ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.12 by dl, Mon Jul 28 09:40:07 2003 UTC vs.
Revision 1.100 by jsr166, Fri Aug 29 21:42:37 2014 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 > import java.util.function.Consumer;
28 > import java.util.stream.Stream;
29  
30   /**
31 < * An unbounded priority queue based on a priority heap.  This queue orders
32 < * elements according to an order specified at construction time, which is
33 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}:
34 < * elements are ordered
35 < * either according to their <i>natural order</i> (see {@link Comparable}), or
36 < * according to a {@link Comparator}, depending on which constructor is used.
37 < * The <em>head</em> of this queue is the least element with respect to the
38 < * specified ordering. If multiple elements are tied for least value, the
39 < * head is one of those elements. A priority queue does not permit
40 < * <tt>null</tt> elements.
41 < *
42 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
43 < * return the head of the queue.
44 < *
45 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
46 < * not delete, the head of the queue.
47 < *
48 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
49 < * size of the array used internally to store the elements on the
50 < * queue.  It is always at least as large as the queue size.  As
51 < * elements are added to a priority queue, its capacity grows
52 < * automatically.  The details of the growth policy are not specified.
53 < *
54 < * <p>Implementation note: this implementation provides O(log(n)) time
55 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
56 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
57 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
58 < * constant time for the retrieval methods (<tt>peek</tt>,
59 < * <tt>element</tt>, and <tt>size</tt>).
31 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
32 > * The elements of the priority queue are ordered according to their
33 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
34 > * provided at queue construction time, depending on which constructor is
35 > * used.  A priority queue does not permit {@code null} elements.
36 > * A priority queue relying on natural ordering also does not permit
37 > * insertion of non-comparable objects (doing so may result in
38 > * {@code ClassCastException}).
39 > *
40 > * <p>The <em>head</em> of this queue is the <em>least</em> element
41 > * with respect to the specified ordering.  If multiple elements are
42 > * tied for least value, the head is one of those elements -- ties are
43 > * broken arbitrarily.  The queue retrieval operations {@code poll},
44 > * {@code remove}, {@code peek}, and {@code element} access the
45 > * element at the head of the queue.
46 > *
47 > * <p>A priority queue is unbounded, but has an internal
48 > * <i>capacity</i> governing the size of an array used to store the
49 > * elements on the queue.  It is always at least as large as the queue
50 > * size.  As elements are added to a priority queue, its capacity
51 > * grows automatically.  The details of the growth policy are not
52 > * specified.
53 > *
54 > * <p>This class and its iterator implement all of the
55 > * <em>optional</em> methods of the {@link Collection} and {@link
56 > * Iterator} interfaces.  The Iterator provided in method {@link
57 > * #iterator()} is <em>not</em> guaranteed to traverse the elements of
58 > * the priority queue in any particular order. If you need ordered
59 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
60 > *
61 > * <p><strong>Note that this implementation is not synchronized.</strong>
62 > * Multiple threads should not access a {@code PriorityQueue}
63 > * instance concurrently if any of the threads modifies the queue.
64 > * Instead, use the thread-safe {@link
65 > * java.util.concurrent.PriorityBlockingQueue} class.
66 > *
67 > * <p>Implementation note: this implementation provides
68 > * O(log(n)) time for the enqueuing and dequeuing methods
69 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
70 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
71 > * methods; and constant time for the retrieval methods
72 > * ({@code peek}, {@code element}, and {@code size}).
73   *
74   * <p>This class is a member of the
75 < * <a href="{@docRoot}/../guide/collections/index.html">
75 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
76   * Java Collections Framework</a>.
77 + *
78   * @since 1.5
79 < * @author Josh Bloch
79 > * @author Josh Bloch, Doug Lea
80 > * @param <E> the type of elements held in this collection
81   */
82   public class PriorityQueue<E> extends AbstractQueue<E>
83 <    implements Queue<E>, Sorted, java.io.Serializable {
83 >    implements java.io.Serializable {
84 >
85 >    private static final long serialVersionUID = -7720805057305804111L;
86  
87      private static final int DEFAULT_INITIAL_CAPACITY = 11;
88  
89      /**
90 <     * Priority queue represented as a balanced binary heap: the two children
91 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
92 <     * ordered by comparator, or by the elements' natural ordering, if
93 <     * comparator is null:  For each node n in the heap and each descendant d
94 <     * of n, n <= d.
95 <     *
52 <     * The element with the lowest value is in queue[1], assuming the queue is
53 <     * nonempty.  (A one-based array is used in preference to the traditional
54 <     * zero-based array to simplify parent and child calculations.)
55 <     *
56 <     * queue.length must be >= 2, even if size == 0.
90 >     * Priority queue represented as a balanced binary heap: the two
91 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
92 >     * priority queue is ordered by comparator, or by the elements'
93 >     * natural ordering, if comparator is null: For each node n in the
94 >     * heap and each descendant d of n, n <= d.  The element with the
95 >     * lowest value is in queue[0], assuming the queue is nonempty.
96       */
97 <    private transient E[] queue;
97 >    transient Object[] queue; // non-private to simplify nested class access
98  
99      /**
100       * The number of elements in the priority queue.
101       */
102 <    private int size = 0;
102 >    private int size;
103  
104      /**
105       * The comparator, or null if priority queue uses elements'
106       * natural ordering.
107       */
108 <    private final Comparator<E> comparator;
108 >    private final Comparator<? super E> comparator;
109  
110      /**
111       * The number of times this priority queue has been
112       * <i>structurally modified</i>.  See AbstractList for gory details.
113       */
114 <    private transient int modCount = 0;
114 >    transient int modCount = 0; // non-private to simplify nested class access
115  
116      /**
117 <     * Create a <tt>PriorityQueue</tt> with the default initial capacity
118 <     * (11) that orders its elements according to their natural
119 <     * ordering (using <tt>Comparable</tt>.)
117 >     * Creates a {@code PriorityQueue} with the default initial
118 >     * capacity (11) that orders its elements according to their
119 >     * {@linkplain Comparable natural ordering}.
120       */
121      public PriorityQueue() {
122          this(DEFAULT_INITIAL_CAPACITY, null);
123      }
124  
125      /**
126 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
127 <     * that orders its elements according to their natural ordering
128 <     * (using <tt>Comparable</tt>.)
129 <     *
130 <     * @param initialCapacity the initial capacity for this priority queue.
126 >     * Creates a {@code PriorityQueue} with the specified initial
127 >     * capacity that orders its elements according to their
128 >     * {@linkplain Comparable natural ordering}.
129 >     *
130 >     * @param initialCapacity the initial capacity for this priority queue
131 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
132 >     *         than 1
133       */
134      public PriorityQueue(int initialCapacity) {
135          this(initialCapacity, null);
136      }
137  
138      /**
139 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
139 >     * Creates a {@code PriorityQueue} with the specified initial capacity
140       * that orders its elements according to the specified comparator.
141       *
142 <     * @param initialCapacity the initial capacity for this priority queue.
143 <     * @param comparator the comparator used to order this priority queue.
144 <     * If <tt>null</tt> then the order depends on the elements' natural
145 <     * ordering.
146 <     */
147 <    public PriorityQueue(int initialCapacity, Comparator<E> comparator) {
142 >     * @param  initialCapacity the initial capacity for this priority queue
143 >     * @param  comparator the comparator that will be used to order this
144 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
145 >     *         natural ordering} of the elements will be used.
146 >     * @throws IllegalArgumentException if {@code initialCapacity} is
147 >     *         less than 1
148 >     */
149 >    public PriorityQueue(int initialCapacity,
150 >                         Comparator<? super E> comparator) {
151 >        // Note: This restriction of at least one is not actually needed,
152 >        // but continues for 1.5 compatibility
153          if (initialCapacity < 1)
154 <            initialCapacity = 1;
155 <        queue = (E[]) new Object[initialCapacity + 1];
154 >            throw new IllegalArgumentException();
155 >        this.queue = new Object[initialCapacity];
156          this.comparator = comparator;
157      }
158  
159      /**
160 <     * Create a <tt>PriorityQueue</tt> containing the elements in the specified
161 <     * collection.  The priority queue has an initial capacity of 110% of the
162 <     * size of the specified collection. If the specified collection
163 <     * implements the {@link Sorted} interface, the priority queue will be
164 <     * sorted according to the same comparator, or according to its elements'
165 <     * natural order if the collection is sorted according to its elements'
120 <     * natural order.  If the specified collection does not implement
121 <     * <tt>Sorted</tt>, the priority queue is ordered according to
122 <     * its elements' natural order.
160 >     * Creates a {@code PriorityQueue} containing the elements in the
161 >     * specified collection.  If the specified collection is an instance of
162 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
163 >     * priority queue will be ordered according to the same ordering.
164 >     * Otherwise, this priority queue will be ordered according to the
165 >     * {@linkplain Comparable natural ordering} of its elements.
166       *
167 <     * @param initialElements the collection whose elements are to be placed
168 <     *        into this priority queue.
167 >     * @param  c the collection whose elements are to be placed
168 >     *         into this priority queue
169       * @throws ClassCastException if elements of the specified collection
170       *         cannot be compared to one another according to the priority
171 <     *         queue's ordering.
172 <     * @throws NullPointerException if the specified collection or an
173 <     *         element of the specified collection is <tt>null</tt>.
174 <     */
175 <    public PriorityQueue(Collection<E> initialElements) {
176 <        int sz = initialElements.size();
177 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
178 <                                            Integer.MAX_VALUE - 1);
179 <        if (initialCapacity < 1)
180 <            initialCapacity = 1;
181 <        queue = (E[]) new Object[initialCapacity + 1];
171 >     *         queue's ordering
172 >     * @throws NullPointerException if the specified collection or any
173 >     *         of its elements are null
174 >     */
175 >    @SuppressWarnings("unchecked")
176 >    public PriorityQueue(Collection<? extends E> c) {
177 >        if (c instanceof SortedSet<?>) {
178 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
179 >            this.comparator = (Comparator<? super E>) ss.comparator();
180 >            initElementsFromCollection(ss);
181 >        }
182 >        else if (c instanceof PriorityQueue<?>) {
183 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
184 >            this.comparator = (Comparator<? super E>) pq.comparator();
185 >            initFromPriorityQueue(pq);
186 >        }
187 >        else {
188 >            this.comparator = null;
189 >            initFromCollection(c);
190 >        }
191 >    }
192  
193 <        if (initialElements instanceof Sorted) {
194 <            comparator = ((Sorted)initialElements).comparator();
195 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
196 <                queue[++size] = i.next();
193 >    /**
194 >     * Creates a {@code PriorityQueue} containing the elements in the
195 >     * specified priority queue.  This priority queue will be
196 >     * ordered according to the same ordering as the given priority
197 >     * queue.
198 >     *
199 >     * @param  c the priority queue whose elements are to be placed
200 >     *         into this priority queue
201 >     * @throws ClassCastException if elements of {@code c} cannot be
202 >     *         compared to one another according to {@code c}'s
203 >     *         ordering
204 >     * @throws NullPointerException if the specified priority queue or any
205 >     *         of its elements are null
206 >     */
207 >    @SuppressWarnings("unchecked")
208 >    public PriorityQueue(PriorityQueue<? extends E> c) {
209 >        this.comparator = (Comparator<? super E>) c.comparator();
210 >        initFromPriorityQueue(c);
211 >    }
212 >
213 >    /**
214 >     * Creates a {@code PriorityQueue} containing the elements in the
215 >     * specified sorted set.   This priority queue will be ordered
216 >     * according to the same ordering as the given sorted set.
217 >     *
218 >     * @param  c the sorted set whose elements are to be placed
219 >     *         into this priority queue
220 >     * @throws ClassCastException if elements of the specified sorted
221 >     *         set cannot be compared to one another according to the
222 >     *         sorted set's ordering
223 >     * @throws NullPointerException if the specified sorted set or any
224 >     *         of its elements are null
225 >     */
226 >    @SuppressWarnings("unchecked")
227 >    public PriorityQueue(SortedSet<? extends E> c) {
228 >        this.comparator = (Comparator<? super E>) c.comparator();
229 >        initElementsFromCollection(c);
230 >    }
231 >
232 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
233 >        if (c.getClass() == PriorityQueue.class) {
234 >            this.queue = c.toArray();
235 >            this.size = c.size();
236          } else {
237 <            comparator = null;
146 <            for (Iterator<E> i = initialElements.iterator(); i.hasNext(); )
147 <                add(i.next());
237 >            initFromCollection(c);
238          }
239      }
240  
241 <    // Queue Methods
241 >    private void initElementsFromCollection(Collection<? extends E> c) {
242 >        Object[] a = c.toArray();
243 >        // If c.toArray incorrectly doesn't return Object[], copy it.
244 >        if (a.getClass() != Object[].class)
245 >            a = Arrays.copyOf(a, a.length, Object[].class);
246 >        int len = a.length;
247 >        if (len == 1 || this.comparator != null)
248 >            for (int i = 0; i < len; i++)
249 >                if (a[i] == null)
250 >                    throw new NullPointerException();
251 >        this.queue = a;
252 >        this.size = a.length;
253 >    }
254  
255      /**
256 <     * Add the specified element to this priority queue.
256 >     * Initializes queue array with elements from the given Collection.
257       *
258 <     * @param element the element to add.
157 <     * @return <tt>true</tt>
158 <     * @throws ClassCastException if the specified element cannot be compared
159 <     * with elements currently in the priority queue according
160 <     * to the priority queue's ordering.
161 <     * @throws NullPointerException if the specified element is null.
258 >     * @param c the collection
259       */
260 <    public boolean offer(E element) {
261 <        if (element == null)
262 <            throw new NullPointerException();
263 <        modCount++;
167 <        ++size;
260 >    private void initFromCollection(Collection<? extends E> c) {
261 >        initElementsFromCollection(c);
262 >        heapify();
263 >    }
264  
265 <        // Grow backing store if necessary
266 <        while (size >= queue.length) {
267 <            E[] newQueue = (E[]) new Object[2 * queue.length];
268 <            System.arraycopy(queue, 0, newQueue, 0, queue.length);
269 <            queue = newQueue;
270 <        }
265 >    /**
266 >     * The maximum size of array to allocate.
267 >     * Some VMs reserve some header words in an array.
268 >     * Attempts to allocate larger arrays may result in
269 >     * OutOfMemoryError: Requested array size exceeds VM limit
270 >     */
271 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
272  
273 <        queue[size] = element;
274 <        fixUp(size);
275 <        return true;
273 >    /**
274 >     * Increases the capacity of the array.
275 >     *
276 >     * @param minCapacity the desired minimum capacity
277 >     */
278 >    private void grow(int minCapacity) {
279 >        int oldCapacity = queue.length;
280 >        // Double size if small; else grow by 50%
281 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
282 >                                         (oldCapacity + 2) :
283 >                                         (oldCapacity >> 1));
284 >        // overflow-conscious code
285 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
286 >            newCapacity = hugeCapacity(minCapacity);
287 >        queue = Arrays.copyOf(queue, newCapacity);
288      }
289  
290 <    public E poll() {
291 <        if (size == 0)
292 <            return null;
293 <        return remove(1);
290 >    private static int hugeCapacity(int minCapacity) {
291 >        if (minCapacity < 0) // overflow
292 >            throw new OutOfMemoryError();
293 >        return (minCapacity > MAX_ARRAY_SIZE) ?
294 >            Integer.MAX_VALUE :
295 >            MAX_ARRAY_SIZE;
296      }
297  
298 <    public E peek() {
299 <        return queue[1];
298 >    /**
299 >     * Inserts the specified element into this priority queue.
300 >     *
301 >     * @return {@code true} (as specified by {@link Collection#add})
302 >     * @throws ClassCastException if the specified element cannot be
303 >     *         compared with elements currently in this priority queue
304 >     *         according to the priority queue's ordering
305 >     * @throws NullPointerException if the specified element is null
306 >     */
307 >    public boolean add(E e) {
308 >        return offer(e);
309      }
310  
191    // Collection Methods
192
193    // these first two override just to get the throws docs
194
311      /**
312 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
312 >     * Inserts the specified element into this priority queue.
313 >     *
314 >     * @return {@code true} (as specified by {@link Queue#offer})
315 >     * @throws ClassCastException if the specified element cannot be
316 >     *         compared with elements currently in this priority queue
317 >     *         according to the priority queue's ordering
318 >     * @throws NullPointerException if the specified element is null
319       */
320 <    public boolean add(E element) {
321 <        return super.add(element);
320 >    public boolean offer(E e) {
321 >        if (e == null)
322 >            throw new NullPointerException();
323 >        modCount++;
324 >        int i = size;
325 >        if (i >= queue.length)
326 >            grow(i + 1);
327 >        size = i + 1;
328 >        if (i == 0)
329 >            queue[0] = e;
330 >        else
331 >            siftUp(i, e);
332 >        return true;
333      }
334  
335 <    //    /**
336 <    //     * @throws NullPointerException if any element is <tt>null</tt>.
337 <    //     */
338 <    //    public boolean addAll(Collection c) {
339 <    //        return super.addAll(c);
340 <    //    }
335 >    @SuppressWarnings("unchecked")
336 >    public E peek() {
337 >        return (size == 0) ? null : (E) queue[0];
338 >    }
339 >
340 >    private int indexOf(Object o) {
341 >        if (o != null) {
342 >            for (int i = 0; i < size; i++)
343 >                if (o.equals(queue[i]))
344 >                    return i;
345 >        }
346 >        return -1;
347 >    }
348  
349      /**
350 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
350 >     * Removes a single instance of the specified element from this queue,
351 >     * if it is present.  More formally, removes an element {@code e} such
352 >     * that {@code o.equals(e)}, if this queue contains one or more such
353 >     * elements.  Returns {@code true} if and only if this queue contained
354 >     * the specified element (or equivalently, if this queue changed as a
355 >     * result of the call).
356 >     *
357 >     * @param o element to be removed from this queue, if present
358 >     * @return {@code true} if this queue changed as a result of the call
359       */
360      public boolean remove(Object o) {
361 <        if (o == null)
362 <            throw new NullPointerException();
361 >        int i = indexOf(o);
362 >        if (i == -1)
363 >            return false;
364 >        else {
365 >            removeAt(i);
366 >            return true;
367 >        }
368 >    }
369  
370 <        if (comparator == null) {
371 <            for (int i = 1; i <= size; i++) {
372 <                if (((Comparable)queue[i]).compareTo(o) == 0) {
373 <                    remove(i);
374 <                    return true;
375 <                }
376 <            }
377 <        } else {
378 <            for (int i = 1; i <= size; i++) {
379 <                if (comparator.compare(queue[i], (E)o) == 0) {
380 <                    remove(i);
381 <                    return true;
228 <                }
370 >    /**
371 >     * Version of remove using reference equality, not equals.
372 >     * Needed by iterator.remove.
373 >     *
374 >     * @param o element to be removed from this queue, if present
375 >     * @return {@code true} if removed
376 >     */
377 >    boolean removeEq(Object o) {
378 >        for (int i = 0; i < size; i++) {
379 >            if (o == queue[i]) {
380 >                removeAt(i);
381 >                return true;
382              }
383          }
384          return false;
385      }
386  
387      /**
388 <     * Returns an iterator over the elements in this priority queue.  The
389 <     * elements of the priority queue will be returned by this iterator in the
390 <     * order specified by the queue, which is to say the order they would be
391 <     * returned by repeated calls to <tt>poll</tt>.
388 >     * Returns {@code true} if this queue contains the specified element.
389 >     * More formally, returns {@code true} if and only if this queue contains
390 >     * at least one element {@code e} such that {@code o.equals(e)}.
391 >     *
392 >     * @param o object to be checked for containment in this queue
393 >     * @return {@code true} if this queue contains the specified element
394 >     */
395 >    public boolean contains(Object o) {
396 >        return indexOf(o) >= 0;
397 >    }
398 >
399 >    /**
400 >     * Returns an array containing all of the elements in this queue.
401 >     * The elements are in no particular order.
402 >     *
403 >     * <p>The returned array will be "safe" in that no references to it are
404 >     * maintained by this queue.  (In other words, this method must allocate
405 >     * a new array).  The caller is thus free to modify the returned array.
406 >     *
407 >     * <p>This method acts as bridge between array-based and collection-based
408 >     * APIs.
409 >     *
410 >     * @return an array containing all of the elements in this queue
411 >     */
412 >    public Object[] toArray() {
413 >        return Arrays.copyOf(queue, size);
414 >    }
415 >
416 >    /**
417 >     * Returns an array containing all of the elements in this queue; the
418 >     * runtime type of the returned array is that of the specified array.
419 >     * The returned array elements are in no particular order.
420 >     * If the queue fits in the specified array, it is returned therein.
421 >     * Otherwise, a new array is allocated with the runtime type of the
422 >     * specified array and the size of this queue.
423 >     *
424 >     * <p>If the queue fits in the specified array with room to spare
425 >     * (i.e., the array has more elements than the queue), the element in
426 >     * the array immediately following the end of the collection is set to
427 >     * {@code null}.
428 >     *
429 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
430 >     * array-based and collection-based APIs.  Further, this method allows
431 >     * precise control over the runtime type of the output array, and may,
432 >     * under certain circumstances, be used to save allocation costs.
433 >     *
434 >     * <p>Suppose {@code x} is a queue known to contain only strings.
435 >     * The following code can be used to dump the queue into a newly
436 >     * allocated array of {@code String}:
437 >     *
438 >     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
439 >     *
440 >     * Note that {@code toArray(new Object[0])} is identical in function to
441 >     * {@code toArray()}.
442 >     *
443 >     * @param a the array into which the elements of the queue are to
444 >     *          be stored, if it is big enough; otherwise, a new array of the
445 >     *          same runtime type is allocated for this purpose.
446 >     * @return an array containing all of the elements in this queue
447 >     * @throws ArrayStoreException if the runtime type of the specified array
448 >     *         is not a supertype of the runtime type of every element in
449 >     *         this queue
450 >     * @throws NullPointerException if the specified array is null
451 >     */
452 >    @SuppressWarnings("unchecked")
453 >    public <T> T[] toArray(T[] a) {
454 >        final int size = this.size;
455 >        if (a.length < size)
456 >            // Make a new array of a's runtime type, but my contents:
457 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
458 >        System.arraycopy(queue, 0, a, 0, size);
459 >        if (a.length > size)
460 >            a[size] = null;
461 >        return a;
462 >    }
463 >
464 >    /**
465 >     * Returns an iterator over the elements in this queue. The iterator
466 >     * does not return the elements in any particular order.
467       *
468 <     * @return an <tt>Iterator</tt> over the elements in this priority queue.
468 >     * @return an iterator over the elements in this queue
469       */
470      public Iterator<E> iterator() {
471          return new Itr();
472      }
473  
474 <    private class Itr implements Iterator<E> {
474 >    private final class Itr implements Iterator<E> {
475          /**
476           * Index (into queue array) of element to be returned by
477           * subsequent call to next.
478           */
479 <        private int cursor = 1;
479 >        private int cursor;
480 >
481 >        /**
482 >         * Index of element returned by most recent call to next,
483 >         * unless that element came from the forgetMeNot list.
484 >         * Set to -1 if element is deleted by a call to remove.
485 >         */
486 >        private int lastRet = -1;
487  
488          /**
489 <         * Index of element returned by most recent call to next or
490 <         * previous.  Reset to 0 if this element is deleted by a call
491 <         * to remove.
489 >         * A queue of elements that were moved from the unvisited portion of
490 >         * the heap into the visited portion as a result of "unlucky" element
491 >         * removals during the iteration.  (Unlucky element removals are those
492 >         * that require a siftup instead of a siftdown.)  We must visit all of
493 >         * the elements in this list to complete the iteration.  We do this
494 >         * after we've completed the "normal" iteration.
495 >         *
496 >         * We expect that most iterations, even those involving removals,
497 >         * will not need to store elements in this field.
498           */
499 <        private int lastRet = 0;
499 >        private ArrayDeque<E> forgetMeNot;
500 >
501 >        /**
502 >         * Element returned by the most recent call to next iff that
503 >         * element was drawn from the forgetMeNot list.
504 >         */
505 >        private E lastRetElt;
506  
507          /**
508           * The modCount value that the iterator believes that the backing
509 <         * List should have.  If this expectation is violated, the iterator
509 >         * Queue should have.  If this expectation is violated, the iterator
510           * has detected concurrent modification.
511           */
512          private int expectedModCount = modCount;
513  
514          public boolean hasNext() {
515 <            return cursor <= size;
515 >            return cursor < size ||
516 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
517          }
518  
519 +        @SuppressWarnings("unchecked")
520          public E next() {
521 <            checkForComodification();
522 <            if (cursor > size)
523 <                throw new NoSuchElementException();
524 <            E result = queue[cursor];
525 <            lastRet = cursor++;
526 <            return result;
521 >            if (expectedModCount != modCount)
522 >                throw new ConcurrentModificationException();
523 >            if (cursor < size)
524 >                return (E) queue[lastRet = cursor++];
525 >            if (forgetMeNot != null) {
526 >                lastRet = -1;
527 >                lastRetElt = forgetMeNot.poll();
528 >                if (lastRetElt != null)
529 >                    return lastRetElt;
530 >            }
531 >            throw new NoSuchElementException();
532          }
533  
534          public void remove() {
535 <            if (lastRet == 0)
535 >            if (expectedModCount != modCount)
536 >                throw new ConcurrentModificationException();
537 >            if (lastRet != -1) {
538 >                E moved = PriorityQueue.this.removeAt(lastRet);
539 >                lastRet = -1;
540 >                if (moved == null)
541 >                    cursor--;
542 >                else {
543 >                    if (forgetMeNot == null)
544 >                        forgetMeNot = new ArrayDeque<>();
545 >                    forgetMeNot.add(moved);
546 >                }
547 >            } else if (lastRetElt != null) {
548 >                PriorityQueue.this.removeEq(lastRetElt);
549 >                lastRetElt = null;
550 >            } else {
551                  throw new IllegalStateException();
552 <            checkForComodification();
284 <
285 <            PriorityQueue.this.remove(lastRet);
286 <            if (lastRet < cursor)
287 <                cursor--;
288 <            lastRet = 0;
552 >            }
553              expectedModCount = modCount;
554          }
291
292        final void checkForComodification() {
293            if (modCount != expectedModCount)
294                throw new ConcurrentModificationException();
295        }
555      }
556  
298    /**
299     * Returns the number of elements in this priority queue.
300     *
301     * @return the number of elements in this priority queue.
302     */
557      public int size() {
558          return size;
559      }
560  
561      /**
562 <     * Remove all elements from the priority queue.
562 >     * Removes all of the elements from this priority queue.
563 >     * The queue will be empty after this call returns.
564       */
565      public void clear() {
566          modCount++;
567 <
313 <        // Null out element references to prevent memory leak
314 <        for (int i=1; i<=size; i++)
567 >        for (int i = 0; i < size; i++)
568              queue[i] = null;
316
569          size = 0;
570      }
571  
572 <    /**
573 <     * Removes and returns the ith element from queue.  Recall
574 <     * that queue is one-based, so 1 <= i <= size.
575 <     *
576 <     * XXX: Could further special-case i==size, but is it worth it?
325 <     * XXX: Could special-case i==0, but is it worth it?
326 <     */
327 <    private E remove(int i) {
328 <        assert i <= size;
572 >    @SuppressWarnings("unchecked")
573 >    public E poll() {
574 >        if (size == 0)
575 >            return null;
576 >        int s = --size;
577          modCount++;
578 <
579 <        E result = queue[i];
580 <        queue[i] = queue[size];
581 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
582 <        if (i <= size)
335 <            fixDown(i);
578 >        E result = (E) queue[0];
579 >        E x = (E) queue[s];
580 >        queue[s] = null;
581 >        if (s != 0)
582 >            siftDown(0, x);
583          return result;
584      }
585  
586      /**
587 <     * Establishes the heap invariant (described above) assuming the heap
588 <     * satisfies the invariant except possibly for the leaf-node indexed by k
589 <     * (which may have a nextExecutionTime less than its parent's).
590 <     *
591 <     * This method functions by "promoting" queue[k] up the hierarchy
592 <     * (by swapping it with its parent) repeatedly until queue[k]
593 <     * is greater than or equal to its parent.
594 <     */
595 <    private void fixUp(int k) {
596 <        if (comparator == null) {
597 <            while (k > 1) {
598 <                int j = k >> 1;
599 <                if (((Comparable)queue[j]).compareTo(queue[k]) <= 0)
600 <                    break;
601 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
602 <                k = j;
603 <            }
604 <        } else {
605 <            while (k > 1) {
606 <                int j = k >> 1;
607 <                if (comparator.compare(queue[j], queue[k]) <= 0)
608 <                    break;
609 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
610 <                k = j;
587 >     * Removes the ith element from queue.
588 >     *
589 >     * Normally this method leaves the elements at up to i-1,
590 >     * inclusive, untouched.  Under these circumstances, it returns
591 >     * null.  Occasionally, in order to maintain the heap invariant,
592 >     * it must swap a later element of the list with one earlier than
593 >     * i.  Under these circumstances, this method returns the element
594 >     * that was previously at the end of the list and is now at some
595 >     * position before i. This fact is used by iterator.remove so as to
596 >     * avoid missing traversing elements.
597 >     */
598 >    @SuppressWarnings("unchecked")
599 >    private E removeAt(int i) {
600 >        // assert i >= 0 && i < size;
601 >        modCount++;
602 >        int s = --size;
603 >        if (s == i) // removed last element
604 >            queue[i] = null;
605 >        else {
606 >            E moved = (E) queue[s];
607 >            queue[s] = null;
608 >            siftDown(i, moved);
609 >            if (queue[i] == moved) {
610 >                siftUp(i, moved);
611 >                if (queue[i] != moved)
612 >                    return moved;
613              }
614          }
615 +        return null;
616      }
617  
618      /**
619 <     * Establishes the heap invariant (described above) in the subtree
620 <     * rooted at k, which is assumed to satisfy the heap invariant except
621 <     * possibly for node k itself (which may be greater than its children).
622 <     *
623 <     * This method functions by "demoting" queue[k] down the hierarchy
624 <     * (by swapping it with its smaller child) repeatedly until queue[k]
625 <     * is less than or equal to its children.
626 <     */
627 <    private void fixDown(int k) {
628 <        int j;
629 <        if (comparator == null) {
630 <            while ((j = k << 1) <= size) {
631 <                if (j<size && ((Comparable)queue[j]).compareTo(queue[j+1]) > 0)
632 <                    j++; // j indexes smallest kid
633 <                if (((Comparable)queue[k]).compareTo(queue[j]) <= 0)
634 <                    break;
635 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
636 <                k = j;
637 <            }
638 <        } else {
639 <            while ((j = k << 1) <= size) {
640 <                if (j < size && comparator.compare(queue[j], queue[j+1]) > 0)
641 <                    j++; // j indexes smallest kid
642 <                if (comparator.compare(queue[k], queue[j]) <= 0)
643 <                    break;
644 <                E tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
645 <                k = j;
646 <            }
619 >     * Inserts item x at position k, maintaining heap invariant by
620 >     * promoting x up the tree until it is greater than or equal to
621 >     * its parent, or is the root.
622 >     *
623 >     * To simplify and speed up coercions and comparisons. the
624 >     * Comparable and Comparator versions are separated into different
625 >     * methods that are otherwise identical. (Similarly for siftDown.)
626 >     *
627 >     * @param k the position to fill
628 >     * @param x the item to insert
629 >     */
630 >    private void siftUp(int k, E x) {
631 >        if (comparator != null)
632 >            siftUpUsingComparator(k, x);
633 >        else
634 >            siftUpComparable(k, x);
635 >    }
636 >
637 >    @SuppressWarnings("unchecked")
638 >    private void siftUpComparable(int k, E x) {
639 >        Comparable<? super E> key = (Comparable<? super E>) x;
640 >        while (k > 0) {
641 >            int parent = (k - 1) >>> 1;
642 >            Object e = queue[parent];
643 >            if (key.compareTo((E) e) >= 0)
644 >                break;
645 >            queue[k] = e;
646 >            k = parent;
647 >        }
648 >        queue[k] = key;
649 >    }
650 >
651 >    @SuppressWarnings("unchecked")
652 >    private void siftUpUsingComparator(int k, E x) {
653 >        while (k > 0) {
654 >            int parent = (k - 1) >>> 1;
655 >            Object e = queue[parent];
656 >            if (comparator.compare(x, (E) e) >= 0)
657 >                break;
658 >            queue[k] = e;
659 >            k = parent;
660 >        }
661 >        queue[k] = x;
662 >    }
663 >
664 >    /**
665 >     * Inserts item x at position k, maintaining heap invariant by
666 >     * demoting x down the tree repeatedly until it is less than or
667 >     * equal to its children or is a leaf.
668 >     *
669 >     * @param k the position to fill
670 >     * @param x the item to insert
671 >     */
672 >    private void siftDown(int k, E x) {
673 >        if (comparator != null)
674 >            siftDownUsingComparator(k, x);
675 >        else
676 >            siftDownComparable(k, x);
677 >    }
678 >
679 >    @SuppressWarnings("unchecked")
680 >    private void siftDownComparable(int k, E x) {
681 >        Comparable<? super E> key = (Comparable<? super E>)x;
682 >        int half = size >>> 1;        // loop while a non-leaf
683 >        while (k < half) {
684 >            int child = (k << 1) + 1; // assume left child is least
685 >            Object c = queue[child];
686 >            int right = child + 1;
687 >            if (right < size &&
688 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
689 >                c = queue[child = right];
690 >            if (key.compareTo((E) c) <= 0)
691 >                break;
692 >            queue[k] = c;
693 >            k = child;
694 >        }
695 >        queue[k] = key;
696 >    }
697 >
698 >    @SuppressWarnings("unchecked")
699 >    private void siftDownUsingComparator(int k, E x) {
700 >        int half = size >>> 1;
701 >        while (k < half) {
702 >            int child = (k << 1) + 1;
703 >            Object c = queue[child];
704 >            int right = child + 1;
705 >            if (right < size &&
706 >                comparator.compare((E) c, (E) queue[right]) > 0)
707 >                c = queue[child = right];
708 >            if (comparator.compare(x, (E) c) <= 0)
709 >                break;
710 >            queue[k] = c;
711 >            k = child;
712          }
713 +        queue[k] = x;
714      }
715  
716 <    public Comparator comparator() {
716 >    /**
717 >     * Establishes the heap invariant (described above) in the entire tree,
718 >     * assuming nothing about the order of the elements prior to the call.
719 >     */
720 >    @SuppressWarnings("unchecked")
721 >    private void heapify() {
722 >        for (int i = (size >>> 1) - 1; i >= 0; i--)
723 >            siftDown(i, (E) queue[i]);
724 >    }
725 >
726 >    /**
727 >     * Returns the comparator used to order the elements in this
728 >     * queue, or {@code null} if this queue is sorted according to
729 >     * the {@linkplain Comparable natural ordering} of its elements.
730 >     *
731 >     * @return the comparator used to order this queue, or
732 >     *         {@code null} if this queue is sorted according to the
733 >     *         natural ordering of its elements
734 >     */
735 >    public Comparator<? super E> comparator() {
736          return comparator;
737      }
738  
739      /**
740 <     * Save the state of the instance to a stream (that
406 <     * is, serialize it).
740 >     * Saves this queue to a stream (that is, serializes it).
741       *
742       * @serialData The length of the array backing the instance is
743 <     * emitted (int), followed by all of its elements (each an
744 <     * <tt>Object</tt>) in the proper order.
743 >     *             emitted (int), followed by all of its elements
744 >     *             (each an {@code Object}) in the proper order.
745       * @param s the stream
746 +     * @throws java.io.IOException if an I/O error occurs
747       */
748 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
749 <        throws java.io.IOException{
748 >    private void writeObject(java.io.ObjectOutputStream s)
749 >        throws java.io.IOException {
750          // Write out element count, and any hidden stuff
751          s.defaultWriteObject();
752  
753 <        // Write out array length
754 <        s.writeInt(queue.length);
753 >        // Write out array length, for compatibility with 1.5 version
754 >        s.writeInt(Math.max(2, size + 1));
755  
756 <        // Write out all elements in the proper order.
757 <        for (int i=0; i<size; i++)
756 >        // Write out all elements in the "proper order".
757 >        for (int i = 0; i < size; i++)
758              s.writeObject(queue[i]);
759      }
760  
761      /**
762 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
763 <     * deserialize it).
762 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
763 >     * (that is, deserializes it).
764 >     *
765       * @param s the stream
766 +     * @throws ClassNotFoundException if the class of a serialized object
767 +     *         could not be found
768 +     * @throws java.io.IOException if an I/O error occurs
769       */
770 <    private synchronized void readObject(java.io.ObjectInputStream s)
770 >    private void readObject(java.io.ObjectInputStream s)
771          throws java.io.IOException, ClassNotFoundException {
772          // Read in size, and any hidden stuff
773          s.defaultReadObject();
774  
775 <        // Read in array length and allocate array
776 <        int arrayLength = s.readInt();
777 <        queue = (E[]) new Object[arrayLength];
778 <
779 <        // Read in all elements in the proper order.
780 <        for (int i=0; i<size; i++)
781 <            queue[i] = (E)s.readObject();
775 >        // Read in (and discard) array length
776 >        s.readInt();
777 >
778 >        queue = new Object[size];
779 >
780 >        // Read in all elements.
781 >        for (int i = 0; i < size; i++)
782 >            queue[i] = s.readObject();
783 >
784 >        // Elements are guaranteed to be in "proper order", but the
785 >        // spec has never explained what that might be.
786 >        heapify();
787      }
788  
789 < }
789 >    public Spliterator<E> spliterator() {
790 >        return new PriorityQueueSpliterator<E>(this, 0, -1, 0);
791 >    }
792 >
793 >    /**
794 >     * This is very similar to ArrayList Spliterator, except for extra
795 >     * null checks.
796 >     */
797 >    static final class PriorityQueueSpliterator<E> implements Spliterator<E> {
798 >        private final PriorityQueue<E> pq;
799 >        private int index;            // current index, modified on advance/split
800 >        private int fence;            // -1 until first use
801 >        private int expectedModCount; // initialized when fence set
802 >
803 >        /** Creates new spliterator covering the given range */
804 >        PriorityQueueSpliterator(PriorityQueue<E> pq, int origin, int fence,
805 >                             int expectedModCount) {
806 >            this.pq = pq;
807 >            this.index = origin;
808 >            this.fence = fence;
809 >            this.expectedModCount = expectedModCount;
810 >        }
811 >
812 >        private int getFence() { // initialize fence to size on first use
813 >            int hi;
814 >            if ((hi = fence) < 0) {
815 >                expectedModCount = pq.modCount;
816 >                hi = fence = pq.size;
817 >            }
818 >            return hi;
819 >        }
820  
821 +        public Spliterator<E> trySplit() {
822 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
823 +            return (lo >= mid) ? null :
824 +                new PriorityQueueSpliterator<E>(pq, lo, index = mid,
825 +                                                expectedModCount);
826 +        }
827 +
828 +        @SuppressWarnings("unchecked")
829 +        public void forEachRemaining(Consumer<? super E> action) {
830 +            int i, hi, mc; // hoist accesses and checks from loop
831 +            PriorityQueue<E> q; Object[] a;
832 +            if (action == null)
833 +                throw new NullPointerException();
834 +            if ((q = pq) != null && (a = q.queue) != null) {
835 +                if ((hi = fence) < 0) {
836 +                    mc = q.modCount;
837 +                    hi = q.size;
838 +                }
839 +                else
840 +                    mc = expectedModCount;
841 +                if ((i = index) >= 0 && (index = hi) <= a.length) {
842 +                    for (E e;; ++i) {
843 +                        if (i < hi) {
844 +                            if ((e = (E) a[i]) == null) // must be CME
845 +                                break;
846 +                            action.accept(e);
847 +                        }
848 +                        else if (q.modCount != mc)
849 +                            break;
850 +                        else
851 +                            return;
852 +                    }
853 +                }
854 +            }
855 +            throw new ConcurrentModificationException();
856 +        }
857 +
858 +        public boolean tryAdvance(Consumer<? super E> action) {
859 +            int hi = getFence(), lo = index;
860 +            if (lo >= 0 && lo < hi) {
861 +                index = lo + 1;
862 +                @SuppressWarnings("unchecked") E e = (E)pq.queue[lo];
863 +                if (e == null)
864 +                    throw new ConcurrentModificationException();
865 +                action.accept(e);
866 +                if (pq.modCount != expectedModCount)
867 +                    throw new ConcurrentModificationException();
868 +                return true;
869 +            }
870 +            return false;
871 +        }
872 +
873 +        public long estimateSize() {
874 +            return (long) (getFence() - index);
875 +        }
876 +
877 +        public int characteristics() {
878 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
879 +        }
880 +    }
881 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines