ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/PriorityQueue.java
(Generate patch)

Comparing jsr166/src/main/java/util/PriorityQueue.java (file contents):
Revision 1.41 by dl, Sat Sep 13 18:51:06 2003 UTC vs.
Revision 1.127 by jsr166, Sun May 6 23:09:28 2018 UTC

# Line 1 | Line 1
1   /*
2 < * %W% %E%
2 > * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
3 > * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4   *
5 < * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
6 < * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
5 > * This code is free software; you can redistribute it and/or modify it
6 > * under the terms of the GNU General Public License version 2 only, as
7 > * published by the Free Software Foundation.  Oracle designates this
8 > * particular file as subject to the "Classpath" exception as provided
9 > * by Oracle in the LICENSE file that accompanied this code.
10 > *
11 > * This code is distributed in the hope that it will be useful, but WITHOUT
12 > * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 > * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 > * version 2 for more details (a copy is included in the LICENSE file that
15 > * accompanied this code).
16 > *
17 > * You should have received a copy of the GNU General Public License version
18 > * 2 along with this work; if not, write to the Free Software Foundation,
19 > * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 > *
21 > * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 > * or visit www.oracle.com if you need additional information or have any
23 > * questions.
24   */
25  
26   package java.util;
27  
28 + import java.util.function.Consumer;
29 + import jdk.internal.misc.SharedSecrets;
30 +
31   /**
32 < * An unbounded priority {@linkplain Queue queue} based on a priority
33 < * heap.  This queue orders elements according to an order specified
34 < * at construction time, which is specified either according to their
35 < * <i>natural order</i> (see {@link Comparable}), or according to a
36 < * {@link java.util.Comparator}, depending on which constructor is
37 < * used. A priority queue does not permit <tt>null</tt> elements.
32 > * An unbounded priority {@linkplain Queue queue} based on a priority heap.
33 > * The elements of the priority queue are ordered according to their
34 > * {@linkplain Comparable natural ordering}, or by a {@link Comparator}
35 > * provided at queue construction time, depending on which constructor is
36 > * used.  A priority queue does not permit {@code null} elements.
37 > * A priority queue relying on natural ordering also does not permit
38 > * insertion of non-comparable objects (doing so may result in
39 > * {@code ClassCastException}).
40   *
41   * <p>The <em>head</em> of this queue is the <em>least</em> element
42   * with respect to the specified ordering.  If multiple elements are
43   * tied for least value, the head is one of those elements -- ties are
44 < * broken arbitrarily.  The {@link #remove()} and {@link #poll()}
45 < * methods remove and return the head of the queue, and the {@link
46 < * #element()} and {@link #peek()} methods return, but do not delete,
24 < * the head of the queue.
44 > * broken arbitrarily.  The queue retrieval operations {@code poll},
45 > * {@code remove}, {@code peek}, and {@code element} access the
46 > * element at the head of the queue.
47   *
48   * <p>A priority queue is unbounded, but has an internal
49   * <i>capacity</i> governing the size of an array used to store the
# Line 30 | Line 52 | package java.util;
52   * grows automatically.  The details of the growth policy are not
53   * specified.
54   *
55 < * <p>This class implements all of the <em>optional</em> methods of
56 < * the {@link Collection} and {@link Iterator} interfaces.  The
57 < * Iterator provided in method {@link #iterator()} is <em>not</em>
58 < * guaranteed to traverse the elements of the PriorityQueue in any
59 < * particular order. If you need ordered traversal, consider using
60 < * <tt>Arrays.sort(pq.toArray())</tt>.
61 < *
62 < * <p> <strong>Note that this implementation is not synchronized.</strong>
63 < * Multiple threads should not access a <tt>PriorityQueue</tt>
64 < * instance concurrently if any of the threads modifies the list
65 < * structurally. Instead, use the thread-safe {@link
55 > * <p>This class and its iterator implement all of the
56 > * <em>optional</em> methods of the {@link Collection} and {@link
57 > * Iterator} interfaces.  The Iterator provided in method {@link
58 > * #iterator()} and the Spliterator provided in method {@link #spliterator()}
59 > * are <em>not</em> guaranteed to traverse the elements of
60 > * the priority queue in any particular order. If you need ordered
61 > * traversal, consider using {@code Arrays.sort(pq.toArray())}.
62 > *
63 > * <p><strong>Note that this implementation is not synchronized.</strong>
64 > * Multiple threads should not access a {@code PriorityQueue}
65 > * instance concurrently if any of the threads modifies the queue.
66 > * Instead, use the thread-safe {@link
67   * java.util.concurrent.PriorityBlockingQueue} class.
68   *
69 < *
70 < * <p>Implementation note: this implementation provides O(log(n)) time
71 < * for the insertion methods (<tt>offer</tt>, <tt>poll</tt>,
72 < * <tt>remove()</tt> and <tt>add</tt>) methods; linear time for the
73 < * <tt>remove(Object)</tt> and <tt>contains(Object)</tt> methods; and
74 < * constant time for the retrieval methods (<tt>peek</tt>,
52 < * <tt>element</tt>, and <tt>size</tt>).
69 > * <p>Implementation note: this implementation provides
70 > * O(log(n)) time for the enqueuing and dequeuing methods
71 > * ({@code offer}, {@code poll}, {@code remove()} and {@code add});
72 > * linear time for the {@code remove(Object)} and {@code contains(Object)}
73 > * methods; and constant time for the retrieval methods
74 > * ({@code peek}, {@code element}, and {@code size}).
75   *
76   * <p>This class is a member of the
77 < * <a href="{@docRoot}/../guide/collections/index.html">
77 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
78   * Java Collections Framework</a>.
79 + *
80   * @since 1.5
81 < * @version %I%, %G%
82 < * @author Josh Bloch
81 > * @author Josh Bloch, Doug Lea
82 > * @param <E> the type of elements held in this queue
83   */
84 + @SuppressWarnings("unchecked")
85   public class PriorityQueue<E> extends AbstractQueue<E>
86 <    implements Queue<E>, java.io.Serializable {
86 >    implements java.io.Serializable {
87  
88      private static final long serialVersionUID = -7720805057305804111L;
89  
90      private static final int DEFAULT_INITIAL_CAPACITY = 11;
91  
92      /**
93 <     * Priority queue represented as a balanced binary heap: the two children
94 <     * of queue[n] are queue[2*n] and queue[2*n + 1].  The priority queue is
95 <     * ordered by comparator, or by the elements' natural ordering, if
96 <     * comparator is null:  For each node n in the heap and each descendant d
97 <     * of n, n <= d.
98 <     *
75 <     * The element with the lowest value is in queue[1], assuming the queue is
76 <     * nonempty.  (A one-based array is used in preference to the traditional
77 <     * zero-based array to simplify parent and child calculations.)
78 <     *
79 <     * queue.length must be >= 2, even if size == 0.
93 >     * Priority queue represented as a balanced binary heap: the two
94 >     * children of queue[n] are queue[2*n+1] and queue[2*(n+1)].  The
95 >     * priority queue is ordered by comparator, or by the elements'
96 >     * natural ordering, if comparator is null: For each node n in the
97 >     * heap and each descendant d of n, n <= d.  The element with the
98 >     * lowest value is in queue[0], assuming the queue is nonempty.
99       */
100 <    private transient Object[] queue;
100 >    transient Object[] queue; // non-private to simplify nested class access
101  
102      /**
103       * The number of elements in the priority queue.
104       */
105 <    private int size = 0;
105 >    int size;
106  
107      /**
108       * The comparator, or null if priority queue uses elements'
# Line 95 | Line 114 | public class PriorityQueue<E> extends Ab
114       * The number of times this priority queue has been
115       * <i>structurally modified</i>.  See AbstractList for gory details.
116       */
117 <    private transient int modCount = 0;
117 >    transient int modCount;     // non-private to simplify nested class access
118  
119      /**
120 <     * Creates a <tt>PriorityQueue</tt> with the default initial capacity
121 <     * (11) that orders its elements according to their natural
122 <     * ordering (using <tt>Comparable</tt>).
120 >     * Creates a {@code PriorityQueue} with the default initial
121 >     * capacity (11) that orders its elements according to their
122 >     * {@linkplain Comparable natural ordering}.
123       */
124      public PriorityQueue() {
125          this(DEFAULT_INITIAL_CAPACITY, null);
126      }
127  
128      /**
129 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
130 <     * that orders its elements according to their natural ordering
131 <     * (using <tt>Comparable</tt>).
132 <     *
133 <     * @param initialCapacity the initial capacity for this priority queue.
134 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
135 <     * than 1
129 >     * Creates a {@code PriorityQueue} with the specified initial
130 >     * capacity that orders its elements according to their
131 >     * {@linkplain Comparable natural ordering}.
132 >     *
133 >     * @param initialCapacity the initial capacity for this priority queue
134 >     * @throws IllegalArgumentException if {@code initialCapacity} is less
135 >     *         than 1
136       */
137      public PriorityQueue(int initialCapacity) {
138          this(initialCapacity, null);
139      }
140  
141      /**
142 <     * Creates a <tt>PriorityQueue</tt> with the specified initial capacity
142 >     * Creates a {@code PriorityQueue} with the default initial capacity and
143 >     * whose elements are ordered according to the specified comparator.
144 >     *
145 >     * @param  comparator the comparator that will be used to order this
146 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
147 >     *         natural ordering} of the elements will be used.
148 >     * @since 1.8
149 >     */
150 >    public PriorityQueue(Comparator<? super E> comparator) {
151 >        this(DEFAULT_INITIAL_CAPACITY, comparator);
152 >    }
153 >
154 >    /**
155 >     * Creates a {@code PriorityQueue} with the specified initial capacity
156       * that orders its elements according to the specified comparator.
157       *
158 <     * @param initialCapacity the initial capacity for this priority queue.
159 <     * @param comparator the comparator used to order this priority queue.
160 <     * If <tt>null</tt> then the order depends on the elements' natural
161 <     * ordering.
162 <     * @throws IllegalArgumentException if <tt>initialCapacity</tt> is less
163 <     * than 1
158 >     * @param  initialCapacity the initial capacity for this priority queue
159 >     * @param  comparator the comparator that will be used to order this
160 >     *         priority queue.  If {@code null}, the {@linkplain Comparable
161 >     *         natural ordering} of the elements will be used.
162 >     * @throws IllegalArgumentException if {@code initialCapacity} is
163 >     *         less than 1
164       */
165 <    public PriorityQueue(int initialCapacity,
165 >    public PriorityQueue(int initialCapacity,
166                           Comparator<? super E> comparator) {
167 +        // Note: This restriction of at least one is not actually needed,
168 +        // but continues for 1.5 compatibility
169          if (initialCapacity < 1)
170              throw new IllegalArgumentException();
171 <        this.queue = new Object[initialCapacity + 1];
171 >        this.queue = new Object[initialCapacity];
172          this.comparator = comparator;
173      }
174  
175      /**
176 <     * Common code to initialize underlying queue array across
177 <     * constructors below.
176 >     * Creates a {@code PriorityQueue} containing the elements in the
177 >     * specified collection.  If the specified collection is an instance of
178 >     * a {@link SortedSet} or is another {@code PriorityQueue}, this
179 >     * priority queue will be ordered according to the same ordering.
180 >     * Otherwise, this priority queue will be ordered according to the
181 >     * {@linkplain Comparable natural ordering} of its elements.
182 >     *
183 >     * @param  c the collection whose elements are to be placed
184 >     *         into this priority queue
185 >     * @throws ClassCastException if elements of the specified collection
186 >     *         cannot be compared to one another according to the priority
187 >     *         queue's ordering
188 >     * @throws NullPointerException if the specified collection or any
189 >     *         of its elements are null
190       */
191 <    private void initializeArray(Collection<? extends E> c) {
192 <        int sz = c.size();
193 <        int initialCapacity = (int)Math.min((sz * 110L) / 100,
194 <                                            Integer.MAX_VALUE - 1);
195 <        if (initialCapacity < 1)
196 <            initialCapacity = 1;
197 <
198 <        this.queue = new Object[initialCapacity + 1];
191 >    public PriorityQueue(Collection<? extends E> c) {
192 >        if (c instanceof SortedSet<?>) {
193 >            SortedSet<? extends E> ss = (SortedSet<? extends E>) c;
194 >            this.comparator = (Comparator<? super E>) ss.comparator();
195 >            initElementsFromCollection(ss);
196 >        }
197 >        else if (c instanceof PriorityQueue<?>) {
198 >            PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c;
199 >            this.comparator = (Comparator<? super E>) pq.comparator();
200 >            initFromPriorityQueue(pq);
201 >        }
202 >        else {
203 >            this.comparator = null;
204 >            initFromCollection(c);
205 >        }
206      }
207  
208      /**
209 <     * Initially fill elements of the queue array under the
210 <     * knowledge that it is sorted or is another PQ, in which
211 <     * case we can just place the elements in the order presented.
209 >     * Creates a {@code PriorityQueue} containing the elements in the
210 >     * specified priority queue.  This priority queue will be
211 >     * ordered according to the same ordering as the given priority
212 >     * queue.
213 >     *
214 >     * @param  c the priority queue whose elements are to be placed
215 >     *         into this priority queue
216 >     * @throws ClassCastException if elements of {@code c} cannot be
217 >     *         compared to one another according to {@code c}'s
218 >     *         ordering
219 >     * @throws NullPointerException if the specified priority queue or any
220 >     *         of its elements are null
221       */
222 <    private void fillFromSorted(Collection<? extends E> c) {
223 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
224 <            queue[++size] = i.next();
222 >    public PriorityQueue(PriorityQueue<? extends E> c) {
223 >        this.comparator = (Comparator<? super E>) c.comparator();
224 >        initFromPriorityQueue(c);
225      }
226  
227      /**
228 <     * Initially fill elements of the queue array that is not to our knowledge
229 <     * sorted, so we must rearrange the elements to guarantee the heap
230 <     * invariant.
228 >     * Creates a {@code PriorityQueue} containing the elements in the
229 >     * specified sorted set.   This priority queue will be ordered
230 >     * according to the same ordering as the given sorted set.
231 >     *
232 >     * @param  c the sorted set whose elements are to be placed
233 >     *         into this priority queue
234 >     * @throws ClassCastException if elements of the specified sorted
235 >     *         set cannot be compared to one another according to the
236 >     *         sorted set's ordering
237 >     * @throws NullPointerException if the specified sorted set or any
238 >     *         of its elements are null
239       */
240 <    private void fillFromUnsorted(Collection<? extends E> c) {
241 <        for (Iterator<? extends E> i = c.iterator(); i.hasNext(); )
242 <            queue[++size] = i.next();
173 <        heapify();
240 >    public PriorityQueue(SortedSet<? extends E> c) {
241 >        this.comparator = (Comparator<? super E>) c.comparator();
242 >        initElementsFromCollection(c);
243      }
244  
245 <    /**
246 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
247 <     * specified collection.  The priority queue has an initial
248 <     * capacity of 110% of the size of the specified collection or 1
249 <     * if the collection is empty.  If the specified collection is an
250 <     * instance of a {@link java.util.SortedSet} or is another
251 <     * <tt>PriorityQueue</tt>, the priority queue will be sorted
252 <     * according to the same comparator, or according to its elements'
253 <     * natural order if the collection is sorted according to its
185 <     * elements' natural order.  Otherwise, the priority queue is
186 <     * ordered according to its elements' natural order.
187 <     *
188 <     * @param c the collection whose elements are to be placed
189 <     *        into this priority queue.
190 <     * @throws ClassCastException if elements of the specified collection
191 <     *         cannot be compared to one another according to the priority
192 <     *         queue's ordering.
193 <     * @throws NullPointerException if <tt>c</tt> or any element within it
194 <     * is <tt>null</tt>
195 <     */
196 <    public PriorityQueue(Collection<? extends E> c) {
197 <        initializeArray(c);
198 <        if (c instanceof SortedSet) {
199 <            // @fixme double-cast workaround for compiler
200 <            SortedSet<? extends E> s = (SortedSet<? extends E>) (SortedSet)c;
201 <            comparator = (Comparator<? super E>)s.comparator();
202 <            fillFromSorted(s);
203 <        } else if (c instanceof PriorityQueue) {
204 <            PriorityQueue<? extends E> s = (PriorityQueue<? extends E>) c;
205 <            comparator = (Comparator<? super E>)s.comparator();
206 <            fillFromSorted(s);
245 >    /** Ensures that queue[0] exists, helping peek() and poll(). */
246 >    private static Object[] ensureNonEmpty(Object[] es) {
247 >        return (es.length > 0) ? es : new Object[1];
248 >    }
249 >
250 >    private void initFromPriorityQueue(PriorityQueue<? extends E> c) {
251 >        if (c.getClass() == PriorityQueue.class) {
252 >            this.queue = ensureNonEmpty(c.toArray());
253 >            this.size = c.size();
254          } else {
255 <            comparator = null;
209 <            fillFromUnsorted(c);
255 >            initFromCollection(c);
256          }
257      }
258  
259 +    private void initElementsFromCollection(Collection<? extends E> c) {
260 +        Object[] es = c.toArray();
261 +        int len = es.length;
262 +        // If c.toArray incorrectly doesn't return Object[], copy it.
263 +        if (es.getClass() != Object[].class)
264 +            es = Arrays.copyOf(es, len, Object[].class);
265 +        if (len == 1 || this.comparator != null)
266 +            for (Object e : es)
267 +                if (e == null)
268 +                    throw new NullPointerException();
269 +        this.queue = ensureNonEmpty(es);
270 +        this.size = len;
271 +    }
272 +
273      /**
274 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
215 <     * specified collection.  The priority queue has an initial
216 <     * capacity of 110% of the size of the specified collection or 1
217 <     * if the collection is empty.  This priority queue will be sorted
218 <     * according to the same comparator as the given collection, or
219 <     * according to its elements' natural order if the collection is
220 <     * sorted according to its elements' natural order.
274 >     * Initializes queue array with elements from the given Collection.
275       *
276 <     * @param c the collection whose elements are to be placed
223 <     *        into this priority queue.
224 <     * @throws ClassCastException if elements of the specified collection
225 <     *         cannot be compared to one another according to the priority
226 <     *         queue's ordering.
227 <     * @throws NullPointerException if <tt>c</tt> or any element within it
228 <     * is <tt>null</tt>
276 >     * @param c the collection
277       */
278 <    public PriorityQueue(PriorityQueue<? extends E> c) {
279 <        initializeArray(c);
280 <        comparator = (Comparator<? super E>)c.comparator();
233 <        fillFromSorted(c);
278 >    private void initFromCollection(Collection<? extends E> c) {
279 >        initElementsFromCollection(c);
280 >        heapify();
281      }
282  
283      /**
284 <     * Creates a <tt>PriorityQueue</tt> containing the elements in the
285 <     * specified collection.  The priority queue has an initial
286 <     * capacity of 110% of the size of the specified collection or 1
287 <     * if the collection is empty.  This priority queue will be sorted
288 <     * according to the same comparator as the given collection, or
289 <     * according to its elements' natural order if the collection is
290 <     * sorted according to its elements' natural order.
284 >     * The maximum size of array to allocate.
285 >     * Some VMs reserve some header words in an array.
286 >     * Attempts to allocate larger arrays may result in
287 >     * OutOfMemoryError: Requested array size exceeds VM limit
288 >     */
289 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
290 >
291 >    /**
292 >     * Increases the capacity of the array.
293       *
294 <     * @param c the collection whose elements are to be placed
246 <     *        into this priority queue.
247 <     * @throws ClassCastException if elements of the specified collection
248 <     *         cannot be compared to one another according to the priority
249 <     *         queue's ordering.
250 <     * @throws NullPointerException if <tt>c</tt> or any element within it
251 <     * is <tt>null</tt>
294 >     * @param minCapacity the desired minimum capacity
295       */
296 <    public PriorityQueue(SortedSet<? extends E> c) {
297 <        initializeArray(c);
298 <        comparator = (Comparator<? super E>)c.comparator();
299 <        fillFromSorted(c);
296 >    private void grow(int minCapacity) {
297 >        int oldCapacity = queue.length;
298 >        // Double size if small; else grow by 50%
299 >        int newCapacity = oldCapacity + ((oldCapacity < 64) ?
300 >                                         (oldCapacity + 2) :
301 >                                         (oldCapacity >> 1));
302 >        // overflow-conscious code
303 >        if (newCapacity - MAX_ARRAY_SIZE > 0)
304 >            newCapacity = hugeCapacity(minCapacity);
305 >        queue = Arrays.copyOf(queue, newCapacity);
306 >    }
307 >
308 >    private static int hugeCapacity(int minCapacity) {
309 >        if (minCapacity < 0) // overflow
310 >            throw new OutOfMemoryError();
311 >        return (minCapacity > MAX_ARRAY_SIZE) ?
312 >            Integer.MAX_VALUE :
313 >            MAX_ARRAY_SIZE;
314      }
315  
316      /**
317 <     * Resize array, if necessary, to be able to hold given index
317 >     * Inserts the specified element into this priority queue.
318 >     *
319 >     * @return {@code true} (as specified by {@link Collection#add})
320 >     * @throws ClassCastException if the specified element cannot be
321 >     *         compared with elements currently in this priority queue
322 >     *         according to the priority queue's ordering
323 >     * @throws NullPointerException if the specified element is null
324       */
325 <    private void grow(int index) {
326 <        int newlen = queue.length;
264 <        if (index < newlen) // don't need to grow
265 <            return;
266 <        if (index == Integer.MAX_VALUE)
267 <            throw new OutOfMemoryError();
268 <        while (newlen <= index) {
269 <            if (newlen >= Integer.MAX_VALUE / 2)  // avoid overflow
270 <                newlen = Integer.MAX_VALUE;
271 <            else
272 <                newlen <<= 2;
273 <        }
274 <        Object[] newQueue = new Object[newlen];
275 <        System.arraycopy(queue, 0, newQueue, 0, queue.length);
276 <        queue = newQueue;
325 >    public boolean add(E e) {
326 >        return offer(e);
327      }
278            
328  
329      /**
330 <     * Inserts the specified element to this priority queue.
330 >     * Inserts the specified element into this priority queue.
331       *
332 <     * @return <tt>true</tt>
333 <     * @throws ClassCastException if the specified element cannot be compared
334 <     * with elements currently in the priority queue according
335 <     * to the priority queue's ordering.
336 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
332 >     * @return {@code true} (as specified by {@link Queue#offer})
333 >     * @throws ClassCastException if the specified element cannot be
334 >     *         compared with elements currently in this priority queue
335 >     *         according to the priority queue's ordering
336 >     * @throws NullPointerException if the specified element is null
337       */
338 <    public boolean offer(E o) {
339 <        if (o == null)
338 >    public boolean offer(E e) {
339 >        if (e == null)
340              throw new NullPointerException();
341          modCount++;
342 <        ++size;
343 <
344 <        // Grow backing store if necessary
345 <        if (size >= queue.length)
346 <            grow(size);
298 <
299 <        queue[size] = o;
300 <        fixUp(size);
342 >        int i = size;
343 >        if (i >= queue.length)
344 >            grow(i + 1);
345 >        siftUp(i, e);
346 >        size = i + 1;
347          return true;
348      }
349  
350      public E peek() {
351 <        if (size == 0)
306 <            return null;
307 <        return (E) queue[1];
308 <    }
309 <
310 <    // Collection Methods - the first two override to update docs
311 <
312 <    /**
313 <     * Adds the specified element to this queue.
314 <     * @return <tt>true</tt> (as per the general contract of
315 <     * <tt>Collection.add</tt>).
316 <     *
317 <     * @throws NullPointerException if the specified element is <tt>null</tt>.
318 <     * @throws ClassCastException if the specified element cannot be compared
319 <     * with elements currently in the priority queue according
320 <     * to the priority queue's ordering.
321 <     */
322 <    public boolean add(E o) {
323 <        return offer(o);
324 <    }
325 <
326 <  
327 <    /**
328 <     * Adds all of the elements in the specified collection to this queue.
329 <     * The behavior of this operation is undefined if
330 <     * the specified collection is modified while the operation is in
331 <     * progress.  (This implies that the behavior of this call is undefined if
332 <     * the specified collection is this queue, and this queue is nonempty.)
333 <     * <p>
334 <     * This implementation iterates over the specified collection, and adds
335 <     * each object returned by the iterator to this collection, in turn.
336 <     * @param c collection whose elements are to be added to this queue
337 <     * @return <tt>true</tt> if this queue changed as a result of the
338 <     *         call.
339 <     * @throws NullPointerException if <tt>c</tt> or any element in <tt>c</tt>
340 <     * is <tt>null</tt>
341 <     * @throws ClassCastException if any element cannot be compared
342 <     * with elements currently in the priority queue according
343 <     * to the priority queue's ordering.
344 <     */
345 <    public boolean addAll(Collection<? extends E> c) {
346 <        return super.addAll(c);
351 >        return (E) queue[0];
352      }
353  
354 +    private int indexOf(Object o) {
355 +        if (o != null) {
356 +            final Object[] es = queue;
357 +            for (int i = 0, n = size; i < n; i++)
358 +                if (o.equals(es[i]))
359 +                    return i;
360 +        }
361 +        return -1;
362 +    }
363 +
364 +    /**
365 +     * Removes a single instance of the specified element from this queue,
366 +     * if it is present.  More formally, removes an element {@code e} such
367 +     * that {@code o.equals(e)}, if this queue contains one or more such
368 +     * elements.  Returns {@code true} if and only if this queue contained
369 +     * the specified element (or equivalently, if this queue changed as a
370 +     * result of the call).
371 +     *
372 +     * @param o element to be removed from this queue, if present
373 +     * @return {@code true} if this queue changed as a result of the call
374 +     */
375      public boolean remove(Object o) {
376 <        if (o == null)
376 >        int i = indexOf(o);
377 >        if (i == -1)
378              return false;
379 +        else {
380 +            removeAt(i);
381 +            return true;
382 +        }
383 +    }
384  
385 <        if (comparator == null) {
386 <            for (int i = 1; i <= size; i++) {
387 <                if (((Comparable<E>)queue[i]).compareTo((E)o) == 0) {
388 <                    removeAt(i);
389 <                    return true;
390 <                }
391 <            }
392 <        } else {
393 <            for (int i = 1; i <= size; i++) {
394 <                if (comparator.compare((E)queue[i], (E)o) == 0) {
395 <                    removeAt(i);
364 <                    return true;
365 <                }
385 >    /**
386 >     * Identity-based version for use in Itr.remove.
387 >     *
388 >     * @param o element to be removed from this queue, if present
389 >     */
390 >    void removeEq(Object o) {
391 >        final Object[] es = queue;
392 >        for (int i = 0, n = size; i < n; i++) {
393 >            if (o == es[i]) {
394 >                removeAt(i);
395 >                break;
396              }
397          }
398 <        return false;
398 >    }
399 >
400 >    /**
401 >     * Returns {@code true} if this queue contains the specified element.
402 >     * More formally, returns {@code true} if and only if this queue contains
403 >     * at least one element {@code e} such that {@code o.equals(e)}.
404 >     *
405 >     * @param o object to be checked for containment in this queue
406 >     * @return {@code true} if this queue contains the specified element
407 >     */
408 >    public boolean contains(Object o) {
409 >        return indexOf(o) >= 0;
410 >    }
411 >
412 >    /**
413 >     * Returns an array containing all of the elements in this queue.
414 >     * The elements are in no particular order.
415 >     *
416 >     * <p>The returned array will be "safe" in that no references to it are
417 >     * maintained by this queue.  (In other words, this method must allocate
418 >     * a new array).  The caller is thus free to modify the returned array.
419 >     *
420 >     * <p>This method acts as bridge between array-based and collection-based
421 >     * APIs.
422 >     *
423 >     * @return an array containing all of the elements in this queue
424 >     */
425 >    public Object[] toArray() {
426 >        return Arrays.copyOf(queue, size);
427 >    }
428 >
429 >    /**
430 >     * Returns an array containing all of the elements in this queue; the
431 >     * runtime type of the returned array is that of the specified array.
432 >     * The returned array elements are in no particular order.
433 >     * If the queue fits in the specified array, it is returned therein.
434 >     * Otherwise, a new array is allocated with the runtime type of the
435 >     * specified array and the size of this queue.
436 >     *
437 >     * <p>If the queue fits in the specified array with room to spare
438 >     * (i.e., the array has more elements than the queue), the element in
439 >     * the array immediately following the end of the collection is set to
440 >     * {@code null}.
441 >     *
442 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
443 >     * array-based and collection-based APIs.  Further, this method allows
444 >     * precise control over the runtime type of the output array, and may,
445 >     * under certain circumstances, be used to save allocation costs.
446 >     *
447 >     * <p>Suppose {@code x} is a queue known to contain only strings.
448 >     * The following code can be used to dump the queue into a newly
449 >     * allocated array of {@code String}:
450 >     *
451 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
452 >     *
453 >     * Note that {@code toArray(new Object[0])} is identical in function to
454 >     * {@code toArray()}.
455 >     *
456 >     * @param a the array into which the elements of the queue are to
457 >     *          be stored, if it is big enough; otherwise, a new array of the
458 >     *          same runtime type is allocated for this purpose.
459 >     * @return an array containing all of the elements in this queue
460 >     * @throws ArrayStoreException if the runtime type of the specified array
461 >     *         is not a supertype of the runtime type of every element in
462 >     *         this queue
463 >     * @throws NullPointerException if the specified array is null
464 >     */
465 >    public <T> T[] toArray(T[] a) {
466 >        final int size = this.size;
467 >        if (a.length < size)
468 >            // Make a new array of a's runtime type, but my contents:
469 >            return (T[]) Arrays.copyOf(queue, size, a.getClass());
470 >        System.arraycopy(queue, 0, a, 0, size);
471 >        if (a.length > size)
472 >            a[size] = null;
473 >        return a;
474      }
475  
476      /**
477       * Returns an iterator over the elements in this queue. The iterator
478       * does not return the elements in any particular order.
479       *
480 <     * @return an iterator over the elements in this queue.
480 >     * @return an iterator over the elements in this queue
481       */
482      public Iterator<E> iterator() {
483          return new Itr();
484      }
485  
486 <    private class Itr implements Iterator<E> {
382 <
486 >    private final class Itr implements Iterator<E> {
487          /**
488           * Index (into queue array) of element to be returned by
489           * subsequent call to next.
490           */
491 <        private int cursor = 1;
491 >        private int cursor;
492  
493          /**
494           * Index of element returned by most recent call to next,
495           * unless that element came from the forgetMeNot list.
496 <         * Reset to 0 if element is deleted by a call to remove.
496 >         * Set to -1 if element is deleted by a call to remove.
497           */
498 <        private int lastRet = 0;
498 >        private int lastRet = -1;
499  
500          /**
501 <         * The modCount value that the iterator believes that the backing
398 <         * List should have.  If this expectation is violated, the iterator
399 <         * has detected concurrent modification.
400 <         */
401 <        private int expectedModCount = modCount;
402 <
403 <        /**
404 <         * A list of elements that were moved from the unvisited portion of
501 >         * A queue of elements that were moved from the unvisited portion of
502           * the heap into the visited portion as a result of "unlucky" element
503           * removals during the iteration.  (Unlucky element removals are those
504 <         * that require a fixup instead of a fixdown.)  We must visit all of
504 >         * that require a siftup instead of a siftdown.)  We must visit all of
505           * the elements in this list to complete the iteration.  We do this
506           * after we've completed the "normal" iteration.
507           *
508           * We expect that most iterations, even those involving removals,
509 <         * will not use need to store elements in this field.
509 >         * will not need to store elements in this field.
510           */
511 <        private ArrayList<E> forgetMeNot = null;
511 >        private ArrayDeque<E> forgetMeNot;
512  
513          /**
514           * Element returned by the most recent call to next iff that
515           * element was drawn from the forgetMeNot list.
516           */
517 <        private Object lastRetElt = null;
517 >        private E lastRetElt;
518 >
519 >        /**
520 >         * The modCount value that the iterator believes that the backing
521 >         * Queue should have.  If this expectation is violated, the iterator
522 >         * has detected concurrent modification.
523 >         */
524 >        private int expectedModCount = modCount;
525 >
526 >        Itr() {}                        // prevent access constructor creation
527  
528          public boolean hasNext() {
529 <            return cursor <= size || forgetMeNot != null;
529 >            return cursor < size ||
530 >                (forgetMeNot != null && !forgetMeNot.isEmpty());
531          }
532  
533          public E next() {
534 <            checkForComodification();
535 <            E result;
536 <            if (cursor <= size) {
537 <                result = (E) queue[cursor];
538 <                lastRet = cursor++;
539 <            }
540 <            else if (forgetMeNot == null)
541 <                throw new NoSuchElementException();
542 <            else {
436 <                int remaining = forgetMeNot.size();
437 <                result = forgetMeNot.remove(remaining - 1);
438 <                if (remaining == 1)
439 <                    forgetMeNot = null;
440 <                lastRet = 0;
441 <                lastRetElt = result;
534 >            if (expectedModCount != modCount)
535 >                throw new ConcurrentModificationException();
536 >            if (cursor < size)
537 >                return (E) queue[lastRet = cursor++];
538 >            if (forgetMeNot != null) {
539 >                lastRet = -1;
540 >                lastRetElt = forgetMeNot.poll();
541 >                if (lastRetElt != null)
542 >                    return lastRetElt;
543              }
544 <            return result;
544 >            throw new NoSuchElementException();
545          }
546  
547          public void remove() {
548 <            checkForComodification();
549 <
550 <            if (lastRet != 0) {
548 >            if (expectedModCount != modCount)
549 >                throw new ConcurrentModificationException();
550 >            if (lastRet != -1) {
551                  E moved = PriorityQueue.this.removeAt(lastRet);
552 <                lastRet = 0;
553 <                if (moved == null) {
552 >                lastRet = -1;
553 >                if (moved == null)
554                      cursor--;
555 <                } else {
555 >                else {
556                      if (forgetMeNot == null)
557 <                        forgetMeNot = new ArrayList<E>();
557 >                        forgetMeNot = new ArrayDeque<>();
558                      forgetMeNot.add(moved);
559                  }
560              } else if (lastRetElt != null) {
561 <                PriorityQueue.this.remove(lastRetElt);
561 >                PriorityQueue.this.removeEq(lastRetElt);
562                  lastRetElt = null;
563              } else {
564                  throw new IllegalStateException();
565              }
465
566              expectedModCount = modCount;
567          }
468
469        final void checkForComodification() {
470            if (modCount != expectedModCount)
471                throw new ConcurrentModificationException();
472        }
568      }
569  
570      public int size() {
# Line 477 | Line 572 | public class PriorityQueue<E> extends Ab
572      }
573  
574      /**
575 <     * Remove all elements from the priority queue.
575 >     * Removes all of the elements from this priority queue.
576 >     * The queue will be empty after this call returns.
577       */
578      public void clear() {
579          modCount++;
580 <
581 <        // Null out element references to prevent memory leak
582 <        for (int i=1; i<=size; i++)
487 <            queue[i] = null;
488 <
580 >        final Object[] es = queue;
581 >        for (int i = 0, n = size; i < n; i++)
582 >            es[i] = null;
583          size = 0;
584      }
585  
586      public E poll() {
587 <        if (size == 0)
588 <            return null;
495 <        modCount++;
496 <
497 <        E result = (E) queue[1];
498 <        queue[1] = queue[size];
499 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
500 <        if (size > 1)
501 <            fixDown(1);
587 >        final Object[] es;
588 >        final E result;
589  
590 +        if ((result = (E) ((es = queue)[0])) != null) {
591 +            modCount++;
592 +            final int n;
593 +            final E x = (E) es[(n = --size)];
594 +            es[n] = null;
595 +            if (n > 0) {
596 +                final Comparator<? super E> cmp;
597 +                if ((cmp = comparator) == null)
598 +                    siftDownComparable(0, x, es, n);
599 +                else
600 +                    siftDownUsingComparator(0, x, es, n, cmp);
601 +            }
602 +        }
603          return result;
604      }
605  
606      /**
607 <     * Removes and returns the ith element from queue.  (Recall that queue
508 <     * is one-based, so 1 <= i <= size.)
607 >     * Removes the ith element from queue.
608       *
609 <     * Normally this method leaves the elements at positions from 1 up to i-1,
610 <     * inclusive, untouched.  Under these circumstances, it returns null.
611 <     * Occasionally, in order to maintain the heap invariant, it must move
612 <     * the last element of the list to some index in the range [2, i-1],
613 <     * and move the element previously at position (i/2) to position i.
614 <     * Under these circumstances, this method returns the element that was
615 <     * previously at the end of the list and is now at some position between
616 <     * 2 and i-1 inclusive.
617 <     */
618 <    private E removeAt(int i) {
619 <        assert i > 0 && i <= size;
609 >     * Normally this method leaves the elements at up to i-1,
610 >     * inclusive, untouched.  Under these circumstances, it returns
611 >     * null.  Occasionally, in order to maintain the heap invariant,
612 >     * it must swap a later element of the list with one earlier than
613 >     * i.  Under these circumstances, this method returns the element
614 >     * that was previously at the end of the list and is now at some
615 >     * position before i. This fact is used by iterator.remove so as to
616 >     * avoid missing traversing elements.
617 >     */
618 >    E removeAt(int i) {
619 >        // assert i >= 0 && i < size;
620 >        final Object[] es = queue;
621          modCount++;
622 <
623 <        E moved = (E) queue[size];
624 <        queue[i] = moved;
625 <        queue[size--] = null;  // Drop extra ref to prevent memory leak
626 <        if (i <= size) {
627 <            fixDown(i);
628 <            if (queue[i] == moved) {
629 <                fixUp(i);
630 <                if (queue[i] != moved)
622 >        int s = --size;
623 >        if (s == i) // removed last element
624 >            es[i] = null;
625 >        else {
626 >            E moved = (E) es[s];
627 >            es[s] = null;
628 >            siftDown(i, moved);
629 >            if (es[i] == moved) {
630 >                siftUp(i, moved);
631 >                if (es[i] != moved)
632                      return moved;
633              }
634          }
# Line 535 | Line 636 | public class PriorityQueue<E> extends Ab
636      }
637  
638      /**
639 <     * Establishes the heap invariant (described above) assuming the heap
640 <     * satisfies the invariant except possibly for the leaf-node indexed by k
641 <     * (which may have a nextExecutionTime less than its parent's).
642 <     *
643 <     * This method functions by "promoting" queue[k] up the hierarchy
644 <     * (by swapping it with its parent) repeatedly until queue[k]
645 <     * is greater than or equal to its parent.
646 <     */
647 <    private void fixUp(int k) {
648 <        if (comparator == null) {
649 <            while (k > 1) {
650 <                int j = k >> 1;
651 <                if (((Comparable<E>)queue[j]).compareTo((E)queue[k]) <= 0)
652 <                    break;
653 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
654 <                k = j;
655 <            }
656 <        } else {
657 <            while (k > 1) {
658 <                int j = k >>> 1;
659 <                if (comparator.compare((E)queue[j], (E)queue[k]) <= 0)
660 <                    break;
661 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
662 <                k = j;
663 <            }
639 >     * Inserts item x at position k, maintaining heap invariant by
640 >     * promoting x up the tree until it is greater than or equal to
641 >     * its parent, or is the root.
642 >     *
643 >     * To simplify and speed up coercions and comparisons, the
644 >     * Comparable and Comparator versions are separated into different
645 >     * methods that are otherwise identical. (Similarly for siftDown.)
646 >     *
647 >     * @param k the position to fill
648 >     * @param x the item to insert
649 >     */
650 >    private void siftUp(int k, E x) {
651 >        if (comparator != null)
652 >            siftUpUsingComparator(k, x, queue, comparator);
653 >        else
654 >            siftUpComparable(k, x, queue);
655 >    }
656 >
657 >    private static <T> void siftUpComparable(int k, T x, Object[] es) {
658 >        Comparable<? super T> key = (Comparable<? super T>) x;
659 >        while (k > 0) {
660 >            int parent = (k - 1) >>> 1;
661 >            Object e = es[parent];
662 >            if (key.compareTo((T) e) >= 0)
663 >                break;
664 >            es[k] = e;
665 >            k = parent;
666          }
667 +        es[k] = key;
668 +    }
669 +
670 +    private static <T> void siftUpUsingComparator(
671 +        int k, T x, Object[] es, Comparator<? super T> cmp) {
672 +        while (k > 0) {
673 +            int parent = (k - 1) >>> 1;
674 +            Object e = es[parent];
675 +            if (cmp.compare(x, (T) e) >= 0)
676 +                break;
677 +            es[k] = e;
678 +            k = parent;
679 +        }
680 +        es[k] = x;
681      }
682  
683      /**
684 <     * Establishes the heap invariant (described above) in the subtree
685 <     * rooted at k, which is assumed to satisfy the heap invariant except
686 <     * possibly for node k itself (which may be greater than its children).
687 <     *
688 <     * This method functions by "demoting" queue[k] down the hierarchy
689 <     * (by swapping it with its smaller child) repeatedly until queue[k]
690 <     * is less than or equal to its children.
691 <     */
692 <    private void fixDown(int k) {
693 <        int j;
694 <        if (comparator == null) {
695 <            while ((j = k << 1) <= size && (j > 0)) {
696 <                if (j<size &&
697 <                    ((Comparable<E>)queue[j]).compareTo((E)queue[j+1]) > 0)
698 <                    j++; // j indexes smallest kid
699 <
700 <                if (((Comparable<E>)queue[k]).compareTo((E)queue[j]) <= 0)
701 <                    break;
702 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
703 <                k = j;
704 <            }
705 <        } else {
706 <            while ((j = k << 1) <= size && (j > 0)) {
707 <                if (j<size &&
708 <                    comparator.compare((E)queue[j], (E)queue[j+1]) > 0)
709 <                    j++; // j indexes smallest kid
710 <                if (comparator.compare((E)queue[k], (E)queue[j]) <= 0)
711 <                    break;
712 <                Object tmp = queue[j];  queue[j] = queue[k]; queue[k] = tmp;
596 <                k = j;
597 <            }
684 >     * Inserts item x at position k, maintaining heap invariant by
685 >     * demoting x down the tree repeatedly until it is less than or
686 >     * equal to its children or is a leaf.
687 >     *
688 >     * @param k the position to fill
689 >     * @param x the item to insert
690 >     */
691 >    private void siftDown(int k, E x) {
692 >        if (comparator != null)
693 >            siftDownUsingComparator(k, x, queue, size, comparator);
694 >        else
695 >            siftDownComparable(k, x, queue, size);
696 >    }
697 >
698 >    private static <T> void siftDownComparable(int k, T x, Object[] es, int n) {
699 >        // assert n > 0;
700 >        Comparable<? super T> key = (Comparable<? super T>)x;
701 >        int half = n >>> 1;           // loop while a non-leaf
702 >        while (k < half) {
703 >            int child = (k << 1) + 1; // assume left child is least
704 >            Object c = es[child];
705 >            int right = child + 1;
706 >            if (right < n &&
707 >                ((Comparable<? super T>) c).compareTo((T) es[right]) > 0)
708 >                c = es[child = right];
709 >            if (key.compareTo((T) c) <= 0)
710 >                break;
711 >            es[k] = c;
712 >            k = child;
713          }
714 +        es[k] = key;
715 +    }
716 +
717 +    private static <T> void siftDownUsingComparator(
718 +        int k, T x, Object[] es, int n, Comparator<? super T> cmp) {
719 +        // assert n > 0;
720 +        int half = n >>> 1;
721 +        while (k < half) {
722 +            int child = (k << 1) + 1;
723 +            Object c = es[child];
724 +            int right = child + 1;
725 +            if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
726 +                c = es[child = right];
727 +            if (cmp.compare(x, (T) c) <= 0)
728 +                break;
729 +            es[k] = c;
730 +            k = child;
731 +        }
732 +        es[k] = x;
733      }
734  
735      /**
736       * Establishes the heap invariant (described above) in the entire tree,
737       * assuming nothing about the order of the elements prior to the call.
738 +     * This classic algorithm due to Floyd (1964) is known to be O(size).
739       */
740      private void heapify() {
741 <        for (int i = size/2; i >= 1; i--)
742 <            fixDown(i);
741 >        final Object[] es = queue;
742 >        int n = size, i = (n >>> 1) - 1;
743 >        final Comparator<? super E> cmp;
744 >        if ((cmp = comparator) == null)
745 >            for (; i >= 0; i--)
746 >                siftDownComparable(i, (E) es[i], es, n);
747 >        else
748 >            for (; i >= 0; i--)
749 >                siftDownUsingComparator(i, (E) es[i], es, n, cmp);
750      }
751  
752      /**
753 <     * Returns the comparator used to order this collection, or <tt>null</tt>
754 <     * if this collection is sorted according to its elements natural ordering
755 <     * (using <tt>Comparable</tt>).
756 <     *
757 <     * @return the comparator used to order this collection, or <tt>null</tt>
758 <     * if this collection is sorted according to its elements natural ordering.
753 >     * Returns the comparator used to order the elements in this
754 >     * queue, or {@code null} if this queue is sorted according to
755 >     * the {@linkplain Comparable natural ordering} of its elements.
756 >     *
757 >     * @return the comparator used to order this queue, or
758 >     *         {@code null} if this queue is sorted according to the
759 >     *         natural ordering of its elements
760       */
761      public Comparator<? super E> comparator() {
762          return comparator;
763      }
764  
765      /**
766 <     * Save the state of the instance to a stream (that
624 <     * is, serialize it).
766 >     * Saves this queue to a stream (that is, serializes it).
767       *
626     * @serialData The length of the array backing the instance is
627     * emitted (int), followed by all of its elements (each an
628     * <tt>Object</tt>) in the proper order.
768       * @param s the stream
769 +     * @throws java.io.IOException if an I/O error occurs
770 +     * @serialData The length of the array backing the instance is
771 +     *             emitted (int), followed by all of its elements
772 +     *             (each an {@code Object}) in the proper order.
773       */
774      private void writeObject(java.io.ObjectOutputStream s)
775 <        throws java.io.IOException{
775 >        throws java.io.IOException {
776          // Write out element count, and any hidden stuff
777          s.defaultWriteObject();
778  
779 <        // Write out array length
780 <        s.writeInt(queue.length);
779 >        // Write out array length, for compatibility with 1.5 version
780 >        s.writeInt(Math.max(2, size + 1));
781  
782 <        // Write out all elements in the proper order.
783 <        for (int i=1; i<=size; i++)
784 <            s.writeObject(queue[i]);
782 >        // Write out all elements in the "proper order".
783 >        final Object[] es = queue;
784 >        for (int i = 0, n = size; i < n; i++)
785 >            s.writeObject(es[i]);
786      }
787  
788      /**
789 <     * Reconstitute the <tt>ArrayList</tt> instance from a stream (that is,
790 <     * deserialize it).
789 >     * Reconstitutes the {@code PriorityQueue} instance from a stream
790 >     * (that is, deserializes it).
791 >     *
792       * @param s the stream
793 +     * @throws ClassNotFoundException if the class of a serialized object
794 +     *         could not be found
795 +     * @throws java.io.IOException if an I/O error occurs
796       */
797      private void readObject(java.io.ObjectInputStream s)
798          throws java.io.IOException, ClassNotFoundException {
799          // Read in size, and any hidden stuff
800          s.defaultReadObject();
801  
802 <        // Read in array length and allocate array
803 <        int arrayLength = s.readInt();
804 <        queue = new Object[arrayLength];
805 <
806 <        // Read in all elements in the proper order.
807 <        for (int i=1; i<=size; i++)
808 <            queue[i] = (E) s.readObject();
802 >        // Read in (and discard) array length
803 >        s.readInt();
804 >
805 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size);
806 >        final Object[] es = queue = new Object[Math.max(size, 1)];
807 >
808 >        // Read in all elements.
809 >        for (int i = 0, n = size; i < n; i++)
810 >            es[i] = s.readObject();
811 >
812 >        // Elements are guaranteed to be in "proper order", but the
813 >        // spec has never explained what that might be.
814 >        heapify();
815      }
816  
817 +    /**
818 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
819 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
820 +     * queue. The spliterator does not traverse elements in any particular order
821 +     * (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
822 +     *
823 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
824 +     * {@link Spliterator#SUBSIZED}, and {@link Spliterator#NONNULL}.
825 +     * Overriding implementations should document the reporting of additional
826 +     * characteristic values.
827 +     *
828 +     * @return a {@code Spliterator} over the elements in this queue
829 +     * @since 1.8
830 +     */
831 +    public final Spliterator<E> spliterator() {
832 +        return new PriorityQueueSpliterator(0, -1, 0);
833 +    }
834 +
835 +    final class PriorityQueueSpliterator implements Spliterator<E> {
836 +        private int index;            // current index, modified on advance/split
837 +        private int fence;            // -1 until first use
838 +        private int expectedModCount; // initialized when fence set
839 +
840 +        /** Creates new spliterator covering the given range. */
841 +        PriorityQueueSpliterator(int origin, int fence, int expectedModCount) {
842 +            this.index = origin;
843 +            this.fence = fence;
844 +            this.expectedModCount = expectedModCount;
845 +        }
846 +
847 +        private int getFence() { // initialize fence to size on first use
848 +            int hi;
849 +            if ((hi = fence) < 0) {
850 +                expectedModCount = modCount;
851 +                hi = fence = size;
852 +            }
853 +            return hi;
854 +        }
855 +
856 +        public PriorityQueueSpliterator trySplit() {
857 +            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
858 +            return (lo >= mid) ? null :
859 +                new PriorityQueueSpliterator(lo, index = mid, expectedModCount);
860 +        }
861 +
862 +        public void forEachRemaining(Consumer<? super E> action) {
863 +            if (action == null)
864 +                throw new NullPointerException();
865 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
866 +            final Object[] es = queue;
867 +            int i, hi; E e;
868 +            for (i = index, index = hi = fence; i < hi; i++) {
869 +                if ((e = (E) es[i]) == null)
870 +                    break;      // must be CME
871 +                action.accept(e);
872 +            }
873 +            if (modCount != expectedModCount)
874 +                throw new ConcurrentModificationException();
875 +        }
876 +
877 +        public boolean tryAdvance(Consumer<? super E> action) {
878 +            if (action == null)
879 +                throw new NullPointerException();
880 +            if (fence < 0) { fence = size; expectedModCount = modCount; }
881 +            int i;
882 +            if ((i = index) < fence) {
883 +                index = i + 1;
884 +                E e;
885 +                if ((e = (E) queue[i]) == null
886 +                    || modCount != expectedModCount)
887 +                    throw new ConcurrentModificationException();
888 +                action.accept(e);
889 +                return true;
890 +            }
891 +            return false;
892 +        }
893 +
894 +        public long estimateSize() {
895 +            return getFence() - index;
896 +        }
897 +
898 +        public int characteristics() {
899 +            return Spliterator.SIZED | Spliterator.SUBSIZED | Spliterator.NONNULL;
900 +        }
901 +    }
902 +
903 +    /**
904 +     * @throws NullPointerException {@inheritDoc}
905 +     */
906 +    public void forEach(Consumer<? super E> action) {
907 +        Objects.requireNonNull(action);
908 +        final int expectedModCount = modCount;
909 +        final Object[] es = queue;
910 +        for (int i = 0, n = size; i < n; i++)
911 +            action.accept((E) es[i]);
912 +        if (expectedModCount != modCount)
913 +            throw new ConcurrentModificationException();
914 +    }
915   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines