ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.13 by dl, Mon Jul 28 10:08:24 2003 UTC vs.
Revision 1.113 by jsr166, Wed Nov 30 03:31:47 2016 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 >
28 > import java.util.function.Consumer;
29  
30   /**
31 < * An unbounded priority queue based on a priority heap.  This queue orders
32 < * elements according to an order specified at construction time, which is
33 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}:
34 < * elements are ordered
35 < * either according to their <i>natural order</i> (see {@link Comparable}), or
36 < * according to a {@link Comparator}, depending on which constructor is used.
37 < * The <em>head</em> of this queue is the least element with respect to the
38 < * specified ordering. If multiple elements are tied for least value, the
39 < * head is one of those elements. A priority queue does not permit
40 < * <tt>null</tt> elements.
41 < *
42 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
43 < * return the head of the queue.
44 < *
45 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
46 < * not delete, the head of the queue.
47 < *
48 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
49 < * size of the array used internally to store the elements on the
50 < * queue.  It is always at least as large as the queue size.  As
51 < * elements are added to a priority queue, its capacity grows
52 < * automatically.  The details of the growth policy are not specified.
53 < *
54 < * <p>Implementation note: this implementation provides O(log(n)) time
55 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
56 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
57 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
58 < * constant time for the retrieval methods (<tt>peek</tt>,
59 < * <tt>element</tt>, and <tt>size</tt>).
31 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 > * The elements of the priority queue are ordered according to their
33 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 > * provided at queue construction time, depending on which constructor is
35 > * used.  A priority queue does not permit {@code null} elements.
36 > * A priority queue relying on natural ordering also does not permit
37 > * insertion of non-comparable objects (doing so may result in
38 > * {@code ClassCastException}).
39 > *
40 > * <p>The <em>head</em> of this queue is the <em>least</em> element
41 > * with respect to the specified ordering.  If multiple elements are
42 > * tied for least value, the head is one of those elements -- ties are
43 > * broken arbitrarily.  The queue retrieval operations {@code poll},
44 > * {@code remove}, {@code peek}, and {@code element} access the
45 > * element at the head of the queue.
46 > *
47 > * <p>A priority queue is unbounded, but has an internal
48 > * <i>capacity</i> governing the size of an array used to store the
49 > * elements on the queue.  It is always at least as large as the queue
50 > * size.  As elements are added to a priority queue, its capacity
51 > * grows automatically.  The details of the growth policy are not
52 > * specified.
53 > *
54 > * <p>This class and its iterator implement all of the
55 > * <em>optional</em> methods of the {@link Collection} and {@link
56 > * Iterator} interfaces.  The Iterator provided in method {@link
57 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
58 > * are <em>not</em> guaranteed to traverse the elements of
59 > * the priority queue in any particular order. If you need ordered
60 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
61 > *
62 > * <p><strong>Note that this implementation is not synchronized.</strong>
63 > * Multiple threads should not access a {@code PriorityQueue}
64 > * instance concurrently if any of the threads modifies the queue.
65 > * Instead, use the thread-safe {@link
66 > * java.util.concurrent.PriorityBlockingQueue} class.
67 > *
68 > * <p>Implementation note: this implementation provides
69 > * O(log(n)) time for the enqueuing and dequeuing methods
70 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
71 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
72 > * methods; and constant time for the retrieval methods
73 > * ({@code peek}, {@code element}, and {@code size}).
74   *
75   * <p>This class is a member of the
76 < * <a href="{@docRoot}/../guide/collections/index.html">
76 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
77   * Java Collections Framework</a>.
78 + *
79   * @since 1.5
80 < * @author Josh Bloch
80 > * @author Josh Bloch, Doug Lea
81 > * @param <E> the type of elements held in this queue
82   */
83   public class PriorityQueue<E> extends AbstractQueue<E>
84 <    implements Queue<E>, java.io.Serializable {
84 >    implements java.io.Serializable {
85 >
86 >    private static final long serialVersionUID = -7720805057305804111L;
87  
88      private static final int DEFAULT_INITIAL_CAPACITY = 11;
89  
90      /**
91 <     * Priority queue represented as a balanced binary heap: the two children
92 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
93 <     * ordered by comparator, or by the elements' natural ordering, if
94 <     * comparator is null:  For each node n in the heap and each descendant d
95 <     * of n, n <= d.
96 <     *
52 <     * The element with the lowest value is in queue[1], assuming the queue is
53 <     * nonempty.  (A one-based array is used in preference to the traditional
54 <     * zero-based array to simplify parent and child calculations.)
55 <     *
56 <     * queue.length must be >= 2, even if size == 0.
91 >     * Priority queue represented as a balanced binary heap: the two
92 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
93 >     * priority queue is ordered by comparator, or by the elements'
94 >     * natural ordering, if comparator is null: For each node n in the
95 >     * heap and each descendant d of n, n <= d.  The element with the
96 >     * lowest value is in queue[0], assuming the queue is nonempty.
97       */
98 <    private transient E[] queue;
98 >    transient Object[] queue; // non-private to simplify nested class access
99  
100      /**
101       * The number of elements in the priority queue.
102       */
103 <    private int size = 0;
103 >    int size;
104  
105      /**
106       * The comparator, or null if priority queue uses elements'
107       * natural ordering.
108       */
109 <    private final Comparator<E> comparator;
109 >    private final Comparator<? super E> comparator;
110  
111      /**
112       * The number of times this priority queue has been
113       * <i>structurally modified</i>.  See AbstractList for gory details.
114       */
115 <    private transient int modCount = 0;
115 >    transient int modCount;     // non-private to simplify nested class access
116  
117      /**
118 <     * Create a <tt>PriorityQueue</tt> with the default initial capacity
119 <     * (11) that orders its elements according to their natural
120 <     * ordering (using <tt>Comparable</tt>.)
118 >     * Creates a {@code PriorityQueue} with the default initial
119 >     * capacity (11) that orders its elements according to their
120 >     * {@linkplain Comparable natural ordering}.
121       */
122      public PriorityQueue() {
123          this(DEFAULT_INITIAL_CAPACITY, null);
124      }
125  
126      /**
127 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
128 <     * that orders its elements according to their natural ordering
129 <     * (using <tt>Comparable</tt>.)
130 <     *
131 <     * @param initialCapacity the initial capacity for this priority queue.
127 >     * Creates a {@code PriorityQueue} with the specified initial
128 >     * capacity that orders its elements according to their
129 >     * {@linkplain Comparable natural ordering}.
130 >     *
131 >     * @param initialCapacity the initial capacity for this priority queue
132 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
133 >     *         than 1
134       */
135      public PriorityQueue(int initialCapacity) {
136          this(initialCapacity, null);
137      }
138  
139      /**
140 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
141 <     * that orders its elements according to the specified comparator.
140 >     * Creates a {@code PriorityQueue} with the default initial capacity and
141 >     * whose elements are ordered according to the specified comparator.
142       *
143 <     * @param initialCapacity the initial capacity for this priority queue.
144 <     * @param comparator the comparator used to order this priority queue.
145 <     * If <tt>null</tt> then the order depends on the elements' natural
146 <     * ordering.
143 >     * @param  comparator the comparator that will be used to order this
144 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
145 >     *         natural ordering} of the elements will be used.
146 >     * @since 1.8
147       */
148 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
148 >    public PriorityQueue(Comparator<? super E> comparator) {
149 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
150 >    }
151 >
152 >    /**
153 >     * Creates a {@code PriorityQueue} with the specified initial capacity
154 >     * that orders its elements according to the specified comparator.
155 >     *
156 >     * @param  initialCapacity the initial capacity for this priority queue
157 >     * @param  comparator the comparator that will be used to order this
158 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
159 >     *         natural ordering} of the elements will be used.
160 >     * @throws IllegalArgumentException if {@code initialCapacity} is
161 >     *         less than 1
162 >     */
163 >    public PriorityQueue(int initialCapacity,
164 >                         Comparator<? super E> comparator) {
165 >        // Note: This restriction of at least one is not actually needed,
166 >        // but continues for 1.5 compatibility
167          if (initialCapacity < 1)
168 <            initialCapacity = 1;
169 <        queue = (E[]) new Object[initialCapacity + 1];
168 >            throw new IllegalArgumentException();
169 >        this.queue = new Object[initialCapacity];
170          this.comparator = comparator;
171      }
172  
173      /**
174 <     * Create a <tt>PriorityQueue</tt> containing the elements in the specified
175 <     * collection.  The priority queue has an initial capacity of 110% of the
176 <     * size of the specified collection. If the specified collection
177 <     * implements the {@link Sorted} interface, the priority queue will be
178 <     * sorted according to the same comparator, or according to its elements'
179 <     * natural order if the collection is sorted according to its elements'
120 <     * natural order.  If the specified collection does not implement
121 <     * <tt>Sorted</tt>, the priority queue is ordered according to
122 <     * its elements' natural order.
174 >     * Creates a {@code PriorityQueue} containing the elements in the
175 >     * specified collection.  If the specified collection is an instance of
176 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
177 >     * priority queue will be ordered according to the same ordering.
178 >     * Otherwise, this priority queue will be ordered according to the
179 >     * {@linkplain Comparable natural ordering} of its elements.
180       *
181 <     * @param initialElements the collection whose elements are to be placed
182 <     *        into this priority queue.
181 >     * @param  c the collection whose elements are to be placed
182 >     *         into this priority queue
183       * @throws ClassCastException if elements of the specified collection
184       *         cannot be compared to one another according to the priority
185 <     *         queue's ordering.
186 <     * @throws NullPointerException if the specified collection or an
187 <     *         element of the specified collection is <tt>null</tt>.
188 <     */
189 <    public PriorityQueue(Collection<E> initialElements) {
190 <        int sz = initialElements.size();
191 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
192 <                                            Integer.MAX_VALUE - 1);
193 <        if (initialCapacity < 1)
194 <            initialCapacity = 1;
195 <        queue = (E[]) new Object[initialCapacity + 1];
185 >     *         queue's ordering
186 >     * @throws NullPointerException if the specified collection or any
187 >     *         of its elements are null
188 >     */
189 >    @SuppressWarnings("unchecked")
190 >    public PriorityQueue(Collection<? extends E> c) {
191 >        if (c instanceof SortedSet<?>) {
192 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
193 >            this.comparator = (Comparator<? super E>) ss.comparator();
194 >            initElementsFromCollection(ss);
195 >        }
196 >        else if (c instanceof PriorityQueue<?>) {
197 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
198 >            this.comparator = (Comparator<? super E>) pq.comparator();
199 >            initFromPriorityQueue(pq);
200 >        }
201 >        else {
202 >            this.comparator = null;
203 >            initFromCollection(c);
204 >        }
205 >    }
206  
207 <        if (initialElements instanceof Sorted) {
208 <            comparator = ((Sorted)initialElements).comparator();
209 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
210 <                queue[++size] = i.next();
207 >    /**
208 >     * Creates a {@code PriorityQueue} containing the elements in the
209 >     * specified priority queue.  This priority queue will be
210 >     * ordered according to the same ordering as the given priority
211 >     * queue.
212 >     *
213 >     * @param  c the priority queue whose elements are to be placed
214 >     *         into this priority queue
215 >     * @throws ClassCastException if elements of {@code c} cannot be
216 >     *         compared to one another according to {@code c}'s
217 >     *         ordering
218 >     * @throws NullPointerException if the specified priority queue or any
219 >     *         of its elements are null
220 >     */
221 >    @SuppressWarnings("unchecked")
222 >    public PriorityQueue(PriorityQueue<? extends E> c) {
223 >        this.comparator = (Comparator<? super E>) c.comparator();
224 >        initFromPriorityQueue(c);
225 >    }
226 >
227 >    /**
228 >     * Creates a {@code PriorityQueue} containing the elements in the
229 >     * specified sorted set.   This priority queue will be ordered
230 >     * according to the same ordering as the given sorted set.
231 >     *
232 >     * @param  c the sorted set whose elements are to be placed
233 >     *         into this priority queue
234 >     * @throws ClassCastException if elements of the specified sorted
235 >     *         set cannot be compared to one another according to the
236 >     *         sorted set's ordering
237 >     * @throws NullPointerException if the specified sorted set or any
238 >     *         of its elements are null
239 >     */
240 >    @SuppressWarnings("unchecked")
241 >    public PriorityQueue(SortedSet<? extends E> c) {
242 >        this.comparator = (Comparator<? super E>) c.comparator();
243 >        initElementsFromCollection(c);
244 >    }
245 >
246 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
247 >        if (c.getClass() == PriorityQueue.class) {
248 >            this.queue = c.toArray();
249 >            this.size = c.size();
250          } else {
251 <            comparator = null;
146 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
147 <                add(i.next());
251 >            initFromCollection(c);
252          }
253      }
254  
255 <    // Queue Methods
255 >    private void initElementsFromCollection(Collection<? extends E> c) {
256 >        Object[] a = c.toArray();
257 >        // If c.toArray incorrectly doesn't return Object[], copy it.
258 >        if (a.getClass() != Object[].class)
259 >            a = Arrays.copyOf(a, a.length, Object[].class);
260 >        int len = a.length;
261 >        if (len == 1 || this.comparator != null)
262 >            for (Object e : a)
263 >                if (e == null)
264 >                    throw new NullPointerException();
265 >        this.queue = a;
266 >        this.size = a.length;
267 >    }
268  
269      /**
270 <     * Add the specified element to this priority queue.
270 >     * Initializes queue array with elements from the given Collection.
271       *
272 <     * @param element the element to add.
157 <     * @return <tt>true</tt>
158 <     * @throws ClassCastException if the specified element cannot be compared
159 <     * with elements currently in the priority queue according
160 <     * to the priority queue's ordering.
161 <     * @throws NullPointerException if the specified element is null.
272 >     * @param c the collection
273       */
274 <    public boolean offer(E element) {
275 <        if (element == null)
276 <            throw new NullPointerException();
277 <        modCount++;
167 <        ++size;
274 >    private void initFromCollection(Collection<? extends E> c) {
275 >        initElementsFromCollection(c);
276 >        heapify();
277 >    }
278  
279 <        // Grow backing store if necessary
280 <        while (size >= queue.length) {
281 <            E[] newQueue = (E[]) new Object[2 * queue.length];
282 <            System.arraycopy(queue, 0, newQueue, 0, queue.length);
283 <            queue = newQueue;
284 <        }
279 >    /**
280 >     * The maximum size of array to allocate.
281 >     * Some VMs reserve some header words in an array.
282 >     * Attempts to allocate larger arrays may result in
283 >     * OutOfMemoryError: Requested array size exceeds VM limit
284 >     */
285 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
286  
287 <        queue[size] = element;
288 <        fixUp(size);
289 <        return true;
287 >    /**
288 >     * Increases the capacity of the array.
289 >     *
290 >     * @param minCapacity the desired minimum capacity
291 >     */
292 >    private void grow(int minCapacity) {
293 >        int oldCapacity = queue.length;
294 >        // Double size if small; else grow by 50%
295 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
296 >                                         (oldCapacity + 2) :
297 >                                         (oldCapacity >> 1));
298 >        // overflow-conscious code
299 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
300 >            newCapacity = hugeCapacity(minCapacity);
301 >        queue = Arrays.copyOf(queue, newCapacity);
302      }
303  
304 <    public E poll() {
305 <        if (size == 0)
306 <            return null;
307 <        return remove(1);
304 >    private static int hugeCapacity(int minCapacity) {
305 >        if (minCapacity < 0) // overflow
306 >            throw new OutOfMemoryError();
307 >        return (minCapacity > MAX_ARRAY_SIZE) ?
308 >            Integer.MAX_VALUE :
309 >            MAX_ARRAY_SIZE;
310      }
311  
312 <    public E peek() {
313 <        return queue[1];
312 >    /**
313 >     * Inserts the specified element into this priority queue.
314 >     *
315 >     * @return {@code true} (as specified by {@link Collection#add})
316 >     * @throws ClassCastException if the specified element cannot be
317 >     *         compared with elements currently in this priority queue
318 >     *         according to the priority queue's ordering
319 >     * @throws NullPointerException if the specified element is null
320 >     */
321 >    public boolean add(E e) {
322 >        return offer(e);
323      }
324  
191    // Collection Methods
192
193    // these first two override just to get the throws docs
194
325      /**
326 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
326 >     * Inserts the specified element into this priority queue.
327 >     *
328 >     * @return {@code true} (as specified by {@link Queue#offer})
329 >     * @throws ClassCastException if the specified element cannot be
330 >     *         compared with elements currently in this priority queue
331 >     *         according to the priority queue's ordering
332 >     * @throws NullPointerException if the specified element is null
333       */
334 <    public boolean add(E element) {
335 <        return super.add(element);
334 >    public boolean offer(E e) {
335 >        if (e == null)
336 >            throw new NullPointerException();
337 >        modCount++;
338 >        int i = size;
339 >        if (i >= queue.length)
340 >            grow(i + 1);
341 >        siftUp(i, e);
342 >        size = i + 1;
343 >        return true;
344 >    }
345 >
346 >    @SuppressWarnings("unchecked")
347 >    public E peek() {
348 >        return (size == 0) ? null : (E) queue[0];
349      }
350  
351 <    //    /**
352 <    //     * @throws NullPointerException if any element is <tt>null</tt>.
353 <    //     */
354 <    //    public boolean addAll(Collection c) {
355 <    //        return super.addAll(c);
356 <    //    }
351 >    private int indexOf(Object o) {
352 >        if (o != null) {
353 >            for (int i = 0; i < size; i++)
354 >                if (o.equals(queue[i]))
355 >                    return i;
356 >        }
357 >        return -1;
358 >    }
359  
360      /**
361 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
361 >     * Removes a single instance of the specified element from this queue,
362 >     * if it is present.  More formally, removes an element {@code e} such
363 >     * that {@code o.equals(e)}, if this queue contains one or more such
364 >     * elements.  Returns {@code true} if and only if this queue contained
365 >     * the specified element (or equivalently, if this queue changed as a
366 >     * result of the call).
367 >     *
368 >     * @param o element to be removed from this queue, if present
369 >     * @return {@code true} if this queue changed as a result of the call
370       */
371      public boolean remove(Object o) {
372 <        if (o == null)
373 <            throw new NullPointerException();
372 >        int i = indexOf(o);
373 >        if (i == -1)
374 >            return false;
375 >        else {
376 >            removeAt(i);
377 >            return true;
378 >        }
379 >    }
380  
381 <        if (comparator == null) {
382 <            for (int i = 1; i <= size; i++) {
383 <                if (((Comparable)queue[i]).compareTo(o) == 0) {
384 <                    remove(i);
385 <                    return true;
386 <                }
387 <            }
388 <        } else {
389 <            for (int i = 1; i <= size; i++) {
390 <                if (comparator.compare(queue[i], (E)o) == 0) {
391 <                    remove(i);
392 <                    return true;
228 <                }
381 >    /**
382 >     * Version of remove using reference equality, not equals.
383 >     * Needed by iterator.remove.
384 >     *
385 >     * @param o element to be removed from this queue, if present
386 >     * @return {@code true} if removed
387 >     */
388 >    boolean removeEq(Object o) {
389 >        for (int i = 0; i < size; i++) {
390 >            if (o == queue[i]) {
391 >                removeAt(i);
392 >                return true;
393              }
394          }
395          return false;
396      }
397  
398      /**
399 <     * Returns an iterator over the elements in this priority queue.  The
400 <     * elements of the priority queue will be returned by this iterator in the
401 <     * order specified by the queue, which is to say the order they would be
402 <     * returned by repeated calls to <tt>poll</tt>.
399 >     * Returns {@code true} if this queue contains the specified element.
400 >     * More formally, returns {@code true} if and only if this queue contains
401 >     * at least one element {@code e} such that {@code o.equals(e)}.
402 >     *
403 >     * @param o object to be checked for containment in this queue
404 >     * @return {@code true} if this queue contains the specified element
405 >     */
406 >    public boolean contains(Object o) {
407 >        return indexOf(o) >= 0;
408 >    }
409 >
410 >    /**
411 >     * Returns an array containing all of the elements in this queue.
412 >     * The elements are in no particular order.
413 >     *
414 >     * <p>The returned array will be "safe" in that no references to it are
415 >     * maintained by this queue.  (In other words, this method must allocate
416 >     * a new array).  The caller is thus free to modify the returned array.
417 >     *
418 >     * <p>This method acts as bridge between array-based and collection-based
419 >     * APIs.
420 >     *
421 >     * @return an array containing all of the elements in this queue
422 >     */
423 >    public Object[] toArray() {
424 >        return Arrays.copyOf(queue, size);
425 >    }
426 >
427 >    /**
428 >     * Returns an array containing all of the elements in this queue; the
429 >     * runtime type of the returned array is that of the specified array.
430 >     * The returned array elements are in no particular order.
431 >     * If the queue fits in the specified array, it is returned therein.
432 >     * Otherwise, a new array is allocated with the runtime type of the
433 >     * specified array and the size of this queue.
434 >     *
435 >     * <p>If the queue fits in the specified array with room to spare
436 >     * (i.e., the array has more elements than the queue), the element in
437 >     * the array immediately following the end of the collection is set to
438 >     * {@code null}.
439 >     *
440 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
441 >     * array-based and collection-based APIs.  Further, this method allows
442 >     * precise control over the runtime type of the output array, and may,
443 >     * under certain circumstances, be used to save allocation costs.
444 >     *
445 >     * <p>Suppose {@code x} is a queue known to contain only strings.
446 >     * The following code can be used to dump the queue into a newly
447 >     * allocated array of {@code String}:
448 >     *
449 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
450 >     *
451 >     * Note that {@code toArray(new Object[0])} is identical in function to
452 >     * {@code toArray()}.
453 >     *
454 >     * @param a the array into which the elements of the queue are to
455 >     *          be stored, if it is big enough; otherwise, a new array of the
456 >     *          same runtime type is allocated for this purpose.
457 >     * @return an array containing all of the elements in this queue
458 >     * @throws ArrayStoreException if the runtime type of the specified array
459 >     *         is not a supertype of the runtime type of every element in
460 >     *         this queue
461 >     * @throws NullPointerException if the specified array is null
462 >     */
463 >    @SuppressWarnings("unchecked")
464 >    public <T> T[] toArray(T[] a) {
465 >        final int size = this.size;
466 >        if (a.length < size)
467 >            // Make a new array of a's runtime type, but my contents:
468 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
469 >        System.arraycopy(queue, 0, a, 0, size);
470 >        if (a.length > size)
471 >            a[size] = null;
472 >        return a;
473 >    }
474 >
475 >    /**
476 >     * Returns an iterator over the elements in this queue. The iterator
477 >     * does not return the elements in any particular order.
478       *
479 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
479 >     * @return an iterator over the elements in this queue
480       */
481      public Iterator<E> iterator() {
482          return new Itr();
483      }
484  
485 <    private class Itr implements Iterator<E> {
485 >    private final class Itr implements Iterator<E> {
486          /**
487           * Index (into queue array) of element to be returned by
488           * subsequent call to next.
489           */
490 <        private int cursor = 1;
490 >        private int cursor;
491 >
492 >        /**
493 >         * Index of element returned by most recent call to next,
494 >         * unless that element came from the forgetMeNot list.
495 >         * Set to -1 if element is deleted by a call to remove.
496 >         */
497 >        private int lastRet = -1;
498 >
499 >        /**
500 >         * A queue of elements that were moved from the unvisited portion of
501 >         * the heap into the visited portion as a result of "unlucky" element
502 >         * removals during the iteration.  (Unlucky element removals are those
503 >         * that require a siftup instead of a siftdown.)  We must visit all of
504 >         * the elements in this list to complete the iteration.  We do this
505 >         * after we've completed the "normal" iteration.
506 >         *
507 >         * We expect that most iterations, even those involving removals,
508 >         * will not need to store elements in this field.
509 >         */
510 >        private ArrayDeque<E> forgetMeNot;
511  
512          /**
513 <         * Index of element returned by most recent call to next or
514 <         * previous.  Reset to 0 if this element is deleted by a call
256 <         * to remove.
513 >         * Element returned by the most recent call to next iff that
514 >         * element was drawn from the forgetMeNot list.
515           */
516 <        private int lastRet = 0;
516 >        private E lastRetElt;
517  
518          /**
519           * The modCount value that the iterator believes that the backing
520 <         * List should have.  If this expectation is violated, the iterator
520 >         * Queue should have.  If this expectation is violated, the iterator
521           * has detected concurrent modification.
522           */
523          private int expectedModCount = modCount;
524  
525          public boolean hasNext() {
526 <            return cursor <= size;
526 >            return cursor < size ||
527 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
528          }
529  
530 +        @SuppressWarnings("unchecked")
531          public E next() {
532 <            checkForComodification();
533 <            if (cursor > size)
534 <                throw new NoSuchElementException();
535 <            E result = queue[cursor];
536 <            lastRet = cursor++;
537 <            return result;
532 >            if (expectedModCount != modCount)
533 >                throw new ConcurrentModificationException();
534 >            if (cursor < size)
535 >                return (E) queue[lastRet = cursor++];
536 >            if (forgetMeNot != null) {
537 >                lastRet = -1;
538 >                lastRetElt = forgetMeNot.poll();
539 >                if (lastRetElt != null)
540 >                    return lastRetElt;
541 >            }
542 >            throw new NoSuchElementException();
543          }
544  
545          public void remove() {
546 <            if (lastRet == 0)
546 >            if (expectedModCount != modCount)
547 >                throw new ConcurrentModificationException();
548 >            if (lastRet != -1) {
549 >                E moved = PriorityQueue.this.removeAt(lastRet);
550 >                lastRet = -1;
551 >                if (moved == null)
552 >                    cursor--;
553 >                else {
554 >                    if (forgetMeNot == null)
555 >                        forgetMeNot = new ArrayDeque<>();
556 >                    forgetMeNot.add(moved);
557 >                }
558 >            } else if (lastRetElt != null) {
559 >                PriorityQueue.this.removeEq(lastRetElt);
560 >                lastRetElt = null;
561 >            } else {
562                  throw new IllegalStateException();
563 <            checkForComodification();
284 <
285 <            PriorityQueue.this.remove(lastRet);
286 <            if (lastRet < cursor)
287 <                cursor--;
288 <            lastRet = 0;
563 >            }
564              expectedModCount = modCount;
565          }
291
292        final void checkForComodification() {
293            if (modCount != expectedModCount)
294                throw new ConcurrentModificationException();
295        }
566      }
567  
298    /**
299     * Returns the number of elements in this priority queue.
300     *
301     * @return the number of elements in this priority queue.
302     */
568      public int size() {
569          return size;
570      }
571  
572      /**
573 <     * Remove all elements from the priority queue.
573 >     * Removes all of the elements from this priority queue.
574 >     * The queue will be empty after this call returns.
575       */
576      public void clear() {
577          modCount++;
578 <
313 <        // Null out element references to prevent memory leak
314 <        for (int i=1; i<=size; i++)
578 >        for (int i = 0; i < size; i++)
579              queue[i] = null;
316
580          size = 0;
581      }
582  
583 <    /**
584 <     * Removes and returns the ith element from queue.  Recall
585 <     * that queue is one-based, so 1 <= i <= size.
586 <     *
587 <     * XXX: Could further special-case i==size, but is it worth it?
325 <     * XXX: Could special-case i==0, but is it worth it?
326 <     */
327 <    private E remove(int i) {
328 <        assert i <= size;
583 >    @SuppressWarnings("unchecked")
584 >    public E poll() {
585 >        if (size == 0)
586 >            return null;
587 >        int s = --size;
588          modCount++;
589 <
590 <        E result = queue[i];
591 <        queue[i] = queue[size];
592 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
593 <        if (i <= size)
335 <            fixDown(i);
589 >        E result = (E) queue[0];
590 >        E x = (E) queue[s];
591 >        queue[s] = null;
592 >        if (s != 0)
593 >            siftDown(0, x);
594          return result;
595      }
596  
597      /**
598 <     * Establishes the heap invariant (described above) assuming the heap
599 <     * satisfies the invariant except possibly for the leaf-node indexed by k
600 <     * (which may have a nextExecutionTime less than its parent's).
601 <     *
602 <     * This method functions by "promoting" queue[k] up the hierarchy
603 <     * (by swapping it with its parent) repeatedly until queue[k]
604 <     * is greater than or equal to its parent.
605 <     */
606 <    private void fixUp(int k) {
607 <        if (comparator == null) {
608 <            while (k > 1) {
609 <                int j = k >> 1;
610 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
611 <                    break;
612 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
613 <                k = j;
614 <            }
615 <        } else {
616 <            while (k > 1) {
617 <                int j = k >> 1;
618 <                if (comparator.compare(queue[j], queue[k]) <= 0)
619 <                    break;
620 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
621 <                k = j;
598 >     * Removes the ith element from queue.
599 >     *
600 >     * Normally this method leaves the elements at up to i-1,
601 >     * inclusive, untouched.  Under these circumstances, it returns
602 >     * null.  Occasionally, in order to maintain the heap invariant,
603 >     * it must swap a later element of the list with one earlier than
604 >     * i.  Under these circumstances, this method returns the element
605 >     * that was previously at the end of the list and is now at some
606 >     * position before i. This fact is used by iterator.remove so as to
607 >     * avoid missing traversing elements.
608 >     */
609 >    @SuppressWarnings("unchecked")
610 >    E removeAt(int i) {
611 >        // assert i >= 0 && i < size;
612 >        modCount++;
613 >        int s = --size;
614 >        if (s == i) // removed last element
615 >            queue[i] = null;
616 >        else {
617 >            E moved = (E) queue[s];
618 >            queue[s] = null;
619 >            siftDown(i, moved);
620 >            if (queue[i] == moved) {
621 >                siftUp(i, moved);
622 >                if (queue[i] != moved)
623 >                    return moved;
624              }
625          }
626 +        return null;
627      }
628  
629      /**
630 <     * Establishes the heap invariant (described above) in the subtree
631 <     * rooted at k, which is assumed to satisfy the heap invariant except
632 <     * possibly for node k itself (which may be greater than its children).
633 <     *
634 <     * This method functions by "demoting" queue[k] down the hierarchy
635 <     * (by swapping it with its smaller child) repeatedly until queue[k]
636 <     * is less than or equal to its children.
637 <     */
638 <    private void fixDown(int k) {
639 <        int j;
640 <        if (comparator == null) {
641 <            while ((j = k << 1) <= size) {
642 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
643 <                    j++; // j indexes smallest kid
644 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
645 <                    break;
646 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
647 <                k = j;
648 <            }
649 <        } else {
650 <            while ((j = k << 1) <= size) {
651 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
652 <                    j++; // j indexes smallest kid
653 <                if (comparator.compare(queue[k], queue[j]) <= 0)
654 <                    break;
655 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
656 <                k = j;
657 <            }
630 >     * Inserts item x at position k, maintaining heap invariant by
631 >     * promoting x up the tree until it is greater than or equal to
632 >     * its parent, or is the root.
633 >     *
634 >     * To simplify and speed up coercions and comparisons. the
635 >     * Comparable and Comparator versions are separated into different
636 >     * methods that are otherwise identical. (Similarly for siftDown.)
637 >     *
638 >     * @param k the position to fill
639 >     * @param x the item to insert
640 >     */
641 >    private void siftUp(int k, E x) {
642 >        if (comparator != null)
643 >            siftUpUsingComparator(k, x);
644 >        else
645 >            siftUpComparable(k, x);
646 >    }
647 >
648 >    @SuppressWarnings("unchecked")
649 >    private void siftUpComparable(int k, E x) {
650 >        Comparable<? super E> key = (Comparable<? super E>) x;
651 >        while (k > 0) {
652 >            int parent = (k - 1) >>> 1;
653 >            Object e = queue[parent];
654 >            if (key.compareTo((E) e) >= 0)
655 >                break;
656 >            queue[k] = e;
657 >            k = parent;
658          }
659 +        queue[k] = key;
660      }
661  
662 <    public Comparator comparator() {
662 >    @SuppressWarnings("unchecked")
663 >    private void siftUpUsingComparator(int k, E x) {
664 >        while (k > 0) {
665 >            int parent = (k - 1) >>> 1;
666 >            Object e = queue[parent];
667 >            if (comparator.compare(x, (E) e) >= 0)
668 >                break;
669 >            queue[k] = e;
670 >            k = parent;
671 >        }
672 >        queue[k] = x;
673 >    }
674 >
675 >    /**
676 >     * Inserts item x at position k, maintaining heap invariant by
677 >     * demoting x down the tree repeatedly until it is less than or
678 >     * equal to its children or is a leaf.
679 >     *
680 >     * @param k the position to fill
681 >     * @param x the item to insert
682 >     */
683 >    private void siftDown(int k, E x) {
684 >        if (comparator != null)
685 >            siftDownUsingComparator(k, x);
686 >        else
687 >            siftDownComparable(k, x);
688 >    }
689 >
690 >    @SuppressWarnings("unchecked")
691 >    private void siftDownComparable(int k, E x) {
692 >        Comparable<? super E> key = (Comparable<? super E>)x;
693 >        int half = size >>> 1;        // loop while a non-leaf
694 >        while (k < half) {
695 >            int child = (k << 1) + 1; // assume left child is least
696 >            Object c = queue[child];
697 >            int right = child + 1;
698 >            if (right < size &&
699 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
700 >                c = queue[child = right];
701 >            if (key.compareTo((E) c) <= 0)
702 >                break;
703 >            queue[k] = c;
704 >            k = child;
705 >        }
706 >        queue[k] = key;
707 >    }
708 >
709 >    @SuppressWarnings("unchecked")
710 >    private void siftDownUsingComparator(int k, E x) {
711 >        int half = size >>> 1;
712 >        while (k < half) {
713 >            int child = (k << 1) + 1;
714 >            Object c = queue[child];
715 >            int right = child + 1;
716 >            if (right < size &&
717 >                comparator.compare((E) c, (E) queue[right]) > 0)
718 >                c = queue[child = right];
719 >            if (comparator.compare(x, (E) c) <= 0)
720 >                break;
721 >            queue[k] = c;
722 >            k = child;
723 >        }
724 >        queue[k] = x;
725 >    }
726 >
727 >    /**
728 >     * Establishes the heap invariant (described above) in the entire tree,
729 >     * assuming nothing about the order of the elements prior to the call.
730 >     * This classic algorithm due to Floyd (1964) is known to be O(size).
731 >     */
732 >    @SuppressWarnings("unchecked")
733 >    private void heapify() {
734 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
735 >            siftDown(i, (E) queue[i]);
736 >    }
737 >
738 >    /**
739 >     * Returns the comparator used to order the elements in this
740 >     * queue, or {@code null} if this queue is sorted according to
741 >     * the {@linkplain Comparable natural ordering} of its elements.
742 >     *
743 >     * @return the comparator used to order this queue, or
744 >     *         {@code null} if this queue is sorted according to the
745 >     *         natural ordering of its elements
746 >     */
747 >    public Comparator<? super E> comparator() {
748          return comparator;
749      }
750  
751      /**
752 <     * Save the state of the instance to a stream (that
406 <     * is, serialize it).
752 >     * Saves this queue to a stream (that is, serializes it).
753       *
408     * @serialData The length of the array backing the instance is
409     * emitted (int), followed by all of its elements (each an
410     * <tt>Object</tt>) in the proper order.
754       * @param s the stream
755 +     * @throws java.io.IOException if an I/O error occurs
756 +     * @serialData The length of the array backing the instance is
757 +     *             emitted (int), followed by all of its elements
758 +     *             (each an {@code Object}) in the proper order.
759       */
760 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
761 <        throws java.io.IOException{
760 >    private void writeObject(java.io.ObjectOutputStream s)
761 >        throws java.io.IOException {
762          // Write out element count, and any hidden stuff
763          s.defaultWriteObject();
764  
765 <        // Write out array length
766 <        s.writeInt(queue.length);
765 >        // Write out array length, for compatibility with 1.5 version
766 >        s.writeInt(Math.max(2, size + 1));
767  
768 <        // Write out all elements in the proper order.
769 <        for (int i=0; i<size; i++)
768 >        // Write out all elements in the "proper order".
769 >        for (int i = 0; i < size; i++)
770              s.writeObject(queue[i]);
771      }
772  
773      /**
774 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
775 <     * deserialize it).
774 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
775 >     * (that is, deserializes it).
776 >     *
777       * @param s the stream
778 +     * @throws ClassNotFoundException if the class of a serialized object
779 +     *         could not be found
780 +     * @throws java.io.IOException if an I/O error occurs
781       */
782 <    private synchronized void readObject(java.io.ObjectInputStream s)
782 >    private void readObject(java.io.ObjectInputStream s)
783          throws java.io.IOException, ClassNotFoundException {
784          // Read in size, and any hidden stuff
785          s.defaultReadObject();
786  
787 <        // Read in array length and allocate array
788 <        int arrayLength = s.readInt();
789 <        queue = (E[]) new Object[arrayLength];
790 <
791 <        // Read in all elements in the proper order.
792 <        for (int i=0; i<size; i++)
793 <            queue[i] = (E)s.readObject();
787 >        // Read in (and discard) array length
788 >        s.readInt();
789 >
790 >        queue = new Object[size];
791 >
792 >        // Read in all elements.
793 >        for (int i = 0; i < size; i++)
794 >            queue[i] = s.readObject();
795 >
796 >        // Elements are guaranteed to be in "proper order", but the
797 >        // spec has never explained what that might be.
798 >        heapify();
799      }
800  
801 < }
801 >    /**
802 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
803 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
804 >     * queue. The spliterator does not traverse elements in any particular order
805 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
806 >     *
807 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
808 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
809 >     * Overriding implementations should document the reporting of additional
810 >     * characteristic values.
811 >     *
812 >     * @return a {@code Spliterator} over the elements in this queue
813 >     * @since 1.8
814 >     */
815 >    public final Spliterator<E> spliterator() {
816 >        return new PriorityQueueSpliterator(0, -1, 0);
817 >    }
818 >
819 >    final class PriorityQueueSpliterator implements Spliterator<E> {
820 >        /*
821 >         * This is very similar to ArrayList Spliterator, except for
822 >         * extra null checks.
823 >         */
824 >        private int index;            // current index, modified on advance/split
825 >        private int fence;            // -1 until first use
826 >        private int expectedModCount; // initialized when fence set
827 >
828 >        /** Creates new spliterator covering the given range. */
829 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
830 >            this.index = origin;
831 >            this.fence = fence;
832 >            this.expectedModCount = expectedModCount;
833 >        }
834 >
835 >        private int getFence() { // initialize fence to size on first use
836 >            int hi;
837 >            if ((hi = fence) < 0) {
838 >                expectedModCount = modCount;
839 >                hi = fence = size;
840 >            }
841 >            return hi;
842 >        }
843 >
844 >        public PriorityQueueSpliterator trySplit() {
845 >            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 >            return (lo >= mid) ? null :
847 >                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
848 >        }
849 >
850 >        @SuppressWarnings("unchecked")
851 >        public void forEachRemaining(Consumer<? super E> action) {
852 >            int i, hi, mc; // hoist accesses and checks from loop
853 >            final Object[] a;
854 >            if (action == null)
855 >                throw new NullPointerException();
856 >            if ((a = queue) != null) {
857 >                if ((hi = fence) < 0) {
858 >                    mc = modCount;
859 >                    hi = size;
860 >                }
861 >                else
862 >                    mc = expectedModCount;
863 >                if ((i = index) >= 0 && (index = hi) <= a.length) {
864 >                    for (E e;; ++i) {
865 >                        if (i < hi) {
866 >                            if ((e = (E) a[i]) == null) // must be CME
867 >                                break;
868 >                            action.accept(e);
869 >                        }
870 >                        else if (modCount != mc)
871 >                            break;
872 >                        else
873 >                            return;
874 >                    }
875 >                }
876 >            }
877 >            throw new ConcurrentModificationException();
878 >        }
879 >
880 >        public boolean tryAdvance(Consumer<? super E> action) {
881 >            if (action == null)
882 >                throw new NullPointerException();
883 >            int hi = getFence(), lo = index;
884 >            if (lo >= 0 && lo < hi) {
885 >                index = lo + 1;
886 >                @SuppressWarnings("unchecked") E e = (E)queue[lo];
887 >                if (e == null)
888 >                    throw new ConcurrentModificationException();
889 >                action.accept(e);
890 >                if (modCount != expectedModCount)
891 >                    throw new ConcurrentModificationException();
892 >                return true;
893 >            }
894 >            return false;
895 >        }
896  
897 +        public long estimateSize() {
898 +            return getFence() - index;
899 +        }
900 +
901 +        public int characteristics() {
902 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
903 +        }
904 +    }
905 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines