid missing traversing elements.
608 >     */
609 >    @SuppressWarnings("unchecked")
610 >    E removeAt(int i) {
611 >        // assert i >= 0 && i < size;
612 >        modCount++;
613 >        int s = --size;
614 >        if (s == i) // removed last element
615 >            queue[i] = null;
616 >        else {
617 >            E moved = (E) queue[s];
618 >            queue[s] = null;
619 >            siftDown(i, moved);
620 >            if (queue[i] == moved) {
621 >                siftUp(i, moved);
622 >                if (queue[i] != moved)
623 >                    return moved;
624 >            }
625 >        }
626          return null;
627      }
628  
629 +    /**
630 +     * Inserts item x at position k, maintaining heap invariant by
631 +     * promoting x up the tree until it is greater than or equal to
632 +     * its parent, or is the root.
633 +     *
634 +     * To simplify and speed up coercions and comparisons. the
635 +     * Comparable and Comparator versions are separated into different
636 +     * methods that are otherwise identical. (Similarly for siftDown.)
637 +     *
638 +     * @param k the position to fill
639 +     * @param x the item to insert
640 +     */
641 +    private void siftUp(int k, E x) {
642 +        if (comparator != null)
643 +            siftUpUsingComparator(k, x);
644 +        else
645 +            siftUpComparable(k, x);
646 +    }
647 +
648 +    @SuppressWarnings("unchecked")
649 +    private void siftUpComparable(int k, E x) {
650 +        Comparable<? super E> key = (Comparable<? super E>) x;
651 +        while (k > 0) {
652 +            int parent = (k - 1) >>> 1;
653 +            Object e = queue[parent];
654 +            if (key.compareTo((E) e) >= 0)
655 +                break;
656 +            queue[k] = e;
657 +            k = parent;
658 +        }
659 +        queue[k] = key;
660 +    }
661 +
662 +    @SuppressWarnings("unchecked")
663 +    private void siftUpUsingComparator(int k, E x) {
664 +        while (k > 0) {
665 +            int parent = (k - 1) >>> 1;
666 +            Object e = queue[parent];
667 +            if (comparator.compare(x, (E) e) >= 0)
668 +                break;
669 +            queue[k] = e;
670 +            k = parent;
671 +        }
672 +        queue[k] = x;
673 +    }
674 +
675 +    /**
676 +     * Inserts item x at position k, maintaining heap invariant by
677 +     * demoting x down the tree repeatedly until it is less than or
678 +     * equal to its children or is a leaf.
679 +     *
680 +     * @param k the position to fill
681 +     * @param x the item to insert
682 +     */
683 +    private void siftDown(int k, E x) {
684 +        if (comparator != null)
685 +            siftDownUsingComparator(k, x);
686 +        else
687 +            siftDownComparable(k, x);
688 +    }
689 +
690 +    @SuppressWarnings("unchecked")
691 +    private void siftDownComparable(int k, E x) {
692 +        Comparable<? super E> key = (Comparable<? super E>)x;
693 +        int half = size >>> 1;        // loop while a non-leaf
694 +        while (k < half) {
695 +            int child = (k << 1) + 1; // assume left child is least
696 +            Object c = queue[child];
697 +            int right = child + 1;
698 +            if (right < size &&
699 +                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
700 +                c = queue[child = right];
701 +            if (key.compareTo((E) c) <= 0)
702 +                break;
703 +            queue[k] = c;
704 +            k = child;
705 +        }
706 +        queue[k] = key;
707 +    }
708 +
709 +    @SuppressWarnings("unchecked")
710 +    private void siftDownUsingComparator(int k, E x) {
711 +        int half = size >>> 1;
712 +        while (k < half) {
713 +            int child = (k << 1) + 1;
714 +            Object c = queue[child];
715 +            int right = child + 1;
716 +            if (right < size &&
717 +                comparator.compare((E) c, (E) queue[right]) > 0)
718 +                c = queue[child = right];
719 +            if (comparator.compare(x, (E) c) <= 0)
720 +                break;
721 +            queue[k] = c;
722 +            k = child;
723 +        }
724 +        queue[k] = x;
725 +    }
726 +
727 +    /**
728 +     * Establishes the heap invariant (described above) in the entire tree,
729 +     * assuming nothing about the order of the elements prior to the call.
730 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
731 +     */
732 +    @SuppressWarnings("unchecked")
733 +    private void heapify() {
734 +        for (int i = (size >>> 1) - 1; i >= 0; i--)
735 +            siftDown(i, (E) queue[i]);
736 +    }
737 +
738 +    /**
739 +     * Returns the comparator used to order the elements in this
740 +     * queue, or {@code null} if this queue is sorted according to
741 +     * the {@linkplain Comparable natural ordering} of its elements.
742 +     *
743 +     * @return the comparator used to order this queue, or
744 +     *         {@code null} if this queue is sorted according to the
745 +     *         natural ordering of its elements
746 +     */
747 +    public Comparator<? super E> comparator() {
748 +        return comparator;
749 +    }
750 +
751 +    /**
752 +     * Saves this queue to a stream (that is, serializes it).
753 +     *
754 +     * @param s the stream
755 +     * @throws java.io.IOException if an I/O error occurs
756 +     * @serialData The length of the array backing the instance is
757 +     *             emitted (int), followed by all of its elements
758 +     *             (each an {@code Object}) in the proper order.
759 +     */
760 +    private void writeObject(java.io.ObjectOutputStream s)
761 +        throws java.io.IOException {
762 +        // Write out element count, and any hidden stuff
763 +        s.defaultWriteObject();
764 +
765 +        // Write out array length, for compatibility with 1.5 version
766 +        s.writeInt(Math.max(2, size + 1));
767 +
768 +        // Write out all elements in the "proper order".
769 +        for (int i = 0; i < size; i++)
770 +            s.writeObject(queue[i]);
771 +    }
772 +
773 +    /**
774 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
775 +     * (that is, deserializes it).
776 +     *
777 +     * @param s the stream
778 +     * @throws ClassNotFoundException if the class of a serialized object
779 +     *         could not be found
780 +     * @throws java.io.IOException if an I/O error occurs
781 +     */
782 +    private void readObject(java.io.ObjectInputStream s)
783 +        throws java.io.IOException, ClassNotFoundException {
784 +        // Read in size, and any hidden stuff
785 +        s.defaultReadObject();
786 +
787 +        // Read in (and discard) array length
788 +        s.readInt();
789 +
790 +        queue = new Object[size];
791 +
792 +        // Read in all elements.
793 +        for (int i = 0; i < size; i++)
794 +            queue[i] = s.readObject();
795 +
796 +        // Elements are guaranteed to be in "proper order", but the
797 +        // spec has never explained what that might be.
798 +        heapify();
799 +    }
800 +
801 +    /**
802 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
803 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
804 +     * queue. The spliterator does not traverse elements in any particular order
805 +     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
806 +     *
807 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809 +     * Overriding implementations should document the reporting of additional
810 +     * characteristic values.
811 +     *
812 +     * @return a {@code Spliterator} over the elements in this queue
813 +     * @since 1.8
814 +     */
815 +    public final Spliterator<E> spliterator() {
816 +        return new PriorityQueueSpliterator(0, -1, 0);
817 +    }
818 +
819 +    final class PriorityQueueSpliterator implements Spliterator<E> {
820 +        /*
821 +         * This is very similar to ArrayList Spliterator, except for
822 +         * extra null checks.
823 +         */
824 +        private int index;            // current index, modified on advance/split
825 +        private int fence;            // -1 until first use
826 +        private int expectedModCount; // initialized when fence set
827 +
828 +        /** Creates new spliterator covering the given range. */
829 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
830 +            this.index = origin;
831 +            this.fence = fence;
832 +            this.expectedModCount = expectedModCount;
833 +        }
834 +
835 +        private int getFence() { // initialize fence to size on first use
836 +            int hi;
837 +            if ((hi = fence) < 0) {
838 +                expectedModCount = modCount;
839 +                hi = fence = size;
840 +            }
841 +            return hi;
842 +        }
843 +
844 +        public PriorityQueueSpliterator trySplit() {
845 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 +            return (lo >= mid) ? null :
847 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
848 +        }
849 +
850 +        @SuppressWarnings("unchecked")
851 +        public void forEachRemaining(Consumer<? super E> action) {
852 +            int i, hi, mc; // hoist accesses and checks from loop
853 +            final Object[] a;
854 +            if (action == null)
855 +                throw new NullPointerException();
856 +            if ((a = queue) != null) {
857 +                if ((hi = fence) < 0) {
858 +                    mc = modCount;
859 +                    hi = size;
860 +                }
861 +                else
862 +                    mc = expectedModCount;
863 +                if ((i = index) >= 0 && (index = hi) <= a.length) {
864 +                    for (E e;; ++i) {
865 +                        if (i < hi) {
866 +                            if ((e = (E) a[i]) == null) // must be CME
867 +                                break;
868 +                            action.accept(e);
869 +                        }
870 +                        else if (modCount != mc)
871 +                            break;
872 +                        else
873 +                            return;
874 +                    }
875 +                }
876 +            }
877 +            throw new ConcurrentModificationException();
878 +        }
879 +
880 +        public boolean tryAdvance(Consumer<? super E> action) {
881 +            if (action == null)
882 +                throw new NullPointerException();
883 +            int hi = getFence(), lo = index;
884 +            if (lo >= 0 && lo < hi) {
885 +                index = lo + 1;
886 +                @SuppressWarnings("unchecked") E e = (E)queue[lo];
887 +                if (e == null)
888 +                    throw new ConcurrentModificationException();
889 +                action.accept(e);
890 +                if (modCount != expectedModCount)
891 +                    throw new ConcurrentModificationException();
892 +                return true;
893 +            }
894 +            return false;
895 +        }
896 +
897 +        public long estimateSize() {
898 +            return getFence() - index;
899 +        }
900 +
901 +        public int characteristics() {
902 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
903 +        }
904 +    }
905   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines