ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.16 by tim, Thu Jul 31 15:44:41 2003 UTC vs.
Revision 1.123 by jsr166, Sun May 6 16:26:03 2018 UTC

# Line 1 | Line 1
1 < package java.util;
1 > /*
2 > * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 > *
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24 > */
25 >
26 > package java.util;
27 >
28 > import java.util.function.Consumer;
29 > import jdk.internal.misc.SharedSecrets;
30  
31   /**
32 < * An unbounded priority queue based on a priority heap.  This queue orders
33 < * elements according to an order specified at construction time, which is
34 < * specified in the same manner as {@link TreeSet} and {@link TreeMap}:
35 < * elements are ordered
36 < * either according to their <i>natural order</i> (see {@link Comparable}), or
37 < * according to a {@link Comparator}, depending on which constructor is used.
38 < * The <em>head</em> of this queue is the least element with respect to the
39 < * specified ordering. If multiple elements are tied for least value, the
40 < * head is one of those elements. A priority queue does not permit
41 < * <tt>null</tt> elements.
42 < *
43 < * <p>The {@link #remove()} and {@link #poll()} methods remove and
44 < * return the head of the queue.
45 < *
46 < * <p>The {@link #element()} and {@link #peek()} methods return, but do
47 < * not delete, the head of the queue.
48 < *
49 < * <p>A priority queue has a <i>capacity</i>.  The capacity is the
50 < * size of the array used internally to store the elements on the
51 < * queue.  It is always at least as large as the queue size.  As
52 < * elements are added to a priority queue, its capacity grows
53 < * automatically.  The details of the growth policy are not specified.
54 < *
55 < * <p>Implementation note: this implementation provides O(log(n)) time
56 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
57 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
58 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
59 < * constant time for the retrieval methods (<tt>peek</tt>,
60 < * <tt>element</tt>, and <tt>size</tt>).
32 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 > * The elements of the priority queue are ordered according to their
34 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 > * provided at queue construction time, depending on which constructor is
36 > * used.  A priority queue does not permit {@code null} elements.
37 > * A priority queue relying on natural ordering also does not permit
38 > * insertion of non-comparable objects (doing so may result in
39 > * {@code ClassCastException}).
40 > *
41 > * <p>The <em>head</em> of this queue is the <em>least</em> element
42 > * with respect to the specified ordering.  If multiple elements are
43 > * tied for least value, the head is one of those elements -- ties are
44 > * broken arbitrarily.  The queue retrieval operations {@code poll},
45 > * {@code remove}, {@code peek}, and {@code element} access the
46 > * element at the head of the queue.
47 > *
48 > * <p>A priority queue is unbounded, but has an internal
49 > * <i>capacity</i> governing the size of an array used to store the
50 > * elements on the queue.  It is always at least as large as the queue
51 > * size.  As elements are added to a priority queue, its capacity
52 > * grows automatically.  The details of the growth policy are not
53 > * specified.
54 > *
55 > * <p>This class and its iterator implement all of the
56 > * <em>optional</em> methods of the {@link Collection} and {@link
57 > * Iterator} interfaces.  The Iterator provided in method {@link
58 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 > * are <em>not</em> guaranteed to traverse the elements of
60 > * the priority queue in any particular order. If you need ordered
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 > *
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67 > * java.util.concurrent.PriorityBlockingQueue} class.
68 > *
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueuing and dequeuing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75   *
76   * <p>This class is a member of the
77 < * <a href="{@docRoot}/../guide/collections/index.html">
77 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78   * Java Collections Framework</a>.
79 + *
80   * @since 1.5
81 < * @author Josh Bloch
81 > * @author Josh Bloch, Doug Lea
82 > * @param <E> the type of elements held in this queue
83   */
84   public class PriorityQueue<E> extends AbstractQueue<E>
85 <    implements Queue<E>, java.io.Serializable {
85 >    implements java.io.Serializable {
86 >
87 >    private static final long serialVersionUID = -7720805057305804111L;
88  
89      private static final int DEFAULT_INITIAL_CAPACITY = 11;
90  
91      /**
92 <     * Priority queue represented as a balanced binary heap: the two children
93 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
94 <     * ordered by comparator, or by the elements' natural ordering, if
95 <     * comparator is null:  For each node n in the heap and each descendant d
96 <     * of n, n <= d.
97 <     *
52 <     * The element with the lowest value is in queue[1], assuming the queue is
53 <     * nonempty.  (A one-based array is used in preference to the traditional
54 <     * zero-based array to simplify parent and child calculations.)
55 <     *
56 <     * queue.length must be >= 2, even if size == 0.
92 >     * Priority queue represented as a balanced binary heap: the two
93 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
94 >     * priority queue is ordered by comparator, or by the elements'
95 >     * natural ordering, if comparator is null: For each node n in the
96 >     * heap and each descendant d of n, n <= d.  The element with the
97 >     * lowest value is in queue[0], assuming the queue is nonempty.
98       */
99 <    private transient Object[] queue;
99 >    transient Object[] queue; // non-private to simplify nested class access
100  
101      /**
102       * The number of elements in the priority queue.
103       */
104 <    private int size = 0;
104 >    int size;
105  
106      /**
107       * The comparator, or null if priority queue uses elements'
# Line 72 | Line 113 | public class PriorityQueue<E> extends Ab
113       * The number of times this priority queue has been
114       * <i>structurally modified</i>.  See AbstractList for gory details.
115       */
116 <    private transient int modCount = 0;
116 >    transient int modCount;     // non-private to simplify nested class access
117  
118      /**
119 <     * Create a <tt>PriorityQueue</tt> with the default initial capacity
120 <     * (11) that orders its elements according to their natural
121 <     * ordering (using <tt>Comparable</tt>.)
119 >     * Creates a {@code PriorityQueue} with the default initial
120 >     * capacity (11) that orders its elements according to their
121 >     * {@linkplain Comparable natural ordering}.
122       */
123      public PriorityQueue() {
124          this(DEFAULT_INITIAL_CAPACITY, null);
125      }
126  
127      /**
128 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
129 <     * that orders its elements according to their natural ordering
130 <     * (using <tt>Comparable</tt>.)
131 <     *
132 <     * @param initialCapacity the initial capacity for this priority queue.
128 >     * Creates a {@code PriorityQueue} with the specified initial
129 >     * capacity that orders its elements according to their
130 >     * {@linkplain Comparable natural ordering}.
131 >     *
132 >     * @param initialCapacity the initial capacity for this priority queue
133 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
134 >     *         than 1
135       */
136      public PriorityQueue(int initialCapacity) {
137          this(initialCapacity, null);
138      }
139  
140      /**
141 <     * Create a <tt>PriorityQueue</tt> with the specified initial capacity
142 <     * that orders its elements according to the specified comparator.
141 >     * Creates a {@code PriorityQueue} with the default initial capacity and
142 >     * whose elements are ordered according to the specified comparator.
143       *
144 <     * @param initialCapacity the initial capacity for this priority queue.
145 <     * @param comparator the comparator used to order this priority queue.
146 <     * If <tt>null</tt> then the order depends on the elements' natural
147 <     * ordering.
105 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
106 <     * than 1
144 >     * @param  comparator the comparator that will be used to order this
145 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
146 >     *         natural ordering} of the elements will be used.
147 >     * @since 1.8
148       */
149 <    public PriorityQueue(int initialCapacity, Comparator<? super E> comparator) {
149 >    public PriorityQueue(Comparator<? super E> comparator) {
150 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
151 >    }
152 >
153 >    /**
154 >     * Creates a {@code PriorityQueue} with the specified initial capacity
155 >     * that orders its elements according to the specified comparator.
156 >     *
157 >     * @param  initialCapacity the initial capacity for this priority queue
158 >     * @param  comparator the comparator that will be used to order this
159 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
160 >     *         natural ordering} of the elements will be used.
161 >     * @throws IllegalArgumentException if {@code initialCapacity} is
162 >     *         less than 1
163 >     */
164 >    public PriorityQueue(int initialCapacity,
165 >                         Comparator<? super E> comparator) {
166 >        // Note: This restriction of at least one is not actually needed,
167 >        // but continues for 1.5 compatibility
168          if (initialCapacity < 1)
169              throw new IllegalArgumentException();
170 <        this.queue = new Object[initialCapacity + 1];
170 >        this.queue = new Object[initialCapacity];
171          this.comparator = comparator;
172      }
173  
174      /**
175 <     * Create a <tt>PriorityQueue</tt> containing the elements in the specified
176 <     * collection.  The priority queue has an initial capacity of 110% of the
177 <     * size of the specified collection; or 1 if the collection is empty.
178 <     * If the specified collection
179 <     * implements the {@link Sorted} interface, the priority queue will be
180 <     * sorted according to the same comparator, or according to its elements'
122 <     * natural order if the collection is sorted according to its elements'
123 <     * natural order.  If the specified collection does not implement
124 <     * <tt>Sorted</tt>, the priority queue is ordered according to
125 <     * its elements' natural order.
175 >     * Creates a {@code PriorityQueue} containing the elements in the
176 >     * specified collection.  If the specified collection is an instance of
177 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
178 >     * priority queue will be ordered according to the same ordering.
179 >     * Otherwise, this priority queue will be ordered according to the
180 >     * {@linkplain Comparable natural ordering} of its elements.
181       *
182 <     * @param c the collection whose elements are to be placed
183 <     *        into this priority queue.
182 >     * @param  c the collection whose elements are to be placed
183 >     *         into this priority queue
184       * @throws ClassCastException if elements of the specified collection
185       *         cannot be compared to one another according to the priority
186 <     *         queue's ordering.
187 <     * @throws NullPointerException if <tt>c</tt> or any element within it
188 <     * is <tt>null</tt>
186 >     *         queue's ordering
187 >     * @throws NullPointerException if the specified collection or any
188 >     *         of its elements are null
189       */
190 +    @SuppressWarnings("unchecked")
191      public PriorityQueue(Collection<? extends E> c) {
192 <        int sz = c.size();
193 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
194 <                                            Integer.MAX_VALUE - 1);
195 <        if (initialCapacity < 1)
196 <            initialCapacity = 1;
192 >        if (c instanceof SortedSet<?>) {
193 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 >            this.comparator = (Comparator<? super E>) ss.comparator();
195 >            initElementsFromCollection(ss);
196 >        }
197 >        else if (c instanceof PriorityQueue<?>) {
198 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 >            this.comparator = (Comparator<? super E>) pq.comparator();
200 >            initFromPriorityQueue(pq);
201 >        }
202 >        else {
203 >            this.comparator = null;
204 >            initFromCollection(c);
205 >        }
206 >    }
207  
208 <        this.queue = new Object[initialCapacity + 1];
208 >    /**
209 >     * Creates a {@code PriorityQueue} containing the elements in the
210 >     * specified priority queue.  This priority queue will be
211 >     * ordered according to the same ordering as the given priority
212 >     * queue.
213 >     *
214 >     * @param  c the priority queue whose elements are to be placed
215 >     *         into this priority queue
216 >     * @throws ClassCastException if elements of {@code c} cannot be
217 >     *         compared to one another according to {@code c}'s
218 >     *         ordering
219 >     * @throws NullPointerException if the specified priority queue or any
220 >     *         of its elements are null
221 >     */
222 >    @SuppressWarnings("unchecked")
223 >    public PriorityQueue(PriorityQueue<? extends E> c) {
224 >        this.comparator = (Comparator<? super E>) c.comparator();
225 >        initFromPriorityQueue(c);
226 >    }
227  
228 <        if (c instanceof Sorted) {
229 <            // FIXME: this code assumes too much
230 <            this.comparator = (Comparator<? super E>) ((Sorted)c).comparator();
231 <            for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
232 <                queue[++size] = i.next();
228 >    /**
229 >     * Creates a {@code PriorityQueue} containing the elements in the
230 >     * specified sorted set.   This priority queue will be ordered
231 >     * according to the same ordering as the given sorted set.
232 >     *
233 >     * @param  c the sorted set whose elements are to be placed
234 >     *         into this priority queue
235 >     * @throws ClassCastException if elements of the specified sorted
236 >     *         set cannot be compared to one another according to the
237 >     *         sorted set's ordering
238 >     * @throws NullPointerException if the specified sorted set or any
239 >     *         of its elements are null
240 >     */
241 >    @SuppressWarnings("unchecked")
242 >    public PriorityQueue(SortedSet<? extends E> c) {
243 >        this.comparator = (Comparator<? super E>) c.comparator();
244 >        initElementsFromCollection(c);
245 >    }
246 >
247 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
248 >        if (c.getClass() == PriorityQueue.class) {
249 >            this.queue = c.toArray();
250 >            this.size = c.size();
251          } else {
252 <            comparator = null;
151 <            for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
152 <                add(i.next());
252 >            initFromCollection(c);
253          }
254      }
255  
256 <    // Queue Methods
256 >    private void initElementsFromCollection(Collection<? extends E> c) {
257 >        Object[] a = c.toArray();
258 >        // If c.toArray incorrectly doesn't return Object[], copy it.
259 >        if (a.getClass() != Object[].class)
260 >            a = Arrays.copyOf(a, a.length, Object[].class);
261 >        int len = a.length;
262 >        if (len == 1 || this.comparator != null)
263 >            for (Object e : a)
264 >                if (e == null)
265 >                    throw new NullPointerException();
266 >        this.queue = a;
267 >        this.size = a.length;
268 >    }
269  
270      /**
271 <     * Add the specified element to this priority queue.
271 >     * Initializes queue array with elements from the given Collection.
272       *
273 <     * @param element the element to add.
162 <     * @return <tt>true</tt>
163 <     * @throws ClassCastException if the specified element cannot be compared
164 <     * with elements currently in the priority queue according
165 <     * to the priority queue's ordering.
166 <     * @throws NullPointerException if the specified element is null.
273 >     * @param c the collection
274       */
275 <    public boolean offer(E element) {
276 <        if (element == null)
277 <            throw new NullPointerException();
278 <        modCount++;
172 <        ++size;
275 >    private void initFromCollection(Collection<? extends E> c) {
276 >        initElementsFromCollection(c);
277 >        heapify();
278 >    }
279  
280 <        // Grow backing store if necessary
281 <        while (size >= queue.length) {
282 <            Object[] newQueue = new Object[2 * queue.length];
283 <            System.arraycopy(queue, 0, newQueue, 0, queue.length);
284 <            queue = newQueue;
285 <        }
280 >    /**
281 >     * The maximum size of array to allocate.
282 >     * Some VMs reserve some header words in an array.
283 >     * Attempts to allocate larger arrays may result in
284 >     * OutOfMemoryError: Requested array size exceeds VM limit
285 >     */
286 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
287  
288 <        queue[size] = element;
289 <        fixUp(size);
290 <        return true;
288 >    /**
289 >     * Increases the capacity of the array.
290 >     *
291 >     * @param minCapacity the desired minimum capacity
292 >     */
293 >    private void grow(int minCapacity) {
294 >        int oldCapacity = queue.length;
295 >        // Double size if small; else grow by 50%
296 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
297 >                                         (oldCapacity + 2) :
298 >                                         (oldCapacity >> 1));
299 >        // overflow-conscious code
300 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
301 >            newCapacity = hugeCapacity(minCapacity);
302 >        queue = Arrays.copyOf(queue, newCapacity);
303      }
304  
305 <    public E poll() {
306 <        if (size == 0)
307 <            return null;
308 <        return (E) remove(1);
305 >    private static int hugeCapacity(int minCapacity) {
306 >        if (minCapacity < 0) // overflow
307 >            throw new OutOfMemoryError();
308 >        return (minCapacity > MAX_ARRAY_SIZE) ?
309 >            Integer.MAX_VALUE :
310 >            MAX_ARRAY_SIZE;
311 >    }
312 >
313 >    /**
314 >     * Inserts the specified element into this priority queue.
315 >     *
316 >     * @return {@code true} (as specified by {@link Collection#add})
317 >     * @throws ClassCastException if the specified element cannot be
318 >     *         compared with elements currently in this priority queue
319 >     *         according to the priority queue's ordering
320 >     * @throws NullPointerException if the specified element is null
321 >     */
322 >    public boolean add(E e) {
323 >        return offer(e);
324 >    }
325 >
326 >    /**
327 >     * Inserts the specified element into this priority queue.
328 >     *
329 >     * @return {@code true} (as specified by {@link Queue#offer})
330 >     * @throws ClassCastException if the specified element cannot be
331 >     *         compared with elements currently in this priority queue
332 >     *         according to the priority queue's ordering
333 >     * @throws NullPointerException if the specified element is null
334 >     */
335 >    public boolean offer(E e) {
336 >        if (e == null)
337 >            throw new NullPointerException();
338 >        modCount++;
339 >        int i = size;
340 >        if (i >= queue.length)
341 >            grow(i + 1);
342 >        siftUp(i, e);
343 >        size = i + 1;
344 >        return true;
345      }
346  
347 +    @SuppressWarnings("unchecked")
348      public E peek() {
349 <        return (E) queue[1];
349 >        return (size == 0) ? null : (E) queue[0];
350      }
351  
352 <    // Collection Methods
352 >    private int indexOf(Object o) {
353 >        if (o != null) {
354 >            final Object[] es = queue;
355 >            for (int i = 0, n = size; i < n; i++)
356 >                if (o.equals(es[i]))
357 >                    return i;
358 >        }
359 >        return -1;
360 >    }
361  
362 <    // these first two override just to get the throws docs
362 >    /**
363 >     * Removes a single instance of the specified element from this queue,
364 >     * if it is present.  More formally, removes an element {@code e} such
365 >     * that {@code o.equals(e)}, if this queue contains one or more such
366 >     * elements.  Returns {@code true} if and only if this queue contained
367 >     * the specified element (or equivalently, if this queue changed as a
368 >     * result of the call).
369 >     *
370 >     * @param o element to be removed from this queue, if present
371 >     * @return {@code true} if this queue changed as a result of the call
372 >     */
373 >    public boolean remove(Object o) {
374 >        int i = indexOf(o);
375 >        if (i == -1)
376 >            return false;
377 >        else {
378 >            removeAt(i);
379 >            return true;
380 >        }
381 >    }
382  
383      /**
384 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
385 <     * @throws ClassCastException if the specified element cannot be compared
386 <     * with elements currently in the priority queue according
204 <     * to the priority queue's ordering.
384 >     * Identity-based version for use in Itr.remove.
385 >     *
386 >     * @param o element to be removed from this queue, if present
387       */
388 <    public boolean add(E element) {
389 <        return super.add(element);
388 >    void removeEq(Object o) {
389 >        final Object[] es = queue;
390 >        for (int i = 0, n = size; i < n; i++) {
391 >            if (o == es[i]) {
392 >                removeAt(i);
393 >                break;
394 >            }
395 >        }
396      }
397  
398      /**
399 <     * @throws NullPointerException if any element is <tt>null</tt>.
400 <     * @throws ClassCastException if any element cannot be compared
401 <     * with elements currently in the priority queue according
402 <     * to the priority queue's ordering.
399 >     * Returns {@code true} if this queue contains the specified element.
400 >     * More formally, returns {@code true} if and only if this queue contains
401 >     * at least one element {@code e} such that {@code o.equals(e)}.
402 >     *
403 >     * @param o object to be checked for containment in this queue
404 >     * @return {@code true} if this queue contains the specified element
405       */
406 <    public boolean addAll(Collection<? extends E> c) {
407 <        return super.addAll(c);
406 >    public boolean contains(Object o) {
407 >        return indexOf(o) >= 0;
408      }
409  
410 <    public boolean remove(Object o) {
411 <        if (o == null)
412 <            return false;
410 >    /**
411 >     * Returns an array containing all of the elements in this queue.
412 >     * The elements are in no particular order.
413 >     *
414 >     * <p>The returned array will be "safe" in that no references to it are
415 >     * maintained by this queue.  (In other words, this method must allocate
416 >     * a new array).  The caller is thus free to modify the returned array.
417 >     *
418 >     * <p>This method acts as bridge between array-based and collection-based
419 >     * APIs.
420 >     *
421 >     * @return an array containing all of the elements in this queue
422 >     */
423 >    public Object[] toArray() {
424 >        return Arrays.copyOf(queue, size);
425 >    }
426  
427 <        if (comparator == null) {
428 <            for (int i = 1; i <= size; i++) {
429 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
430 <                    remove(i);
431 <                    return true;
432 <                }
433 <            }
434 <        } else {
435 <            for (int i = 1; i <= size; i++) {
436 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
437 <                    remove(i);
438 <                    return true;
439 <                }
440 <            }
441 <        }
442 <        return false;
427 >    /**
428 >     * Returns an array containing all of the elements in this queue; the
429 >     * runtime type of the returned array is that of the specified array.
430 >     * The returned array elements are in no particular order.
431 >     * If the queue fits in the specified array, it is returned therein.
432 >     * Otherwise, a new array is allocated with the runtime type of the
433 >     * specified array and the size of this queue.
434 >     *
435 >     * <p>If the queue fits in the specified array with room to spare
436 >     * (i.e., the array has more elements than the queue), the element in
437 >     * the array immediately following the end of the collection is set to
438 >     * {@code null}.
439 >     *
440 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
441 >     * array-based and collection-based APIs.  Further, this method allows
442 >     * precise control over the runtime type of the output array, and may,
443 >     * under certain circumstances, be used to save allocation costs.
444 >     *
445 >     * <p>Suppose {@code x} is a queue known to contain only strings.
446 >     * The following code can be used to dump the queue into a newly
447 >     * allocated array of {@code String}:
448 >     *
449 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
450 >     *
451 >     * Note that {@code toArray(new Object[0])} is identical in function to
452 >     * {@code toArray()}.
453 >     *
454 >     * @param a the array into which the elements of the queue are to
455 >     *          be stored, if it is big enough; otherwise, a new array of the
456 >     *          same runtime type is allocated for this purpose.
457 >     * @return an array containing all of the elements in this queue
458 >     * @throws ArrayStoreException if the runtime type of the specified array
459 >     *         is not a supertype of the runtime type of every element in
460 >     *         this queue
461 >     * @throws NullPointerException if the specified array is null
462 >     */
463 >    @SuppressWarnings("unchecked")
464 >    public <T> T[] toArray(T[] a) {
465 >        final int size = this.size;
466 >        if (a.length < size)
467 >            // Make a new array of a's runtime type, but my contents:
468 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
469 >        System.arraycopy(queue, 0, a, 0, size);
470 >        if (a.length > size)
471 >            a[size] = null;
472 >        return a;
473      }
474  
475 +    /**
476 +     * Returns an iterator over the elements in this queue. The iterator
477 +     * does not return the elements in any particular order.
478 +     *
479 +     * @return an iterator over the elements in this queue
480 +     */
481      public Iterator<E> iterator() {
482          return new Itr();
483      }
484  
485 <    private class Itr implements Iterator<E> {
485 >    private final class Itr implements Iterator<E> {
486          /**
487           * Index (into queue array) of element to be returned by
488           * subsequent call to next.
489           */
490 <        private int cursor = 1;
490 >        private int cursor;
491 >
492 >        /**
493 >         * Index of element returned by most recent call to next,
494 >         * unless that element came from the forgetMeNot list.
495 >         * Set to -1 if element is deleted by a call to remove.
496 >         */
497 >        private int lastRet = -1;
498 >
499 >        /**
500 >         * A queue of elements that were moved from the unvisited portion of
501 >         * the heap into the visited portion as a result of "unlucky" element
502 >         * removals during the iteration.  (Unlucky element removals are those
503 >         * that require a siftup instead of a siftdown.)  We must visit all of
504 >         * the elements in this list to complete the iteration.  We do this
505 >         * after we've completed the "normal" iteration.
506 >         *
507 >         * We expect that most iterations, even those involving removals,
508 >         * will not need to store elements in this field.
509 >         */
510 >        private ArrayDeque<E> forgetMeNot;
511  
512          /**
513 <         * Index of element returned by most recent call to next or
514 <         * previous.  Reset to 0 if this element is deleted by a call
256 <         * to remove.
513 >         * Element returned by the most recent call to next iff that
514 >         * element was drawn from the forgetMeNot list.
515           */
516 <        private int lastRet = 0;
516 >        private E lastRetElt;
517  
518          /**
519           * The modCount value that the iterator believes that the backing
520 <         * List should have.  If this expectation is violated, the iterator
520 >         * Queue should have.  If this expectation is violated, the iterator
521           * has detected concurrent modification.
522           */
523          private int expectedModCount = modCount;
524  
525 +        Itr() {}                        // prevent access constructor creation
526 +
527          public boolean hasNext() {
528 <            return cursor <= size;
528 >            return cursor < size ||
529 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
530          }
531  
532 +        @SuppressWarnings("unchecked")
533          public E next() {
534 <            checkForComodification();
535 <            if (cursor > size)
536 <                throw new NoSuchElementException();
537 <            E result = (E) queue[cursor];
538 <            lastRet = cursor++;
539 <            return result;
534 >            if (expectedModCount != modCount)
535 >                throw new ConcurrentModificationException();
536 >            if (cursor < size)
537 >                return (E) queue[lastRet = cursor++];
538 >            if (forgetMeNot != null) {
539 >                lastRet = -1;
540 >                lastRetElt = forgetMeNot.poll();
541 >                if (lastRetElt != null)
542 >                    return lastRetElt;
543 >            }
544 >            throw new NoSuchElementException();
545          }
546  
547          public void remove() {
548 <            if (lastRet == 0)
548 >            if (expectedModCount != modCount)
549 >                throw new ConcurrentModificationException();
550 >            if (lastRet != -1) {
551 >                E moved = PriorityQueue.this.removeAt(lastRet);
552 >                lastRet = -1;
553 >                if (moved == null)
554 >                    cursor--;
555 >                else {
556 >                    if (forgetMeNot == null)
557 >                        forgetMeNot = new ArrayDeque<>();
558 >                    forgetMeNot.add(moved);
559 >                }
560 >            } else if (lastRetElt != null) {
561 >                PriorityQueue.this.removeEq(lastRetElt);
562 >                lastRetElt = null;
563 >            } else {
564                  throw new IllegalStateException();
565 <            checkForComodification();
284 <
285 <            PriorityQueue.this.remove(lastRet);
286 <            if (lastRet < cursor)
287 <                cursor--;
288 <            lastRet = 0;
565 >            }
566              expectedModCount = modCount;
567          }
291
292        final void checkForComodification() {
293            if (modCount != expectedModCount)
294                throw new ConcurrentModificationException();
295        }
568      }
569  
298    /**
299     * Returns the number of elements in this priority queue.
300     *
301     * @return the number of elements in this priority queue.
302     */
570      public int size() {
571          return size;
572      }
573  
574      /**
575 <     * Remove all elements from the priority queue.
575 >     * Removes all of the elements from this priority queue.
576 >     * The queue will be empty after this call returns.
577       */
578      public void clear() {
579          modCount++;
580 <
581 <        // Null out element references to prevent memory leak
582 <        for (int i=1; i<=size; i++)
315 <            queue[i] = null;
316 <
580 >        final Object[] es = queue;
581 >        for (int i = 0, n = size; i < n; i++)
582 >            es[i] = null;
583          size = 0;
584      }
585  
586 <    /**
587 <     * Removes and returns the ith element from queue.  Recall
588 <     * that queue is one-based, so 1 <= i <= size.
589 <     *
590 <     * XXX: Could further special-case i==size, but is it worth it?
325 <     * XXX: Could special-case i==0, but is it worth it?
326 <     */
327 <    private E remove(int i) {
328 <        assert i <= size;
586 >    @SuppressWarnings("unchecked")
587 >    public E poll() {
588 >        if (size == 0)
589 >            return null;
590 >        int s = --size;
591          modCount++;
592 <
593 <        E result = (E) queue[i];
594 <        queue[i] = queue[size];
595 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
596 <        if (i <= size)
335 <            fixDown(i);
592 >        E result = (E) queue[0];
593 >        E x = (E) queue[s];
594 >        queue[s] = null;
595 >        if (s != 0)
596 >            siftDown(0, x);
597          return result;
598      }
599  
600      /**
601 <     * Establishes the heap invariant (described above) assuming the heap
602 <     * satisfies the invariant except possibly for the leaf-node indexed by k
603 <     * (which may have a nextExecutionTime less than its parent's).
604 <     *
605 <     * This method functions by "promoting" queue[k] up the hierarchy
606 <     * (by swapping it with its parent) repeatedly until queue[k]
607 <     * is greater than or equal to its parent.
608 <     */
609 <    private void fixUp(int k) {
610 <        if (comparator == null) {
611 <            while (k > 1) {
612 <                int j = k >> 1;
613 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
614 <                    break;
615 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
616 <                k = j;
617 <            }
618 <        } else {
619 <            while (k > 1) {
620 <                int j = k >> 1;
621 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
622 <                    break;
623 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
624 <                k = j;
601 >     * Removes the ith element from queue.
602 >     *
603 >     * Normally this method leaves the elements at up to i-1,
604 >     * inclusive, untouched.  Under these circumstances, it returns
605 >     * null.  Occasionally, in order to maintain the heap invariant,
606 >     * it must swap a later element of the list with one earlier than
607 >     * i.  Under these circumstances, this method returns the element
608 >     * that was previously at the end of the list and is now at some
609 >     * position before i. This fact is used by iterator.remove so as to
610 >     * avoid missing traversing elements.
611 >     */
612 >    @SuppressWarnings("unchecked")
613 >    E removeAt(int i) {
614 >        // assert i >= 0 && i < size;
615 >        modCount++;
616 >        int s = --size;
617 >        if (s == i) // removed last element
618 >            queue[i] = null;
619 >        else {
620 >            E moved = (E) queue[s];
621 >            queue[s] = null;
622 >            siftDown(i, moved);
623 >            if (queue[i] == moved) {
624 >                siftUp(i, moved);
625 >                if (queue[i] != moved)
626 >                    return moved;
627              }
628          }
629 +        return null;
630      }
631  
632      /**
633 <     * Establishes the heap invariant (described above) in the subtree
634 <     * rooted at k, which is assumed to satisfy the heap invariant except
635 <     * possibly for node k itself (which may be greater than its children).
636 <     *
637 <     * This method functions by "demoting" queue[k] down the hierarchy
638 <     * (by swapping it with its smaller child) repeatedly until queue[k]
639 <     * is less than or equal to its children.
640 <     */
641 <    private void fixDown(int k) {
642 <        int j;
643 <        if (comparator == null) {
644 <            while ((j = k << 1) <= size) {
645 <                if (j<size && ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
646 <                    j++; // j indexes smallest kid
647 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
648 <                    break;
649 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
650 <                k = j;
651 <            }
652 <        } else {
653 <            while ((j = k << 1) <= size) {
654 <                if (j < size && comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
655 <                    j++; // j indexes smallest kid
656 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
657 <                    break;
658 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
659 <                k = j;
660 <            }
633 >     * Inserts item x at position k, maintaining heap invariant by
634 >     * promoting x up the tree until it is greater than or equal to
635 >     * its parent, or is the root.
636 >     *
637 >     * To simplify and speed up coercions and comparisons, the
638 >     * Comparable and Comparator versions are separated into different
639 >     * methods that are otherwise identical. (Similarly for siftDown.)
640 >     *
641 >     * @param k the position to fill
642 >     * @param x the item to insert
643 >     */
644 >    private void siftUp(int k, E x) {
645 >        if (comparator != null)
646 >            siftUpUsingComparator(k, x);
647 >        else
648 >            siftUpComparable(k, x);
649 >    }
650 >
651 >    @SuppressWarnings("unchecked")
652 >    private void siftUpComparable(int k, E x) {
653 >        Comparable<? super E> key = (Comparable<? super E>) x;
654 >        while (k > 0) {
655 >            int parent = (k - 1) >>> 1;
656 >            Object e = queue[parent];
657 >            if (key.compareTo((E) e) >= 0)
658 >                break;
659 >            queue[k] = e;
660 >            k = parent;
661 >        }
662 >        queue[k] = key;
663 >    }
664 >
665 >    @SuppressWarnings("unchecked")
666 >    private void siftUpUsingComparator(int k, E x) {
667 >        while (k > 0) {
668 >            int parent = (k - 1) >>> 1;
669 >            Object e = queue[parent];
670 >            if (comparator.compare(x, (E) e) >= 0)
671 >                break;
672 >            queue[k] = e;
673 >            k = parent;
674 >        }
675 >        queue[k] = x;
676 >    }
677 >
678 >    /**
679 >     * Inserts item x at position k, maintaining heap invariant by
680 >     * demoting x down the tree repeatedly until it is less than or
681 >     * equal to its children or is a leaf.
682 >     *
683 >     * @param k the position to fill
684 >     * @param x the item to insert
685 >     */
686 >    private void siftDown(int k, E x) {
687 >        if (comparator != null)
688 >            siftDownUsingComparator(k, x);
689 >        else
690 >            siftDownComparable(k, x);
691 >    }
692 >
693 >    @SuppressWarnings("unchecked")
694 >    private void siftDownComparable(int k, E x) {
695 >        Comparable<? super E> key = (Comparable<? super E>)x;
696 >        int half = size >>> 1;        // loop while a non-leaf
697 >        while (k < half) {
698 >            int child = (k << 1) + 1; // assume left child is least
699 >            Object c = queue[child];
700 >            int right = child + 1;
701 >            if (right < size &&
702 >                ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
703 >                c = queue[child = right];
704 >            if (key.compareTo((E) c) <= 0)
705 >                break;
706 >            queue[k] = c;
707 >            k = child;
708 >        }
709 >        queue[k] = key;
710 >    }
711 >
712 >    @SuppressWarnings("unchecked")
713 >    private void siftDownUsingComparator(int k, E x) {
714 >        int half = size >>> 1;
715 >        while (k < half) {
716 >            int child = (k << 1) + 1;
717 >            Object c = queue[child];
718 >            int right = child + 1;
719 >            if (right < size &&
720 >                comparator.compare((E) c, (E) queue[right]) > 0)
721 >                c = queue[child = right];
722 >            if (comparator.compare(x, (E) c) <= 0)
723 >                break;
724 >            queue[k] = c;
725 >            k = child;
726          }
727 +        queue[k] = x;
728 +    }
729 +
730 +    /**
731 +     * Establishes the heap invariant (described above) in the entire tree,
732 +     * assuming nothing about the order of the elements prior to the call.
733 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
734 +     */
735 +    @SuppressWarnings("unchecked")
736 +    private void heapify() {
737 +        final Object[] es = queue;
738 +        int i = (size >>> 1) - 1;
739 +        if (comparator == null)
740 +            for (; i >= 0; i--)
741 +                siftDownComparable(i, (E) es[i]);
742 +        else
743 +            for (; i >= 0; i--)
744 +                siftDownUsingComparator(i, (E) es[i]);
745      }
746  
747 +    /**
748 +     * Returns the comparator used to order the elements in this
749 +     * queue, or {@code null} if this queue is sorted according to
750 +     * the {@linkplain Comparable natural ordering} of its elements.
751 +     *
752 +     * @return the comparator used to order this queue, or
753 +     *         {@code null} if this queue is sorted according to the
754 +     *         natural ordering of its elements
755 +     */
756      public Comparator<? super E> comparator() {
757          return comparator;
758      }
759  
760      /**
761 <     * Save the state of the instance to a stream (that
406 <     * is, serialize it).
761 >     * Saves this queue to a stream (that is, serializes it).
762       *
408     * @serialData The length of the array backing the instance is
409     * emitted (int), followed by all of its elements (each an
410     * <tt>Object</tt>) in the proper order.
763       * @param s the stream
764 +     * @throws java.io.IOException if an I/O error occurs
765 +     * @serialData The length of the array backing the instance is
766 +     *             emitted (int), followed by all of its elements
767 +     *             (each an {@code Object}) in the proper order.
768       */
769 <    private synchronized void writeObject(java.io.ObjectOutputStream s)
770 <        throws java.io.IOException{
769 >    private void writeObject(java.io.ObjectOutputStream s)
770 >        throws java.io.IOException {
771          // Write out element count, and any hidden stuff
772          s.defaultWriteObject();
773  
774 <        // Write out array length
775 <        s.writeInt(queue.length);
774 >        // Write out array length, for compatibility with 1.5 version
775 >        s.writeInt(Math.max(2, size + 1));
776  
777 <        // Write out all elements in the proper order.
778 <        for (int i=0; i<size; i++)
779 <            s.writeObject(queue[i]);
777 >        // Write out all elements in the "proper order".
778 >        final Object[] es = queue;
779 >        for (int i = 0, n = size; i < n; i++)
780 >            s.writeObject(es[i]);
781      }
782  
783      /**
784 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
785 <     * deserialize it).
784 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
785 >     * (that is, deserializes it).
786 >     *
787       * @param s the stream
788 +     * @throws ClassNotFoundException if the class of a serialized object
789 +     *         could not be found
790 +     * @throws java.io.IOException if an I/O error occurs
791       */
792 <    private synchronized void readObject(java.io.ObjectInputStream s)
792 >    private void readObject(java.io.ObjectInputStream s)
793          throws java.io.IOException, ClassNotFoundException {
794          // Read in size, and any hidden stuff
795          s.defaultReadObject();
796  
797 <        // Read in array length and allocate array
798 <        int arrayLength = s.readInt();
799 <        queue = new Object[arrayLength];
800 <
801 <        // Read in all elements in the proper order.
802 <        for (int i=0; i<size; i++)
803 <            queue[i] = s.readObject();
797 >        // Read in (and discard) array length
798 >        s.readInt();
799 >
800 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
801 >        queue = new Object[size];
802 >
803 >        // Read in all elements.
804 >        final Object[] es = queue;
805 >        for (int i = 0, n = size; i < n; i++)
806 >            es[i] = s.readObject();
807 >
808 >        // Elements are guaranteed to be in "proper order", but the
809 >        // spec has never explained what that might be.
810 >        heapify();
811      }
812  
813 < }
813 >    /**
814 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
815 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
816 >     * queue. The spliterator does not traverse elements in any particular order
817 >     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
818 >     *
819 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
820 >     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
821 >     * Overriding implementations should document the reporting of additional
822 >     * characteristic values.
823 >     *
824 >     * @return a {@code Spliterator} over the elements in this queue
825 >     * @since 1.8
826 >     */
827 >    public final Spliterator<E> spliterator() {
828 >        return new PriorityQueueSpliterator(0, -1, 0);
829 >    }
830 >
831 >    final class PriorityQueueSpliterator implements Spliterator<E> {
832 >        private int index;            // current index, modified on advance/split
833 >        private int fence;            // -1 until first use
834 >        private int expectedModCount; // initialized when fence set
835 >
836 >        /** Creates new spliterator covering the given range. */
837 >        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
838 >            this.index = origin;
839 >            this.fence = fence;
840 >            this.expectedModCount = expectedModCount;
841 >        }
842  
843 +        private int getFence() { // initialize fence to size on first use
844 +            int hi;
845 +            if ((hi = fence) < 0) {
846 +                expectedModCount = modCount;
847 +                hi = fence = size;
848 +            }
849 +            return hi;
850 +        }
851 +
852 +        public PriorityQueueSpliterator trySplit() {
853 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
854 +            return (lo >= mid) ? null :
855 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
856 +        }
857 +
858 +        @SuppressWarnings("unchecked")
859 +        public void forEachRemaining(Consumer<? super E> action) {
860 +            if (action == null)
861 +                throw new NullPointerException();
862 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
863 +            final Object[] a = queue;
864 +            int i, hi; E e;
865 +            for (i = index, index = hi = fence; i < hi; i++) {
866 +                if ((e = (E) a[i]) == null)
867 +                    break;      // must be CME
868 +                action.accept(e);
869 +            }
870 +            if (modCount != expectedModCount)
871 +                throw new ConcurrentModificationException();
872 +        }
873 +
874 +        @SuppressWarnings("unchecked")
875 +        public boolean tryAdvance(Consumer<? super E> action) {
876 +            if (action == null)
877 +                throw new NullPointerException();
878 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
879 +            int i;
880 +            if ((i = index) < fence) {
881 +                index = i + 1;
882 +                E e;
883 +                if ((e = (E) queue[i]) == null
884 +                    || modCount != expectedModCount)
885 +                    throw new ConcurrentModificationException();
886 +                action.accept(e);
887 +                return true;
888 +            }
889 +            return false;
890 +        }
891 +
892 +        public long estimateSize() {
893 +            return getFence() - index;
894 +        }
895 +
896 +        public int characteristics() {
897 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
898 +        }
899 +    }
900 +
901 +    /**
902 +     * @throws NullPointerException {@inheritDoc}
903 +     */
904 +    @SuppressWarnings("unchecked")
905 +    public void forEach(Consumer<? super E> action) {
906 +        Objects.requireNonNull(action);
907 +        final int expectedModCount = modCount;
908 +        final Object[] es = queue;
909 +        for (int i = 0, n = size; i < n; i++)
910 +            action.accept((E) es[i]);
911 +        if (expectedModCount != modCount)
912 +            throw new ConcurrentModificationException();
913 +    }
914 + }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines