ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.1 by tim, Wed May 14 21:30:45 2003 UTC vs.
Revision 1.124 by jsr166, Sun May 6 19:35:51 2018 UTC

# Line 1 | Line 1
1 + /*
2 + * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 + *
5 + * This code is free software; you can redistribute it and/or modify it
6 + * under the terms of the GNU General Public License version 2 only, as
7 + * published by the Free Software Foundation.  Oracle designates this
8 + * particular file as subject to the "Classpath" exception as provided
9 + * by Oracle in the LICENSE file that accompanied this code.
10 + *
11 + * This code is distributed in the hope that it will be useful, but WITHOUT
12 + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 + * version 2 for more details (a copy is included in the LICENSE file that
15 + * accompanied this code).
16 + *
17 + * You should have received a copy of the GNU General Public License version
18 + * 2 along with this work; if not, write to the Free Software Foundation,
19 + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 + *
21 + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 + * or visit www.oracle.com if you need additional information or have any
23 + * questions.
24 + */
25 +
26   package java.util;
27  
28 < import java.util.*;
28 > import java.util.function.Consumer;
29 > import jdk.internal.misc.SharedSecrets;
30  
31   /**
32 < * An unbounded (resizable) priority queue based on a priority
33 < * heap.The take operation returns the least element with respect to
34 < * the given ordering. (If more than one element is tied for least
35 < * value, one of them is arbitrarily chosen to be returned -- no
36 < * guarantees are made for ordering across ties.) Ordering follows the
37 < * java.util.Collection conventions: Either the elements must be
38 < * Comparable, or a Comparator must be supplied. Comparison failures
39 < * throw ClassCastExceptions during insertions and extractions.
40 < **/
41 < public class PriorityQueue<E> extends AbstractCollection<E> implements Queue<E> {
42 <    public PriorityQueue(int initialCapacity) {}
43 <    public PriorityQueue(int initialCapacity, Comparator comparator) {}
44 <
45 <    public PriorityQueue(int initialCapacity, Collection initialElements) {}
46 <
47 <    public PriorityQueue(int initialCapacity, Comparator comparator, Collection initialElements) {}
48 <
49 <    public boolean add(E x) {
50 <        return false;
32 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 > * The elements of the priority queue are ordered according to their
34 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 > * provided at queue construction time, depending on which constructor is
36 > * used.  A priority queue does not permit {@code null} elements.
37 > * A priority queue relying on natural ordering also does not permit
38 > * insertion of non-comparable objects (doing so may result in
39 > * {@code ClassCastException}).
40 > *
41 > * <p>The <em>head</em> of this queue is the <em>least</em> element
42 > * with respect to the specified ordering.  If multiple elements are
43 > * tied for least value, the head is one of those elements -- ties are
44 > * broken arbitrarily.  The queue retrieval operations {@code poll},
45 > * {@code remove}, {@code peek}, and {@code element} access the
46 > * element at the head of the queue.
47 > *
48 > * <p>A priority queue is unbounded, but has an internal
49 > * <i>capacity</i> governing the size of an array used to store the
50 > * elements on the queue.  It is always at least as large as the queue
51 > * size.  As elements are added to a priority queue, its capacity
52 > * grows automatically.  The details of the growth policy are not
53 > * specified.
54 > *
55 > * <p>This class and its iterator implement all of the
56 > * <em>optional</em> methods of the {@link Collection} and {@link
57 > * Iterator} interfaces.  The Iterator provided in method {@link
58 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 > * are <em>not</em> guaranteed to traverse the elements of
60 > * the priority queue in any particular order. If you need ordered
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 > *
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67 > * java.util.concurrent.PriorityBlockingQueue} class.
68 > *
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueuing and dequeuing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75 > *
76 > * <p>This class is a member of the
77 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78 > * Java Collections Framework</a>.
79 > *
80 > * @since 1.5
81 > * @author Josh Bloch, Doug Lea
82 > * @param <E> the type of elements held in this queue
83 > */
84 > @SuppressWarnings("unchecked")
85 > public class PriorityQueue<E> extends AbstractQueue<E>
86 >    implements java.io.Serializable {
87 >
88 >    private static final long serialVersionUID = -7720805057305804111L;
89 >
90 >    private static final int DEFAULT_INITIAL_CAPACITY = 11;
91 >
92 >    /**
93 >     * Priority queue represented as a balanced binary heap: the two
94 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
95 >     * priority queue is ordered by comparator, or by the elements'
96 >     * natural ordering, if comparator is null: For each node n in the
97 >     * heap and each descendant d of n, n <= d.  The element with the
98 >     * lowest value is in queue[0], assuming the queue is nonempty.
99 >     */
100 >    transient Object[] queue; // non-private to simplify nested class access
101 >
102 >    /**
103 >     * The number of elements in the priority queue.
104 >     */
105 >    int size;
106 >
107 >    /**
108 >     * The comparator, or null if priority queue uses elements'
109 >     * natural ordering.
110 >     */
111 >    private final Comparator<? super E> comparator;
112 >
113 >    /**
114 >     * The number of times this priority queue has been
115 >     * <i>structurally modified</i>.  See AbstractList for gory details.
116 >     */
117 >    transient int modCount;     // non-private to simplify nested class access
118 >
119 >    /**
120 >     * Creates a {@code PriorityQueue} with the default initial
121 >     * capacity (11) that orders its elements according to their
122 >     * {@linkplain Comparable natural ordering}.
123 >     */
124 >    public PriorityQueue() {
125 >        this(DEFAULT_INITIAL_CAPACITY, null);
126      }
127 <    public boolean offer(E x) {
128 <        return false;
127 >
128 >    /**
129 >     * Creates a {@code PriorityQueue} with the specified initial
130 >     * capacity that orders its elements according to their
131 >     * {@linkplain Comparable natural ordering}.
132 >     *
133 >     * @param initialCapacity the initial capacity for this priority queue
134 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
135 >     *         than 1
136 >     */
137 >    public PriorityQueue(int initialCapacity) {
138 >        this(initialCapacity, null);
139      }
140 <    public boolean remove(Object x) {
141 <        return false;
140 >
141 >    /**
142 >     * Creates a {@code PriorityQueue} with the default initial capacity and
143 >     * whose elements are ordered according to the specified comparator.
144 >     *
145 >     * @param  comparator the comparator that will be used to order this
146 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
147 >     *         natural ordering} of the elements will be used.
148 >     * @since 1.8
149 >     */
150 >    public PriorityQueue(Comparator<? super E> comparator) {
151 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
152      }
153  
154 <    public E remove() {
155 <        return null;
154 >    /**
155 >     * Creates a {@code PriorityQueue} with the specified initial capacity
156 >     * that orders its elements according to the specified comparator.
157 >     *
158 >     * @param  initialCapacity the initial capacity for this priority queue
159 >     * @param  comparator the comparator that will be used to order this
160 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
161 >     *         natural ordering} of the elements will be used.
162 >     * @throws IllegalArgumentException if {@code initialCapacity} is
163 >     *         less than 1
164 >     */
165 >    public PriorityQueue(int initialCapacity,
166 >                         Comparator<? super E> comparator) {
167 >        // Note: This restriction of at least one is not actually needed,
168 >        // but continues for 1.5 compatibility
169 >        if (initialCapacity < 1)
170 >            throw new IllegalArgumentException();
171 >        this.queue = new Object[initialCapacity];
172 >        this.comparator = comparator;
173      }
174 <    public Iterator<E> iterator() {
175 <      return null;
174 >
175 >    /**
176 >     * Creates a {@code PriorityQueue} containing the elements in the
177 >     * specified collection.  If the specified collection is an instance of
178 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
179 >     * priority queue will be ordered according to the same ordering.
180 >     * Otherwise, this priority queue will be ordered according to the
181 >     * {@linkplain Comparable natural ordering} of its elements.
182 >     *
183 >     * @param  c the collection whose elements are to be placed
184 >     *         into this priority queue
185 >     * @throws ClassCastException if elements of the specified collection
186 >     *         cannot be compared to one another according to the priority
187 >     *         queue's ordering
188 >     * @throws NullPointerException if the specified collection or any
189 >     *         of its elements are null
190 >     */
191 >    public PriorityQueue(Collection<? extends E> c) {
192 >        if (c instanceof SortedSet<?>) {
193 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 >            this.comparator = (Comparator<? super E>) ss.comparator();
195 >            initElementsFromCollection(ss);
196 >        }
197 >        else if (c instanceof PriorityQueue<?>) {
198 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 >            this.comparator = (Comparator<? super E>) pq.comparator();
200 >            initFromPriorityQueue(pq);
201 >        }
202 >        else {
203 >            this.comparator = null;
204 >            initFromCollection(c);
205 >        }
206      }
207  
208 <    public E element() {
209 <        return null;
208 >    /**
209 >     * Creates a {@code PriorityQueue} containing the elements in the
210 >     * specified priority queue.  This priority queue will be
211 >     * ordered according to the same ordering as the given priority
212 >     * queue.
213 >     *
214 >     * @param  c the priority queue whose elements are to be placed
215 >     *         into this priority queue
216 >     * @throws ClassCastException if elements of {@code c} cannot be
217 >     *         compared to one another according to {@code c}'s
218 >     *         ordering
219 >     * @throws NullPointerException if the specified priority queue or any
220 >     *         of its elements are null
221 >     */
222 >    public PriorityQueue(PriorityQueue<? extends E> c) {
223 >        this.comparator = (Comparator<? super E>) c.comparator();
224 >        initFromPriorityQueue(c);
225      }
226 <    public E poll() {
227 <        return null;
226 >
227 >    /**
228 >     * Creates a {@code PriorityQueue} containing the elements in the
229 >     * specified sorted set.   This priority queue will be ordered
230 >     * according to the same ordering as the given sorted set.
231 >     *
232 >     * @param  c the sorted set whose elements are to be placed
233 >     *         into this priority queue
234 >     * @throws ClassCastException if elements of the specified sorted
235 >     *         set cannot be compared to one another according to the
236 >     *         sorted set's ordering
237 >     * @throws NullPointerException if the specified sorted set or any
238 >     *         of its elements are null
239 >     */
240 >    public PriorityQueue(SortedSet<? extends E> c) {
241 >        this.comparator = (Comparator<? super E>) c.comparator();
242 >        initElementsFromCollection(c);
243 >    }
244 >
245 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
246 >        if (c.getClass() == PriorityQueue.class) {
247 >            this.queue = c.toArray();
248 >            this.size = c.size();
249 >        } else {
250 >            initFromCollection(c);
251 >        }
252 >    }
253 >
254 >    private void initElementsFromCollection(Collection<? extends E> c) {
255 >        Object[] es = c.toArray();
256 >        int len = es.length;
257 >        // If c.toArray incorrectly doesn't return Object[], copy it.
258 >        if (es.getClass() != Object[].class)
259 >            es = Arrays.copyOf(es, len, Object[].class);
260 >        if (len == 1 || this.comparator != null)
261 >            for (Object e : es)
262 >                if (e == null)
263 >                    throw new NullPointerException();
264 >        this.queue = es;
265 >        this.size = len;
266 >    }
267 >
268 >    /**
269 >     * Initializes queue array with elements from the given Collection.
270 >     *
271 >     * @param c the collection
272 >     */
273 >    private void initFromCollection(Collection<? extends E> c) {
274 >        initElementsFromCollection(c);
275 >        heapify();
276 >    }
277 >
278 >    /**
279 >     * The maximum size of array to allocate.
280 >     * Some VMs reserve some header words in an array.
281 >     * Attempts to allocate larger arrays may result in
282 >     * OutOfMemoryError: Requested array size exceeds VM limit
283 >     */
284 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
285 >
286 >    /**
287 >     * Increases the capacity of the array.
288 >     *
289 >     * @param minCapacity the desired minimum capacity
290 >     */
291 >    private void grow(int minCapacity) {
292 >        int oldCapacity = queue.length;
293 >        // Double size if small; else grow by 50%
294 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
295 >                                         (oldCapacity + 2) :
296 >                                         (oldCapacity >> 1));
297 >        // overflow-conscious code
298 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
299 >            newCapacity = hugeCapacity(minCapacity);
300 >        queue = Arrays.copyOf(queue, newCapacity);
301      }
302 +
303 +    private static int hugeCapacity(int minCapacity) {
304 +        if (minCapacity < 0) // overflow
305 +            throw new OutOfMemoryError();
306 +        return (minCapacity > MAX_ARRAY_SIZE) ?
307 +            Integer.MAX_VALUE :
308 +            MAX_ARRAY_SIZE;
309 +    }
310 +
311 +    /**
312 +     * Inserts the specified element into this priority queue.
313 +     *
314 +     * @return {@code true} (as specified by {@link Collection#add})
315 +     * @throws ClassCastException if the specified element cannot be
316 +     *         compared with elements currently in this priority queue
317 +     *         according to the priority queue's ordering
318 +     * @throws NullPointerException if the specified element is null
319 +     */
320 +    public boolean add(E e) {
321 +        return offer(e);
322 +    }
323 +
324 +    /**
325 +     * Inserts the specified element into this priority queue.
326 +     *
327 +     * @return {@code true} (as specified by {@link Queue#offer})
328 +     * @throws ClassCastException if the specified element cannot be
329 +     *         compared with elements currently in this priority queue
330 +     *         according to the priority queue's ordering
331 +     * @throws NullPointerException if the specified element is null
332 +     */
333 +    public boolean offer(E e) {
334 +        if (e == null)
335 +            throw new NullPointerException();
336 +        modCount++;
337 +        int i = size;
338 +        if (i >= queue.length)
339 +            grow(i + 1);
340 +        siftUp(i, e);
341 +        size = i + 1;
342 +        return true;
343 +    }
344 +
345      public E peek() {
346 <        return null;
346 >        return (size == 0) ? null : (E) queue[0];
347      }
348  
349 <    public boolean isEmpty() {
350 <        return false;
349 >    private int indexOf(Object o) {
350 >        if (o != null) {
351 >            final Object[] es = queue;
352 >            for (int i = 0, n = size; i < n; i++)
353 >                if (o.equals(es[i]))
354 >                    return i;
355 >        }
356 >        return -1;
357      }
358 <    public int size() {
359 <        return 0;
358 >
359 >    /**
360 >     * Removes a single instance of the specified element from this queue,
361 >     * if it is present.  More formally, removes an element {@code e} such
362 >     * that {@code o.equals(e)}, if this queue contains one or more such
363 >     * elements.  Returns {@code true} if and only if this queue contained
364 >     * the specified element (or equivalently, if this queue changed as a
365 >     * result of the call).
366 >     *
367 >     * @param o element to be removed from this queue, if present
368 >     * @return {@code true} if this queue changed as a result of the call
369 >     */
370 >    public boolean remove(Object o) {
371 >        int i = indexOf(o);
372 >        if (i == -1)
373 >            return false;
374 >        else {
375 >            removeAt(i);
376 >            return true;
377 >        }
378 >    }
379 >
380 >    /**
381 >     * Identity-based version for use in Itr.remove.
382 >     *
383 >     * @param o element to be removed from this queue, if present
384 >     */
385 >    void removeEq(Object o) {
386 >        final Object[] es = queue;
387 >        for (int i = 0, n = size; i < n; i++) {
388 >            if (o == es[i]) {
389 >                removeAt(i);
390 >                break;
391 >            }
392 >        }
393 >    }
394 >
395 >    /**
396 >     * Returns {@code true} if this queue contains the specified element.
397 >     * More formally, returns {@code true} if and only if this queue contains
398 >     * at least one element {@code e} such that {@code o.equals(e)}.
399 >     *
400 >     * @param o object to be checked for containment in this queue
401 >     * @return {@code true} if this queue contains the specified element
402 >     */
403 >    public boolean contains(Object o) {
404 >        return indexOf(o) >= 0;
405      }
406 +
407 +    /**
408 +     * Returns an array containing all of the elements in this queue.
409 +     * The elements are in no particular order.
410 +     *
411 +     * <p>The returned array will be "safe" in that no references to it are
412 +     * maintained by this queue.  (In other words, this method must allocate
413 +     * a new array).  The caller is thus free to modify the returned array.
414 +     *
415 +     * <p>This method acts as bridge between array-based and collection-based
416 +     * APIs.
417 +     *
418 +     * @return an array containing all of the elements in this queue
419 +     */
420      public Object[] toArray() {
421 <        return null;
421 >        return Arrays.copyOf(queue, size);
422      }
423  
424 <    public <T> T[] toArray(T[] array) {
424 >    /**
425 >     * Returns an array containing all of the elements in this queue; the
426 >     * runtime type of the returned array is that of the specified array.
427 >     * The returned array elements are in no particular order.
428 >     * If the queue fits in the specified array, it is returned therein.
429 >     * Otherwise, a new array is allocated with the runtime type of the
430 >     * specified array and the size of this queue.
431 >     *
432 >     * <p>If the queue fits in the specified array with room to spare
433 >     * (i.e., the array has more elements than the queue), the element in
434 >     * the array immediately following the end of the collection is set to
435 >     * {@code null}.
436 >     *
437 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
438 >     * array-based and collection-based APIs.  Further, this method allows
439 >     * precise control over the runtime type of the output array, and may,
440 >     * under certain circumstances, be used to save allocation costs.
441 >     *
442 >     * <p>Suppose {@code x} is a queue known to contain only strings.
443 >     * The following code can be used to dump the queue into a newly
444 >     * allocated array of {@code String}:
445 >     *
446 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
447 >     *
448 >     * Note that {@code toArray(new Object[0])} is identical in function to
449 >     * {@code toArray()}.
450 >     *
451 >     * @param a the array into which the elements of the queue are to
452 >     *          be stored, if it is big enough; otherwise, a new array of the
453 >     *          same runtime type is allocated for this purpose.
454 >     * @return an array containing all of the elements in this queue
455 >     * @throws ArrayStoreException if the runtime type of the specified array
456 >     *         is not a supertype of the runtime type of every element in
457 >     *         this queue
458 >     * @throws NullPointerException if the specified array is null
459 >     */
460 >    public <T> T[] toArray(T[] a) {
461 >        final int size = this.size;
462 >        if (a.length < size)
463 >            // Make a new array of a's runtime type, but my contents:
464 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
465 >        System.arraycopy(queue, 0, a, 0, size);
466 >        if (a.length > size)
467 >            a[size] = null;
468 >        return a;
469 >    }
470 >
471 >    /**
472 >     * Returns an iterator over the elements in this queue. The iterator
473 >     * does not return the elements in any particular order.
474 >     *
475 >     * @return an iterator over the elements in this queue
476 >     */
477 >    public Iterator<E> iterator() {
478 >        return new Itr();
479 >    }
480 >
481 >    private final class Itr implements Iterator<E> {
482 >        /**
483 >         * Index (into queue array) of element to be returned by
484 >         * subsequent call to next.
485 >         */
486 >        private int cursor;
487 >
488 >        /**
489 >         * Index of element returned by most recent call to next,
490 >         * unless that element came from the forgetMeNot list.
491 >         * Set to -1 if element is deleted by a call to remove.
492 >         */
493 >        private int lastRet = -1;
494 >
495 >        /**
496 >         * A queue of elements that were moved from the unvisited portion of
497 >         * the heap into the visited portion as a result of "unlucky" element
498 >         * removals during the iteration.  (Unlucky element removals are those
499 >         * that require a siftup instead of a siftdown.)  We must visit all of
500 >         * the elements in this list to complete the iteration.  We do this
501 >         * after we've completed the "normal" iteration.
502 >         *
503 >         * We expect that most iterations, even those involving removals,
504 >         * will not need to store elements in this field.
505 >         */
506 >        private ArrayDeque<E> forgetMeNot;
507 >
508 >        /**
509 >         * Element returned by the most recent call to next iff that
510 >         * element was drawn from the forgetMeNot list.
511 >         */
512 >        private E lastRetElt;
513 >
514 >        /**
515 >         * The modCount value that the iterator believes that the backing
516 >         * Queue should have.  If this expectation is violated, the iterator
517 >         * has detected concurrent modification.
518 >         */
519 >        private int expectedModCount = modCount;
520 >
521 >        Itr() {}                        // prevent access constructor creation
522 >
523 >        public boolean hasNext() {
524 >            return cursor < size ||
525 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
526 >        }
527 >
528 >        public E next() {
529 >            if (expectedModCount != modCount)
530 >                throw new ConcurrentModificationException();
531 >            if (cursor < size)
532 >                return (E) queue[lastRet = cursor++];
533 >            if (forgetMeNot != null) {
534 >                lastRet = -1;
535 >                lastRetElt = forgetMeNot.poll();
536 >                if (lastRetElt != null)
537 >                    return lastRetElt;
538 >            }
539 >            throw new NoSuchElementException();
540 >        }
541 >
542 >        public void remove() {
543 >            if (expectedModCount != modCount)
544 >                throw new ConcurrentModificationException();
545 >            if (lastRet != -1) {
546 >                E moved = PriorityQueue.this.removeAt(lastRet);
547 >                lastRet = -1;
548 >                if (moved == null)
549 >                    cursor--;
550 >                else {
551 >                    if (forgetMeNot == null)
552 >                        forgetMeNot = new ArrayDeque<>();
553 >                    forgetMeNot.add(moved);
554 >                }
555 >            } else if (lastRetElt != null) {
556 >                PriorityQueue.this.removeEq(lastRetElt);
557 >                lastRetElt = null;
558 >            } else {
559 >                throw new IllegalStateException();
560 >            }
561 >            expectedModCount = modCount;
562 >        }
563 >    }
564 >
565 >    public int size() {
566 >        return size;
567 >    }
568 >
569 >    /**
570 >     * Removes all of the elements from this priority queue.
571 >     * The queue will be empty after this call returns.
572 >     */
573 >    public void clear() {
574 >        modCount++;
575 >        final Object[] es = queue;
576 >        for (int i = 0, n = size; i < n; i++)
577 >            es[i] = null;
578 >        size = 0;
579 >    }
580 >
581 >    public E poll() {
582 >        if (size == 0)
583 >            return null;
584 >        int s = --size;
585 >        modCount++;
586 >        E result = (E) queue[0];
587 >        E x = (E) queue[s];
588 >        queue[s] = null;
589 >        if (s != 0)
590 >            siftDown(0, x);
591 >        return result;
592 >    }
593 >
594 >    /**
595 >     * Removes the ith element from queue.
596 >     *
597 >     * Normally this method leaves the elements at up to i-1,
598 >     * inclusive, untouched.  Under these circumstances, it returns
599 >     * null.  Occasionally, in order to maintain the heap invariant,
600 >     * it must swap a later element of the list with one earlier than
601 >     * i.  Under these circumstances, this method returns the element
602 >     * that was previously at the end of the list and is now at some
603 >     * position before i. This fact is used by iterator.remove so as to
604 >     * avoid missing traversing elements.
605 >     */
606 >    E removeAt(int i) {
607 >        // assert i >= 0 && i < size;
608 >        modCount++;
609 >        int s = --size;
610 >        if (s == i) // removed last element
611 >            queue[i] = null;
612 >        else {
613 >            E moved = (E) queue[s];
614 >            queue[s] = null;
615 >            siftDown(i, moved);
616 >            if (queue[i] == moved) {
617 >                siftUp(i, moved);
618 >                if (queue[i] != moved)
619 >                    return moved;
620 >            }
621 >        }
622          return null;
623      }
624  
625 +    /**
626 +     * Inserts item x at position k, maintaining heap invariant by
627 +     * promoting x up the tree until it is greater than or equal to
628 +     * its parent, or is the root.
629 +     *
630 +     * To simplify and speed up coercions and comparisons, the
631 +     * Comparable and Comparator versions are separated into different
632 +     * methods that are otherwise identical. (Similarly for siftDown.)
633 +     *
634 +     * @param k the position to fill
635 +     * @param x the item to insert
636 +     */
637 +    private void siftUp(int k, E x) {
638 +        if (comparator != null)
639 +            siftUpUsingComparator(k, x, queue, comparator);
640 +        else
641 +            siftUpComparable(k, x, queue);
642 +    }
643 +
644 +    private static <T> void siftUpComparable(int k, T x, Object[] es) {
645 +        Comparable<? super T> key = (Comparable<? super T>) x;
646 +        while (k > 0) {
647 +            int parent = (k - 1) >>> 1;
648 +            Object e = es[parent];
649 +            if (key.compareTo((T) e) >= 0)
650 +                break;
651 +            es[k] = e;
652 +            k = parent;
653 +        }
654 +        es[k] = key;
655 +    }
656 +
657 +    private static <T> void siftUpUsingComparator(
658 +        int k, T x, Object[] es, Comparator<? super T> cmp) {
659 +        while (k > 0) {
660 +            int parent = (k - 1) >>> 1;
661 +            Object e = es[parent];
662 +            if (cmp.compare(x, (T) e) >= 0)
663 +                break;
664 +            es[k] = e;
665 +            k = parent;
666 +        }
667 +        es[k] = x;
668 +    }
669 +
670 +    /**
671 +     * Inserts item x at position k, maintaining heap invariant by
672 +     * demoting x down the tree repeatedly until it is less than or
673 +     * equal to its children or is a leaf.
674 +     *
675 +     * @param k the position to fill
676 +     * @param x the item to insert
677 +     */
678 +    private void siftDown(int k, E x) {
679 +        if (comparator != null)
680 +            siftDownUsingComparator(k, x, queue, size, comparator);
681 +        else
682 +            siftDownComparable(k, x, queue, size);
683 +    }
684 +
685 +    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
686 +        // assert n > 0;
687 +        Comparable<? super T> key = (Comparable<? super T>)x;
688 +        int half = n >>> 1;           // loop while a non-leaf
689 +        while (k < half) {
690 +            int child = (k << 1) + 1; // assume left child is least
691 +            Object c = es[child];
692 +            int right = child + 1;
693 +            if (right < n &&
694 +                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
695 +                c = es[child = right];
696 +            if (key.compareTo((T) c) <= 0)
697 +                break;
698 +            es[k] = c;
699 +            k = child;
700 +        }
701 +        es[k] = key;
702 +    }
703 +
704 +    private static <T> void siftDownUsingComparator(
705 +        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
706 +        // assert n > 0;
707 +        int half = n >>> 1;
708 +        while (k < half) {
709 +            int child = (k << 1) + 1;
710 +            Object c = es[child];
711 +            int right = child + 1;
712 +            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
713 +                c = es[child = right];
714 +            if (cmp.compare(x, (T) c) <= 0)
715 +                break;
716 +            es[k] = c;
717 +            k = child;
718 +        }
719 +        es[k] = x;
720 +    }
721 +
722 +    /**
723 +     * Establishes the heap invariant (described above) in the entire tree,
724 +     * assuming nothing about the order of the elements prior to the call.
725 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
726 +     */
727 +    private void heapify() {
728 +        final Object[] es = queue;
729 +        int n = size, i = (n >>> 1) - 1;
730 +        Comparator<? super E> cmp = comparator;
731 +        if (cmp == null)
732 +            for (; i >= 0; i--)
733 +                siftDownComparable(i, (E) es[i], es, n);
734 +        else
735 +            for (; i >= 0; i--)
736 +                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
737 +    }
738 +
739 +    /**
740 +     * Returns the comparator used to order the elements in this
741 +     * queue, or {@code null} if this queue is sorted according to
742 +     * the {@linkplain Comparable natural ordering} of its elements.
743 +     *
744 +     * @return the comparator used to order this queue, or
745 +     *         {@code null} if this queue is sorted according to the
746 +     *         natural ordering of its elements
747 +     */
748 +    public Comparator<? super E> comparator() {
749 +        return comparator;
750 +    }
751 +
752 +    /**
753 +     * Saves this queue to a stream (that is, serializes it).
754 +     *
755 +     * @param s the stream
756 +     * @throws java.io.IOException if an I/O error occurs
757 +     * @serialData The length of the array backing the instance is
758 +     *             emitted (int), followed by all of its elements
759 +     *             (each an {@code Object}) in the proper order.
760 +     */
761 +    private void writeObject(java.io.ObjectOutputStream s)
762 +        throws java.io.IOException {
763 +        // Write out element count, and any hidden stuff
764 +        s.defaultWriteObject();
765 +
766 +        // Write out array length, for compatibility with 1.5 version
767 +        s.writeInt(Math.max(2, size + 1));
768 +
769 +        // Write out all elements in the "proper order".
770 +        final Object[] es = queue;
771 +        for (int i = 0, n = size; i < n; i++)
772 +            s.writeObject(es[i]);
773 +    }
774 +
775 +    /**
776 +     * Reconstitutes the {@code PriorityQueue} instance from a stream
777 +     * (that is, deserializes it).
778 +     *
779 +     * @param s the stream
780 +     * @throws ClassNotFoundException if the class of a serialized object
781 +     *         could not be found
782 +     * @throws java.io.IOException if an I/O error occurs
783 +     */
784 +    private void readObject(java.io.ObjectInputStream s)
785 +        throws java.io.IOException, ClassNotFoundException {
786 +        // Read in size, and any hidden stuff
787 +        s.defaultReadObject();
788 +
789 +        // Read in (and discard) array length
790 +        s.readInt();
791 +
792 +        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
793 +        queue = new Object[size];
794 +
795 +        // Read in all elements.
796 +        final Object[] es = queue;
797 +        for (int i = 0, n = size; i < n; i++)
798 +            es[i] = s.readObject();
799 +
800 +        // Elements are guaranteed to be in "proper order", but the
801 +        // spec has never explained what that might be.
802 +        heapify();
803 +    }
804 +
805 +    /**
806 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
807 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
808 +     * queue. The spliterator does not traverse elements in any particular order
809 +     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
810 +     *
811 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
812 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
813 +     * Overriding implementations should document the reporting of additional
814 +     * characteristic values.
815 +     *
816 +     * @return a {@code Spliterator} over the elements in this queue
817 +     * @since 1.8
818 +     */
819 +    public final Spliterator<E> spliterator() {
820 +        return new PriorityQueueSpliterator(0, -1, 0);
821 +    }
822 +
823 +    final class PriorityQueueSpliterator implements Spliterator<E> {
824 +        private int index;            // current index, modified on advance/split
825 +        private int fence;            // -1 until first use
826 +        private int expectedModCount; // initialized when fence set
827 +
828 +        /** Creates new spliterator covering the given range. */
829 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
830 +            this.index = origin;
831 +            this.fence = fence;
832 +            this.expectedModCount = expectedModCount;
833 +        }
834 +
835 +        private int getFence() { // initialize fence to size on first use
836 +            int hi;
837 +            if ((hi = fence) < 0) {
838 +                expectedModCount = modCount;
839 +                hi = fence = size;
840 +            }
841 +            return hi;
842 +        }
843 +
844 +        public PriorityQueueSpliterator trySplit() {
845 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
846 +            return (lo >= mid) ? null :
847 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
848 +        }
849 +
850 +        public void forEachRemaining(Consumer<? super E> action) {
851 +            if (action == null)
852 +                throw new NullPointerException();
853 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
854 +            final Object[] es = queue;
855 +            int i, hi; E e;
856 +            for (i = index, index = hi = fence; i < hi; i++) {
857 +                if ((e = (E) es[i]) == null)
858 +                    break;      // must be CME
859 +                action.accept(e);
860 +            }
861 +            if (modCount != expectedModCount)
862 +                throw new ConcurrentModificationException();
863 +        }
864 +
865 +        public boolean tryAdvance(Consumer<? super E> action) {
866 +            if (action == null)
867 +                throw new NullPointerException();
868 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
869 +            int i;
870 +            if ((i = index) < fence) {
871 +                index = i + 1;
872 +                E e;
873 +                if ((e = (E) queue[i]) == null
874 +                    || modCount != expectedModCount)
875 +                    throw new ConcurrentModificationException();
876 +                action.accept(e);
877 +                return true;
878 +            }
879 +            return false;
880 +        }
881 +
882 +        public long estimateSize() {
883 +            return getFence() - index;
884 +        }
885 +
886 +        public int characteristics() {
887 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
888 +        }
889 +    }
890 +
891 +    /**
892 +     * @throws NullPointerException {@inheritDoc}
893 +     */
894 +    public void forEach(Consumer<? super E> action) {
895 +        Objects.requireNonNull(action);
896 +        final int expectedModCount = modCount;
897 +        final Object[] es = queue;
898 +        for (int i = 0, n = size; i < n; i++)
899 +            action.accept((E) es[i]);
900 +        if (expectedModCount != modCount)
901 +            throw new ConcurrentModificationException();
902 +    }
903   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines